NTP TECHNICAL REPORT #### ON THE # TOXICOLOGY AND CARCINOGENESIS # STUDIES OF # **PYRIDINE** (CAS NO. 110-86-1) # IN F344/N RATS, WISTAR RATS, AND B6C3F₁ MICE (DRINKING WATER STUDIES) Scheduled Peer Review Date: 9-10 December 1997 # **NOTICE** This is a DRAFT Technical Report prepared for public review and comment. Until this DRAFT has been reviewed and approved by the NTP Board of Scientific Counselors Technical Reports Review Subcommittee in public session, the interpretations described herein do not represent the official scientific position of the National Toxicology Program. Following peer review, readers should contact the NTP for the final version of this Technical Report. ### **NTP TR 470** NIH Publication No. 98-3960 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health #### NOTE TO THE READER The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. The prechronic and chronic studies were conducted in compliance with Food and Drug Administration (FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjected to retrospective quality assurance audits before being presented for public review. These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. The interpretive conclusions presented in this Technical Report are based only on the results of these NTP studies. Extrapolation of these results to other species and quantitative risk analyses for humans require wider analyses beyond the purview of these studies. Selection *per se* is not an indicator of a chemical s carcinogenic potential. Listings of all published NTP reports and ongoing studies are also available from NTP Central Data Management, NIEHS, P.O. Box 12233, MD E1-02, Research Triangle Park, NC 27709 (919-541-3419). The Abstracts and other study information for 2-year studies are also available at the NTP s World Wide Web site: http://ntp-server.niehs.nih.gov. ### NTP TECHNICAL REPORT ### ON THE # TOXICOLOGY AND CARCINOGENESIS # **STUDIES OF** # **PYRIDINE** (CAS NO. 110-86-1) # IN F344/N RATS, WISTAR RATS, AND B6C3F₁ MICE (DRINKING WATER STUDIES) Scheduled Peer Review Date: 9-10 December 1997 #### NOTICE This is a DRAFT Technical Report prepared for public review and comment. Until this DRAFT has been reviewed and approved by the NTP Board of Scientific Counselors Technical Reports Review Subcommittee in public session, the interpretations described herein do not represent the official scientific position of the National Toxicology Program. Following peer review, readers should contact the NTP for the final version of this Technical Report. ### **NTP TR 470** NIH Publication No. 98-3960 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health # **CONTRIBUTORS** # **National Toxicology Program** Evaluated and interpreted results and reported findings J.K. Dunnick, Ph.D., Study Scientist D.A. Bridge, B.S. J.R. Bucher, Ph.D. R.E. Chapin, Ph.D. J.R. Hailey, D.V.M. J.K. Haseman, Ph.D. R.R. Maronpot, D.V.M. G.N. Rao, D.V.M., Ph.D. A. Radovsky, D.V.M., Ph.D. C.S. Smith, Ph.D. G.S. Travlos, D.V.M. D.B. Walters, Ph.D. K.L. Witt, M.S., Integrated Laboratory Systems ### **TSI Mason Research Institute** Conducted studies, evaluated pathology findings for 13-week and 2-year studies in rats and mice A.G. Braun, Sc.D., Principal Investigator, 13-week studies M.R. Osheroff, Ph.D., Principal Investigator, 2-year studies C. Gamba-Vitalo, Ph.D. D. Norlin, Ph.D. F.M. Voelker, M.S., D.V.M. ## PATHCO, Inc. Histopathologic evaluation for 2-year studies in F344/N and Wistar rats D.G. Goodman, V.M.D. P.K. Hildebrandt, D.V.M. ### **Experimental Pathology Laboratories, Inc.** Provided pathology quality assurance J.F. Hardisty, D.V.M., Principal Investigator S. Botts, M.S., D.V.M., Ph.D. E.T. Gaillard, M.S., D.V.M. ### **Dynamac Corporation** Prepared quality assurance audits S. Brecher, Ph.D., Principal Investigator ### Analytical Sciences, Inc. Provided statistical analyses # NTP Pathology Working Group Evaluated slides, prepared pathology report on F344/N and Wistar rats (22 July 1997) $M.P.\ Jokinen,\ D.V.M.,\ {\tt Chairperson}$ Pathology Associates International S. Botts, M.S., D.V.M., Ph.D. Experimental Pathology Laboratories, Inc. S. Ching, D.V.M., Ph.D. SVC Associates, Inc. E.T. Gaillard, M.S., D.V.M. Experimental Pathology Laboratories, Inc. R.A. Herbert, D.V.M., Ph.D. National Toxicology Program P.B. Little, D.V.M., Ph.D., Observer Pathology Associates International S. Platz, D.V.M., Ph.D., Observer Boehringer Ingelheim A. Radovsky, D.V.M., Ph.D. National Toxicology Program A. Yoshida, D.V.M., Ph.D., Observer National Toxicology Program Evaluated slides, prepared pathology report on kidney step sections of male F344/N and Wistar rats (8 August 1997) P.B. Little, D.V.M., Ph.D., Chairperson Pathology Associates International J.R. Hailey, D.V.M. National Toxicology Program J.R. Leininger, D.V.M., Ph.D. National Toxicology Program J. Mahler, D.V.M. National Toxicology Program A. Radovsky, D.V.M., Ph.D. National Toxicology Program Evaluated slides, prepared pathology report on mice (19 September 1996) J.C. Seely, D.V.M., Chairperson PATHCO, Inc. S. Botts, M.S., D.V.M., Ph.D. Experimental Pathology Laboratories, Inc. R. Cattley, V.M.D., Ph.D. Chemical Industry Institute of Toxicology J.R. Leininger, D.V.M., Ph.D. National Toxicology Program A. Nyska, D.V.M. National Toxicology Program A. Radovsky, D.V.M., Ph.D. National Toxicology Program R.W. Morris, M.S., Principal Investigator S.R. Lloyd, M.S. N.G. Mintz, B.S. # Biotechnical Services, Inc. Prepared Technical Report S.R. Gunnels, M.A., Principal Investigator J.R. Carlton, B.A. G. Gordon, M.A. L.M. Harper, B.S. A.M. Macri-Hanson, M.A., M.F.A. # **CONTENTS** | ABSTRACT . | | 7 | |--------------|--|-------------| | EXPLANATION | N OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY | 16 | | TECHNICAL R | EPORTS REVIEW SUBCOMMITTEE | 17 | | SUMMARY OF | TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS | 18 | | INTRODUCTIO | ON | 19 | | MATERIALS A | ND METHODS | 33 | | RESULTS | | 49 | | DISCUSSION A | ND CONCLUSIONS | 93 | | REFERENCES | | 103 | | APPENDIX A | Summary of Lesions in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | A- 1 | | APPENDIX B | Summary of Lesions in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | B- 1 | | APPENDIX C | Summary of Lesions in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | C- 1 | | APPENDIX D | Summary of Lesions in Male Mice in the 2-Year Drinking Water Study of Pyridine | D- 1 | | APPENDIX E | Summary of Lesions in Female Mice in the 2-Year Drinking Water Study of Pyridine | E-1 | | APPENDIX F | Genetic Toxicology | F- 1 | | Appendix G | Hematology and Clinical Chemistry Results | G- 1 | | APPENDIX H | Organ Weights and Organ-Weight-to-Body-Weight Ratios | H-1 | | APPENDIX I | Reproductive Tissue Evaluations and Estrous Cycle Characterization | I- 1 | | Appendix J | Determinations of Pyridine in Plasma | J- 1 | | APPENDIX K | Chemical Characterization and Dose Formulation Studies | K- 1 | | APPENDIX L | Water and Compound Consumption in the 2-Year Drinking Water Studies of Pyridine | L-1 | | APPENDIX M | Ingredients, Nutrient Composition, and Contaminant Levels in NIH-07 Rat and Mouse Ration | M -1 | | Pyridine, NTP T | R 470 | 5 | |-----------------|-------------------------|---------| | | | | | APPENDIX N | Sentinel Animal Program |
N-1 | # **ABSTRACT** ### **PYRIDINE** CAS No. 110-86-1 Chemical Formula: C₅H₅N Molecular Weight: 79.10 Synonyms: Azabenzene, azine Pyridine is used as a denaturant in alcohol and antifreeze mixtures, as a solvent for paint, rubber, and polycarbonate resins, and as an intermediate in the manufacture of insecticides, herbicides, and fungicides. It is used in the production of piperidine, an intermediate in the manufacture of rubber and mepiquat chloride, and as an intermediate and solvent in the preparation of vitamins and drugs, dyes, textile water repellants, and flavoring agents in food. Pyridine was nominated for study because of its large production volume and its use in a variety of food,
medical, and industrial products. Male and female F344/N rats, male Wistar rats, and male and female B6C3F₁ mice were exposed to pyridine (approximately 99% pure) in drinking water for 13 weeks or 2 years. Genetic toxicology studies were conducted in *Salmonella typhimurium*, L5178Y mouse lymphoma cells, cultured Chinese hamster ovary cells, *Drosophila melanogaster*, and mouse bone marrow cells. # 13-WEEK STUDY IN F344/N RATS Groups of 10 male and 10 female F344/N rats were exposed to pyridine in drinking water at concentrations of 0, 50, 100, 250, 500, or 1,000 ppm (equivalent to average daily doses of 5, 10, 25, 55, or 90 mg pyridine/kg body weight). Two females exposed to 1,000 ppm died during week 1. Final mean body weights of 1,000 ppm males and 500 and 1,000 ppm females were significantly less than controls. Water consumption by female rats exposed to 1,000 ppm was less than that by controls. At study termination, evidence of anemia persisted in the 500 and 1,000 ppm males and all exposed groups of females. There was evidence of hepatocellular injury and/or altered hepatic function demonstrated by increases of serum alanine aminotransferase and sorbitol dehydrogenase activity and bile acid concentrations in 500 and 1,000 ppm rats. The estrous cycle length of 1,000 ppm females was significantly longer than that of the controls. Absolute and relative liver weights of males and females exposed to 250, 500, or 1,000 ppm were significantly greater than controls. In the liver, the incidences of centrilobular degeneration, hypertrophy, chronic inflammation, and pigmentation were generally increased in 500 and 1,000 ppm males and females relative to controls. Many of the kidney lesions observed in exposed males are components of spontaneous nephropathy common in male rats including protein casts, chronic inflammation, and mineralization. The severities of renal tubule regeneration increased in male rats exposed to 500 or 1,000 ppm compared to controls. The incidences of granular casts in the kidney and renal tubule hyaline degeneration were increased relative to controls in males exposed to 1,000 ppm. # 13-WEEK STUDY IN WISTAR RATS Groups of 10 male Wistar rats were exposed to pyridine in drinking water at concentrations of 0, 50, 100, 250, 500, or 1,000 ppm (equivalent to average daily doses of 5, 10, 30, 60, or 100 mg/kg). One male rat exposed to 500 ppm died during week 1. Final mean body weights and body weight gains of rats exposed to 250, 500, or 1,000 ppm were significantly less than those of the controls. Water consumption by rats exposed to 1,000 ppm was lower than that by controls. There was evidence of hepatocellular injury and/or altered hepatic function in the 500 and 1,000 ppm groups, similar to that observed in the 13-week study in F344/N rats. Incidences of centrilobular degeneration, hypertrophy, chronic inflammation, and pigmentation in the liver of rats exposed to 500 or 1,000 ppm were significantly increased relative to controls. # 13-WEEK STUDY IN MICE Groups of 10 male and 10 female B6C3F₁ mice were exposed to pyridine in drinking water at concentrations of 0, 50, 100, 250, 500, or 1,000 ppm (equivalent to average daily doses of 10, 20, 50, 85, or 160 mg/kg for males and 10, 20, 60, 100, or 190 mg/kg for females). One female mouse exposed to 250 ppm died during week 2. Final mean body weights and body weight gains of female mice exposed to 1,000 ppm were significantly less than those of controls. Water consumption by exposed female mice was lower than that by controls at week 1 but generally slightly higher than controls at week 13. Sperm motility in exposed male mice was significantly decreased relative to controls. Absolute and relative liver weights were significantly increased relative to controls in males exposed to 100 ppm or greater and in 250 and 500 ppm females. No chemical-related lesions were observed in male or female mice. # 2-YEAR STUDY IN F344/N RATS Groups of 50 male and 50 female F344/N rats were exposed to pyridine in drinking water at concentrations of 0, 100, 200, or 400 ppm (equivalent to average daily doses of 7, 14, or 33 mg/kg) for 103 (males) or 104 (females) weeks. # Survival, Body Weights, and Water Consumption Survival of exposed males and females was similar to that of controls. Mean body weights of 400 ppm males and females were generally less than those of the controls throughout the study, and those of 200 ppm males and females were less than those of controls during the second year of the study. Water consumption by males and females exposed to 200 or 400 ppm was generally greater than that by controls. # Pathology Findings Incidences of renal tubule adenoma and renal tubule adenoma or carcinoma (combined) in male rats exposed to 400 ppm were significantly increased compared to controls and exceeded the historical control ranges. The findings from an extended evaluation (step section) of the kidneys did not reveal additional carcinomas, but additional adenomas were observed in each group of males. In the standard evaluation, an increased incidence of renal tubule hyperplasia was observed in 400 ppm males compared to controls. The severity of nephropathy in males increased slightly with exposure concentration. Incidences of mononuclear cell leukemia in female rats were significantly increased in the 200 and 400 ppm groups compared to controls, and the incidence in the 400 ppm group exceeded the historical control range. Exposure concentration-related nonneoplastic liver lesions were observed in males and females, and the incidences were generally increased in groups exposed to 400 ppm. These included centrilobular cytomegaly, cytoplasmic vacuolization, periportal fibrosis, fibrosis, centrilobular degeneration and necrosis, and pigmentation. Bile duct hyperplasia occurred more often in exposed females than in controls. ### 2-YEAR STUDY IN WISTAR RATS Groups of 50 male Wistar rats were exposed to pyridine in drinking water at concentrations of 0, 100, 200, or 400 ppm (equivalent to average daily doses of 8, 17, or 36 mg/kg) for 103 weeks. # Survival, Body Weights, and Water Consumption Survival of rats exposed to 200 or 400 ppm was significantly less than that of the controls. Mean body weights of rats exposed to 100, 200, or 400 ppm were significantly less than controls beginning in weeks 69, 49, and 6, respectively. Water consumption by exposed rats was similar to that by controls. # Pathology Findings The incidence of testicular adenoma in rats exposed to 400 ppm was significantly increased compared to controls. Incidences of interstitial cell hyperplasia were observed in control and exposed groups and were slightly, but not significantly, increased in rats exposed to 200 or 400 ppm. Severity of nephropathy was marked in all groups, and additional evidence of kidney disease, including mineralization in the glandular stomach, parathyroid gland hyperplasia, and fibrous osteodystrophy, was observed in 100 and 200 ppm rats. Relative to the controls, the incidences of hepatic centrilobular degeneration and necrosis, fibrosis, periportal fibrosis, and/or pigmentation were increased in exposed groups. # 2-YEAR STUDY IN MICE Groups of 50 male B6C3F₁ mice were exposed to pyridine in drinking water at concentrations of 0, 250, 500, or 1,000 ppm (equivalent to average daily doses of 35, 65, or 110 mg/kg) for 104 weeks, and groups of 50 female B6C3F₁ mice were exposed to pyridine in drinking water at concentrations of 0, 125, 250, or 500 ppm (equivalent to average daily doses of 15, 35, or 70 mg/kg) for 105 weeks. # Survival, Body Weights, and Water Consumption Survival of exposed males and females was similar to that of the controls. Mean body weights of 500 and 1,000 ppm females were less than controls from weeks 89 and 73, respectively. Water consumption by males exposed to 250 or 500 ppm was generally greater than that by controls; male mice exposed to 1,000 ppm consumed less water than controls throughout the study. Water consumption by exposed females was generally lower than that by controls during the first year of the study, but greater than controls during the second year. # Pathology Findings Hepatocellular neoplasms, including hepatoblastomas, in exposed male and female mice were clearly related to pyridine exposure. Additionally, many mice had multiple hepatocellular neoplasms. The incidences of hepatocellular neoplasms in exposed males and females generally exceeded the historical control ranges for drinking water studies. Neoplasms from control mice, 500 ppm females, and 1,000 ppm males were negative when stained for p53 protein. ## GENETIC TOXICOLOGY Pyridine was not mutagenic in *Salmonella typhimurium* strain TA98, TA100, TA1535, or TA5137 or in L5178Y mouse lymphoma cells, with or without S9 metabolic activation, and it did not induce sister chromatid exchanges or chromosomal aberrations in Chinese hamster ovary cells, with or without S9. Pyridine was tested for induction of sex-linked recessive lethal mutations in adult male *Drosophila melanogaster*, and mixed results were obtained. In one experiment, administration by injection gave negative results, but feeding produced an equivocal response. A second experiment generated negative results by injection and feeding. A third experiment showed significant increases in sex-linked recessive lethal mutations in flies treated with pyridine by injection but not by feeding. Results of a single reciprocal translocation test in male *Drosophila melanogaster* were negative. No induction of chromosomal aberrations or micronuclei was noted in bone marrow cells of male mice administered pyridine via intraperitoneal injection. ## **CONCLUSIONS** Under the conditions of these 2-year drinking water studies, there was *some evidence of carcinogenic activity** of pyridine in male F344/N rats based on increased incidences of renal tubule neoplasms. There was *equivocal evidence of carcinogenic activity* of pyridine
in female F344/N rats based on increased incidences of mononuclear cell leukemia. There was *equivocal evidence of carcinogenic activity* in male Wistar rats based on an increased incidence of interstitial cell adenoma of the testis. There was *clear* evidence of carcinogenic activity of pyridine in male and female B6C3F₁ mice based on increased incidences of malignant hepatocellular neoplasms. In F344/N rats, exposure to pyridine resulted in increased incidences of centrilobular cytomegaly and degeneration, cytoplasmic vacuolization, and pigmentation in the liver of males and females; periportal fibrosis, fibrosis, and centrilobular necrosis in the liver of males; and bile duct hyperplasia in females. In male Wistar rats, pyridine exposure resulted in increased incidences of centrilobular degeneration and necrosis, fibrosis, periportal fibrosis, and pigmentation in the liver, and secondary to kidney disease, mineralization in the glandular stomach and parathyroid gland hyperplasia. ^{*} Explanation of Levels of Evidence of Carcinogenic Activity is on page 16. Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of Pyridine | | Male
F344/N Rats | Female
F344/N Rats | Male
Wistar Rats | Male
B6C3F ₁ Mice | Female
B6C3F ₁ Mice | |----------------------------|---|--|---|---|---| | Exposure
Concentrations | 0, 100, 200, or
400 ppm | 0, 100, 200, or
400 ppm | 0, 100, 200, or
400 ppm | 0, 250, 500, or
1,000 ppm | 0, 125, 250, or
500 ppm | | Body weights | 200 and 400 ppm
groups less than
controls | 200 and 400 ppm
groups less than
controls | Exposed groups less than controls | Exposed groups similar to controls | Exposed groups less than controls | | Survival rates | 25/50, 20/50, 25/50, 16/50 | 32/50, 37/50, 29/50, 26/50 | 22/50, 14/50, 11/50, 7/50 | 35/50, 28/50, 35/49, 35/50 | 32/50, 30/50, 22/50, 29/50 | | Nonneoplastic effects | Liver: centrilobular cytomegaly (0/50, 4/49, 8/50, 6/50); cytoplasmic vacuolization (4/50, 6/49, 13/50, 17/50); periportal fibrosis (0/50, 0/49, 2/50, 29/50); fibrosis (1/50, 1/49, 1/50, 10/50); centrilobular degeneration (1/50, 3/49, 2/50, 8/50); centrilobular necrosis (0/50, 3/49, 0/50, 5/50); pigmentation (4/50, 11/49, 20/50, 25/50) | Liver: centrilobular cytomegaly (0/50, 1/50, 4/50, 20/50); cytoplasmic vacuolization (10/50, 7/50, 9/50, 18/50); centrilobular degeneration (1/50, 2/50, 2/50, 7/50); bile duct hyperplasia (20/50, 29/50, 34/50, 29/50); pigmentation (6/50, 2/50, 6/50, 17/50) | Liver: centrilobular degeneration (1/50, 15/50, 25/50, 33/50); centrilobular necrosis (5/50, 6/50, 4/50, 23/50); fibrosis (1/50, 5/50, 26/50, 31/50); periportal fibrosis (0/50, 0/50, 5/50, 7/50); pigmentation (6/50, 15/50, 34/50, 42/50) Glandular Stomach: mineralization (8/49, 25/50, 16/48, 6/48) Parathyroid Gland: hyperplasia (16/48, 32/47, 29/48, 12/47) | None | None | | Neoplastic effects | Kidney: renal tubule adenoma (standard evaluation - 1/50, 0/48, 2/50, 6/49; standard and extended evaluations combined - 2/50, 3/48, 6/50, 10/49); renal tubule adenoma or carcinoma (standard evaluation - 1/50, 1/48, 2/50, 6/49; standard and extended evaluations combined - 2/50, 4/48, 6/50, 10/49) | None | None | Liver: hepatocellular adenoma (29/50, 40/50, 34/49, 39/50); hepatocellular carcinoma (15/50, 35/50, 41/49, 40/50); hepatoblastoma (2/50, 18/50, 22/49, 15/50); hepatocellular adenoma, hepatocellular carcinoma, or hepatoblastoma (38/50, 47/50, 46/49, 47/50) | Liver: hepatocellular adenoma (37/49, 39/50, 43/50, 34/50); hepatocellular carcinoma (13/49, 23/50, 33/50, 41/50); hepatoblastoma (1/49, 2/50, 9/50, 16/50); hepatocellular adenoma, hepatocellular carcinoma, or hepatoblastoma (41/49, 42/50, 45/50, 44/50) | | Uncertain findings | None | All Organs:
mononuclear cell
leukemia (12/50,
16/50, 22/50, 23/50) | <u>Testis</u> : interstitial cell adenoma (5/50, 6/49, 4/49, 12/50) | None | None | # Summary of the 2-Year Carcinogenesis and Genetic Toxicology Studies of Pyridine | | Male
F344/N Rats | Female
F344/N Rats | Male
Wistar Rats | Male
B6C3F ₁ Mice | Female
B6C3F ₁ Mice | | |--|---------------------|---|---------------------|---------------------------------|-----------------------------------|--| | Level of evidence of carcinogenic activity | Some evidence | Equivocal evidence | Equivocal evidence | Clear evidence | Clear evidence | | | Genetic toxicology Salmonella typhimurium gene mutations: Mouse lymphoma gene mutations: | | Negative in strains TA98, TA100, TA1535, and TA1537, with and without S9 Negative with and without S9 | | | | | | Sister chromatid exchanges Cultured Chinese hamster ovary cells in vitro: | | Negative with and without S9 | | | | | | Chromosomal aberrations Cultured Chinese hamster ovary cells in vitro: | | Negative with and without S9
Negative | | | | | | Mouse bone marrow in vivo: Sex-linked recessive lethal mutations | | Positive by injection; equivocal by feeding | | | | | | Drosophila melanogaster: Reciprocal translocations | | Negative | | | | | | Drosophila melanogaster: Micronucleated erythrocytes Mouse bone marrow in vi | 3 | Negative | | | | | #### EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence, including animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies. Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results (clear evidence and some evidence); one category for uncertain findings (equivocal evidence); one category for no observable effects (no evidence); and one category for experiments that cannot be evaluated because of major flaws (inadequate study). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Report series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following five categories is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to potency or mechanism. Clear evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy. Some evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a chemical-related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence. Equivocal evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemical related. No evidence of carcinogenic activity is demonstrated by studies that are interpreted as showing no chemical-related increases in malignant or benign neoplasms. **Inadequate study** of carcinogenic activity is demonstrated by studies that, because of major
qualitative or quantitative limitations, cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity. When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. Such consideration should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include: adequacy of the experimental design and conduct; occurrence of common versus uncommon neoplasia; progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions; some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant; combining benign and malignant tumor incidence known or thought to represent stages of progression in the same organ or tissue; latency in tumor induction; multiplicity in site-specific neoplasia; metastases; supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species); presence or absence of dose relationships; statistical significance of the observed tumor increase; concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm; survival-adjusted analyses and false positive or false negative concerns; structure-activity correlations; and in some cases, genetic toxicology. # NATIONAL TOXICOLOGY PROGRAM BOARD OF SCIENTIFIC COUNSELORS TECHNICAL REPORTS REVIEW SUBCOMMITTEE The members of the Technical Reports Review Subcommittee who evaluated the draft NTP Technical Report on pyridine on 9-10 December 1997 are listed below. Subcommittee members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, subcommittee members have five major responsibilities in reviewing the NTP studies: to ascertain that all relevant literature data have been adequately cited and interpreted, to determine if the design and conditions of the NTP studies were appropriate, to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, to judge the significance of the experimental results by scientific criteria, and to assess the evaluation of the evidence of carcinogenic activity and other observed toxic responses. # Gary P. Carlson, Ph.D., Chairperson School of Health Sciences Purdue University West Lafayette, IN #### A. John Bailer, Ph.D. Department of Mathematics and Statistics University of Miami Oxford, OH #### Steven A. Belinsky, Ph.D. Inhalation Toxicology Research Institute Kirkland Air Force Base Albuquerque, NM # James S. Bus, Ph.D. Health and Environmental Sciences Dow Chemical Company Midland, MI #### Linda A. Chatman, D.V.M. Pfizer, Inc. Groton, CT #### John M. Cullen, Ph.D., V.M.D. Department of Microbiology, Parasitology, and Pathology College of Veterinary Medicine North Carolina State University Raleigh, NC #### Susan M. Fischer, Ph.D. M.D. Anderson Cancer Center University of Texas Smithville, TX #### Thomas L. Goldsworthy, Ph.D. Integrated Laboratory Systems Research Triangle Park, NC #### Stephen S. Hecht, Ph.D. University of Minnesota Cancer Centers Minneapolis, MN #### Michelle Medinsky, Ph.D. Chemical Industry Institute of Toxicology Research Triangle Park, NC ### Irma Russo, M.D. Fox Chase Cancer Center Philadelphia, PA ### Jose Russo, M.D. Fox Chase Cancer Center Philadelphia, PA # SUMMARY OF TECHNICAL REPORTS REVIEW SUBCOMMITTEE COMMENTS **NOTE:** A summary of the Technical Reports Review Subcommittee's remarks will appear in a future draft of this report. # INTRODUCTION ### **PYRIDINE** CAS No. 110-86-1 Chemical Formula: C₅H₅N Molecular Weight: 79.10 Synonyms: Azabenzene, azine # CHEMICAL AND PHYSICAL PROPERTIES Pyridine is a slightly yellow or colorless, hygroscopic liquid with a characteristic nauseating odor and a burning taste. It is miscible with water, alcohols, diethyl ether, benzene, ligroin, and fatty oils and is slightly alkaline in reaction (pK_a of 5.19). Pyridine boils at approximately 115° C at 760 mm Hg and has a specific gravity of 0.982 at 20°/4° C, a vapor pressure of approximately 20 Torr at 25° C, and a vapor density of 2.73 (Jori *et al.*, 1983; *Hawley s*, 1987; *Merck Index*, 1989; Lewis, 1993). The liquid has a flash point (closed cup) of 20° C and is flammable when exposed to heat, flame, or oxidizers; the vapor explodes upon contact with a flame or spark. When heated to decomposition, it emits cyanide fumes (*Hawley s*, 1987; Sittig, 1991; Lewis, 1993). # PRODUCTION, USE, AND HUMAN EXPOSURE Pyridine is produced by coal carbonization and recovery from coke-oven gases and coal tar middle oil. Since the 1950s, it has also been produced synthetically from the vapor phase reaction of acetaldehyde and ammonia, with formaldehyde and methanol sometimes added (Jori et al., 1983; NCI, 1985). Pyridine is a solvent that is widely employed in industry and the laboratory. It is used as a denaturant in alcohol and antifreeze mixtures, as a solvent for paint, rubber, and polycarbonate resins, and as an intermediate in the manufacture of insecticides (chlorpyrifos), herbicides (paraquat and trichloropyr), and fungicides. It is used in the production of piperidine, an intermediate in the manufacture of rubber and mepiquat chloride. Pyridine is also used as an intermediate and solvent in the preparation of vitamins and drugs, dyes, textile water repellants, and flavoring agents in food (NCI, 1985; *Hawley s*, 1987; ATSDR, 1992). Manufacturers and consumers used an estimated 300,000 kg pyridine in 1977. Approximately 4.5 to 8.9×10^6 kg pyridine was produced in the United States in 1975, 27×10^6 kg in 1976, and 11.6×10^6 kg in 1978 (Pyridine Task Force, correspondence from Chairmen to U.S. Environmental Protection Agency, Office of Toxic Substances, Washington, DC, 1978). No information on the current annual production of pyridine is available in the literature (ATSDR, 1992). The greatest potential for exposure to pyridine is in the workplace. Occupational exposures, usually by inhalation or dermal absorption, may occur during pyridine production or its use as a chemical intermediate or solvent (NCI, 1985). Exposure may also occur at coke-oven and oil-shale processing facilities. The EPA (USEPA, 1978) estimated that 249,000 persons were occupationally exposed to pyridine. NIOSH estimated the extent of potential human exposure between 1981 and 1983 at over 41,000 workers (NIOSH, 1990). The 8-hour, time-weighted, average permissible exposure level for pyridine is 5 ppm (16 mg/m³) (ACGIH, 1997). NIOSH (1985) determined the concentration immediately dangerous to life or health to be 3,600 ppm. The pungent odor of pyridine (odor threshold of 0.17 ppm in air) serves to limit voluntary exposure (NCI, 1985). The odor becomes objectionable to unaccustomed individuals at 10 ppm, and olfactory fatigue occurs at greater than 5 ppm (Jori *et al.*, 1983). Pyridine has rarely been detected in ambient air, water, or soil except near industrial sources (ATSDR, 1992). Pyridine is released into the atmosphere as fugitive emissions from coal gasification and oil shale processing facilities, from ironworking and coking plants (Masek, 1981), and from the combustion of polyisocyanate foam products (Seader *et al.*, 1972; Junk and Ford, 1980); an estimated 298,438 pounds of pyridine were released in air, 4,630 pounds in surface water, and 303,650 pounds in groundwater in 1987 (ATSDR, 1992). In addition, 209,880 pounds of pyridine were disposed of in publicly owned wastewater treatment plants (ATSDR, 1992). Pyridine has been identified in effluent from wastewater treatment plants (Ellis *et al.*, 1982), natural waters (Shelton and Hites, 1978), and groundwater near an underground coal gasification site (Stuermer *et al.*, 1982). Pyridine releases to land from industrial sources were estimated at 28,656 pounds in 1987 (ATSDR, 1992). Many states have regulations concerning the acceptable ambient air concentrations of pyridine. For an 8-hour period, ambient air limits have been set at 300 μ g/m³ in Connecticut, 150 μ g/m³ in Indiana, 0.357 μ g/m³ in Nevada, 0.3 μ g/m³ in Tampa, Florida, and 0.15 μ g/m³ in Vermont. Eighteen- and 24-hour limits have been set at 0.30 μ g/m³ in New York and 35.7 μ g/m³ in Kansas (NATICH, 1989). In the United States, the general population may be exposed to low concentrations of pyridine by the ingestion of foods. Pyridine was detected among the natural volatile components of several foods, including fried chicken, cheese, fried bacon, and other foods (ATSDR, 1992). The U.S. Environmental Protection Agency (EPA) estimated the ingestion of pyridine in the United States to be about 500 mg per person per year, mainly from food (USEPA, 1978). The Food and Drug Administration has approved the use of pyridine as a flavoring agent (21 CFR 172.515). It is also a coffee aroma constituent (ATSDR, 1992). Pyridine has been identified as a component of tobacco and marijuana smoke (Schmeltz and Hoffmann, 1977; Schumacher *et al.*, 1977; Meril *et al.*, 1981; Curvall *et al.*, 1984; Eatough *et al.*, 1989); the concentration of pyridine in indoor air contaminated with cigarette smoke may be as high as $16 \mu g/m^3$ (ATSDR, 1992). # **REGULATORY STATUS** The EPA Office of Toxic Substances has included pyridine in its toxic chemical release reporting rule (40
CFR 372), its health and safety data reporting rule (40 CFR 716.120), and its preliminary assessment information reporting rule (40 CFR 712.30). The annual reportable quantity of pyridine release to the environment has been set at 1,000 pounds by the EPA Office of Emergency and Remedial Response (40 CFR 302.4). The EPA Office of Solid Wastes has listed pyridine as a constituent of hazardous waste (40 CFR 261), monitors its levels in groundwater (40 CFR 264), and restricts its disposal on land (40 CFR 268). ### ENVIRONMENTAL IMPACT Pyridine exists in the atmosphere as a vapor. Atmospheric pyridine may be slowly photodegraded by hydroxyl radicals in the troposphere; the estimated atmospheric life-time is 23 to 46 days. A large fraction of the atmospheric pyridine vapor phase would tend to dissolve in water vapor (clouds and rain) due to its high water solubility. The magnitude of the Henry s law constant for aqueous solutions of pyridine indicates that much of the atmospheric pyridine is removed by precipitation and suggests that the pyridine in water does not volatilize readily into the atmosphere. The volatility and sorption of pyridine from water varies considerably and is pH dependent. The rate of removal of pyridine from unfiltered river water by biodegradation depends on the initial pyridine concentration. At concentrations less than 20 mg/L, pyridine degradation was virtually complete in 8 days or less. Pyridine in water may partition to soils and sediments to an extent that depends on the pH of the water and the organic carbon content of the soil. Due to its low carbon/water partition coefficient, pyridine is highly mobile in soil. In laboratory screening tests, however, about 94% to 100% of the pyridine added to municipal wastewater biodegraded in 2 to 21 days (ATSDR, 1992). # ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION Pyridine is absorbed by inhalation and by oral or dermal exposure. Pyridine is eliminated in exhaled air, feces, and urine as free base and/or metabolites (Jori *et al.*, 1983; NCI, 1985). Pyridine is metabolized primarily by N-methylation and/or aromatic hydroxylation; urinary excretion of metabolites and unchanged compound is the major route of elimination (NCI, 1985). The metabolic pathway in Figure 1 incorporates all the major urinary metabolites of pyridine that have been identified (ATSDR, 1992). FIGURE 1 Proposed Metabolic Pathway for Pyridine # Experimental Animals In a series of studies on pyridine N-methylation by D Souza *et al.* (1980), a single 7 mg [¹⁴C]-pyridine/kg dose was administered by intraperitoneal injection to groups of one to five female Wistar albino rats, female Tuck strain mice, male and female Dunkin-Hartley guinea pigs, female gerbils, female golden Syrian hamsters, male and female New Zealand White rabbits, and mongrel female cats. In the rat, mouse, guinea pig, gerbil, and hamster, 48% to 67% of the administered radiolabel was recovered in the urine within 24 hours. In the cat and rabbit, 75% and 77% were recovered at 48 and 72 hours, respectively. Pyridine N-methylation was extensive (15% to 40% of the administered dose) in the guinea pig, gerbil, hamster, rabbit, and cat and lower (approximately 5% to 12%) in the rat and mouse. To determine whether the N-methylpyridinium ion formed during the metabolism of pyridine is further metabolized, groups of three female rats and guinea pigs were injected intraperitoneally with 8 mg/kg N-methyl[2,6-¹⁴C]-pyridinium as an aqueous solution of the iodide. Greater than 95% of the radiolabel recovered in the urine (rats, 53%; guinea pigs, 85%) was unchanged compound, indicating that N-methylpyridinium is largely metabolically stable (D Souza *et al.*, 1980). The effects of route of administration, dose, and methionine supplementation on the N-methylation of pyridine were also investigated by D Souza *et al.* (1980) in the rat (a poor pyridine methylator) and guinea pig (a good pyridine methylator). [¹⁴C]-Pyridine was administered orally at doses of 7, 68, or 357 mg/kg or intraperitoneally at doses of 1, 7, or 500 mg/kg to groups of three animals. N-Methylation of pyridine was found to be independent of the route of administration, but dependent on the dose. In rats given 7 mg/kg [¹⁴C]-pyridine orally, 58% of the total ¹⁴C was excreted within 24 hours, with 3.1% of the dose as the N-methylpyridinium ion; 48% of the total ¹⁴C was excreted within 24 hours following intraperitoneal injection of 7 mg/kg, with 5.0% of the dose as N-methylpyridinium ion. In the guinea pig, 31% of the administered dose was recovered in the urine as the N-methylpyridinium ion, regardless of the route of administration (recovery of orally and intraperitoneally administered total ¹⁴C was 76% and 66%, respectively). In contrast, a study by Okuda (1959) demonstrated that 2.5 times more N-methylpyridine was produced following subcutaneous administration than following oral administration of pyridine to dogs. For both the rat and guinea pig (D Souza *et al.*, 1980), overall urinary recovery of ¹⁴C was inversely proportional to the dose. The metabolic reaction was saturable in both species. In another experiment (D Souza *et al.*, 1980), rats were pretreated with an injection of 1 g/kg DL-methionine 24 hours prior to administration of 7 mg/kg [¹⁴C]-pyridine and then maintained on a diet enriched with DL-methionine. The excretion of total ¹⁴C and N-methylpyridinium ion were unaffected by methionine supplementation, which demonstrated that low N-methylation in the rat is unrelated to a relative deficiency of source methyl groups. In these same cross-species studies, Damani *et al.* (1982) identified 2-pyridine, 3-hydroxypyridine, and 4-pyridone in the urine of all species and pyridine N-oxide in all species except the rabbit, although the relative amounts of metabolites differed across species. In hamsters, guinea pigs, and cats, most of the urinary radioactivity was identified as unchanged pyridine and its C- and N-oxidation and N-methylated derivatives. A significant proportion of the excreted radioactivity in rats, gerbils, and rabbits could not be accounted for by the metabolites monitored in these studies, but 3-hydroxypyridine (not measured) was probably represented in the urine in a conjugated form. In rats, an unidentified cationic metabolite accounted for about 7.4% of the recovered radiolabel (Damani *et al.*, 1982). D Souza *et al.* (1980) suggested that N-methylation and quaternization of pyridine may result in the formation of a conjugation product (the N-methylpyridinium ion) more toxic than pyridine itself. The intraperitoneal LD_{50} for N-methylpyridinium ion in mice is 0.22 g/kg, compared to 1.2 g/kg for pyridine. Production of N-oxides, generally associated with detoxification and increased elimination in several animal species and humans, may conceivably result in an increase in toxicity or carcinogenicity, and the N-oxidation of pyridine may represent a route for bioactivation (NCI, 1985; Kim *et al.*, 1991a). Pyridine, which is metabolized by cytochromes P2E1 and P4B (CYP2E1 and CYP4B), enhances the expression of various hepatic P₄₅₀ isozymes in rats and rabbits (Kim and Novak, 1990; Kim *et al.*, 1991a; Kim *et al.*, 1993; Nikula *et al.*, 1995). The studies of Kim *et al.* (1991a) demonstrated that pyridine enhances the expression of different gene subfamilies of rat hepatic cytochrome P₄₅₀ including CYP2E1, CYP1A1, CYP1A2, CYP2B1, and CYP2B2 (Kim and Novak, 1990; Kim *et al.*, 1991b; Hotchkiss *et al.*, 1993; Iba *et al.*, 1993; Agarwal *et al.*, 1994). Pyridine caused a dose-dependent, 4- to 22-fold elevation of hepatic CYP2B1/2B2 over the intraperitoneal dosing regimen of 100 to 400 mg/kg per day in Sprague-Dawley rats. Pyridine treatment increased CYP2B1 and CYP2B2 poly (A)+ RNA levels approximately 69- and 34-fold, respectively, while CYP2E poly (A)+ levels failed to increase (Kim *et al.*, 1993). Pyridine is similar to phenobarbital (Lubet *et al.*, 1989) and oxazepam (Griffin *et al.*, 1995) in this induction of CYP2B enzymes. Lubet *et al.* (1989) have associated the strength of this CYP2B induction response to the strength of liver neoplasm promotion in the rat, although the mechanisms are not known. Rice *et al.* (1994) have also studied the association between CYP2B induction and liver neoplasm-promoting activity in the rat, and while there is a correlation with an induction of CYP2B and liver neoplasm promotion (after initiation with N-nitrosodiethylamine), other factors may be involved. Chemicals such as phenobarbital, which induces cytochrome P_{450} s in the rodent liver, induce a wide variety of enzyme systems (referred to as pleiotropic response), and it is likely that several effects of the chemical play a role in its liver neoplasm-promoting ability (McClain, 1990). ### Humans N-Methylpyridinium ion (5.5% and 12% of the dose) was present in urine collected 24 hours after two human volunteers received 3.4 mg [\frac{14}{C}]-pyridine in orange juice (approximately 0.05 mg/kg) (D Souza *et al.*, 1980). Pyridine-N-oxide was identified as a metabolite in the urine sample, accounting for 32% of the administered dose (Damani *et al.*, 1982). Approximately 25% of the urinary metabolites were not identified. Pyridine and a number of its derivatives have been shown to cause selective inhibition of thromboxane synthetase *in vitro* in fresh citrated human blood (Miyamoto *et al.*, 1980) and in a test system employing the microsomal fraction of human platelet microsomes (Tai *et al.*, 1980); thromboxane A_2 is a potent labile inducer of platelet aggregation and vascular constriction. The inhibitory potency of pyridine on thromboxane synthetase in these systems was $60 \mu M$ in blood and $270 \mu M$ in platelet microsomes. In addition, pyridine (1.5 mM) inhibited the aggregation of human platelets induced by arachidonic acid or adenosine triphosphate (Tai *et al.*, 1980). # **TOXICITY** # **Experimental
Animals** Reported pyridine LD₅₀/LC₅₀ values for rats are 891 to 1,580 mg/kg (oral), 360 mg/kg (intravenous), 866 to 1,150 mg/kg (subcutaneous), and approximately 8,000 to 9,000 ppm for 1 hour (inhalation) (Vernot *et* al., 1977; Jori et al., 1983; ATSDR, 1992). LD₅₀ values for mice are 1,500 mg/kg (oral), 1,200 mg/kg (intraperitoneal), 420 mg/kg (intravenous), and 1,250 mg/kg (subcutaneous) (Jori et al., 1983). Pyridine has been reported to cause toxic effects in the liver and kidney in experimental animal model systems. Pyridine administration (oral gavage) to dogs has produced toxic effects in the liver and kidney (Jori *et al.*, 1983). Decreased glutamine concentration and increased ammonia excretion were observed in rats (age and strain not specified) exposed to pyridine vapors at a concentration of 5 to 10 mg/L for a single 40-minute exposure (ATSDR, 1992). In a study in Sprague-Dawley rats (Anderson, 1987), pyridine was administered by gavage at 0, 0.24, 1, 10, 25, or 50 mg/kg per day in water for 90 consecutive days. No treatment-related deaths occurred during the study. Body weights relative to controls were significantly reduced in male rats in the 50 mg/kg per day group. A dose-related mildly elevated serum cholesterol occurred in females at 25 and 50 mg/kg per day on days 30 and 90, and female rats that received 10 mg/kg or greater had significantly increased liver weights. Mild inflammatory hepatic lesions were seen in 70% of males and 20% of females in the 50 mg/kg groups; the incidence of inflammatory hepatic lesions was 10% in male and female control groups. Lesions included mixed peribiliary infiltrate, bile ductule proliferation, enlarged and vacuolated hepatocytes, and necrosis of hepatocytes. Liver lesions also occurred in the 10 and 25 mg/kg groups. In a study in which rats were given subcutaneous injections of pyridine twice weekly for a year at doses of 3, 10, 30, or 100 mg/kg (Mason *et al.*, 1971), survival rates and neoplasm incidences in pyridine-treated rats were similar to those in the controls. Mean body weights of the dosed groups ranged from 84% to 95% of those of the controls at the end of the study. Inhalation of 5 or 444 ppm pyridine 6 hours per day for 4 days was associated with olfactory epithelial lesions in the nasal mucosa of male F344/N rats characterized by vacuolar degeneration of sustentacular cells, focal, marked attenuation of the epithelium, loss of sensory neurons, and intraepithelial luminal structures (Nikula and Lewis, 1994). These lesions were associated with induction of carboxylesterase (Nikula *et al.*, 1995). #### Humans There are no adequate studies on the toxicity of pyridine in humans. Several reports indicate that pyridine may be moderately toxic by the oral, dermal, intravenous, and inhalation routes. The chemical can cause skin irritation and severe eye damage (Sittig, 1991; Lewis, 1993). In a review of the literature on pyridine, ATSDR (1992) reported the death of a man receiving pyridine as an intermittent medication for the treatment of epilepsy. The patient was also taking other medications (including phenobarbital), and it was not possible to attribute this death specifically to pyridine. A 29-year-old man who accidentally swallowed ½ cup (approximately 125 mL) of pyridine experienced nausea, dizziness, abdominal pain, and lung congestion followed by death within 2 days (Jori *et al.*, 1983). Inhalation is a primary route of exposure to pyridine, and mild symptoms of central nervous system injury may result from exposure to approximately 10 ppm (Jori *et al.*, 1983; NCI, 1985). Similar symptoms (headache, dizziness, insomnia, nausea, and anorexia) were reported in workers exposed to 125 ppm pyridine, 4 hours per day for 1 to 2 weeks (Jori *et al.*, 1983). ### REPRODUCTIVE AND DEVELOPMENTAL TOXICITY Injection of 10 or 20 mg pyridine into eggs caused muscular hypoplasia in 15% and 67% of chicks, respectively. The 20 mg dose induced defective beaks in 4.9% of the chicks and short or twisted necks in 1.1% (ATSDR, 1992). No information related to the reproductive or developmental toxicity of pyridine in humans was found in a search of the available literature. ### **CARCINOGENICITY** No information related to the carcinogenicity of pyridine in experimental animals or humans was found in a search of the available literature. ### **GENETIC TOXICITY** Pyridine has been tested in a variety of in vivo and in vitro assays, and with few exceptions, results were negative. No mutation induction (Pai et al., 1978) or growth inhibition due to DNA damage was noted in Escherichia coli after treatment with pyridine (Warren et al., 1981; Riebe et al., 1982). No increases in gene mutation frequencies were observed in a variety of Salmonella typhimurium strains exposed to pyridine in the presence or the absence of S9 activation enzymes (Florin et al., 1980; Kawachi et al., 1980; Warren et al., 1981; Riebe et al., 1982; Haworth et al., 1983). Zimmermann et al. (1986) reported induction of an euploidy in S. cerevisiae D61.M after treatment with up to 1.1% pyridine, presumably resulting from disruption of microtubule assembly processes. No significant increases in mutant frequencies were seen in L5178Y mouse lymphoma cell cultures after incubation with pyridine, with or without S9 activation (McGregor et al., 1988). There are two published data sets from Drosophila melanogaster sex-linked recessive lethal assays with pyridine, and the results are mixed. Valencia et al. (1985) reported negative results when pyridine was administered to adult male flies by injection (7,000 ppm) and equivocal results when feeding (700 ppm) was used as the route of administration. Mason et al. (1992) reported negative results in a sex-linked recessive lethal assay from a feeding study (500 ppm) but positive results after injection of 4,300 ppm pyridine. This positive result with pyridine in the sex-linked recessive lethal assay was followed by a test for induction of reciprocal translocations in male Drosophila, and negative results were obtained in this assay (Mason et al., 1992). Cytogenetic investigations in mammalian test systems yielded negative results with pyridine for induction of chromosomal aberrations (Abe and Sasaki, 1977; Ishidate and Odashima, 1977; Kawachi *et al.*, 1980) and sister chromatid exchanges (Abe and Sasaki, 1977; Kawachi *et al.*, 1980) in cultured Chinese hamster ovary cells, tested in the absence of S9 activation enzymes. *In vivo*, no induction of micronuclei in mouse bone marrow cells (Harper *et al.*, 1984) or chromosomal aberrations in rat bone marrow cells was reported after treatment with pyridine. There are little mutagenicity data for metabolites of pyridine. Pyridine-1-oxide was negative in bacterial tests for gene mutation induction (Voogd *et al.*, 1980) or growth inhibition due to DNA damage (Nagao and Sugimura, 1972), and it did not produce growth inhibition secondary to DNA damage in *S. cerevisiae* (Nagao and Sugimura, 1972). These tests were conducted without S9. 3-Hydroxypyridine, another pyridine metabolite, did not cause gene reversion in *S. typhimurium*, with or without S9 (Florin *et al.*, 1980). In summary, there appears to be little evidence to indicate that pyridine is mutagenic in standard short-term tests. ### STUDY RATIONALE Pyridine was tested by the National Toxicology Program because of the large amount produced and its use in a variety of industrial products. The oral route of administration was selected to evaluate the systemic effects of pyridine. Pyridine has been shown to increase the severity of leukemia in a transplant model for leukemia in male F344/N rats (Dieter *et al.*, 1989), and male Wistar rats were added to these studies in order to evaluate the effects of pyridine in a rat model with a low spontaneous incidence of mononuclear cell leukemia. # MATERIALS AND METHODS # PROCUREMENT AND CHARACTERIZATION OF PYRIDINE Pyridine was obtained from Aldrich Chemical Company (Milwaukee, WI) in one lot (00103BV). Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory, Midwest Research Institute (Kansas City, MO) (Appendix K). Reports on analyses performed in support of the pyridine studies are on file at the National Institute of Environmental Health Sciences. The chemical, a clear, colorless liquid, was identified as pyridine by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. The purity of lot 00103BV was determined by elemental analyses, Karl Fischer water analysis, functional group titration, and gas chromatography. Elemental analyses for hydrogen and nitrogen were in agreement with the theoretical values for pyridine; results for carbon were slightly low. Karl Fischer water analysis indicated $0.049\% \pm 0.003\%$ water. Functional group titration indicated a purity of $99.8\% \pm 0.6\%$. Gas chromatography indicated one major peak and no impurities with an area greater than or equal to 0.1% relative to the major peak area in two systems. The overall purity was determined to be greater than 99%. Stability studies of the bulk chemical were performed by the analytical chemistry laboratory using gas chromatography. To ensure stability, the bulk chemical was stored at 1° C to 8° C in amber glass bottles in the dark. Stability was monitored during the 13-week and 2-year studies using gas chromatography. No degradation of the bulk chemical was detected. # PREPARATION AND ANALYSIS OF DOSE FORMULATIONS The dose formulations were prepared as needed by mixing pyridine with deionized water (Table K1). Stability studies of a 0.01 mg/mL formulation were performed by the analytical chemistry laboratory using high-performance liquid chromatography. The stability of the dose formulation was confirmed for at least 3 weeks when stored in the dark at room temperature. Periodic analyses of the dose formulations of pyridine were conducted at the study laboratory and
analytical chemistry laboratory using high-performance liquid chromatography. For the 13-week studies, dose formulations were analyzed after preparation at the beginning, midpoint, and end of the studies (Table K2). During the 2-year studies, dose formulations were analyzed approximately every 6 to 10 weeks (Table K3). All dose formulations analyzed and used during the 13-week studies (45/45) were within 10% of the target concentration. Of the dose formulations analyzed during the 2-year studies, 99% (191/192) were within 10% of the target concentration. One formulation was 47% less than the target concentration; because records indicated that the proper amounts of pyridine and deionized water were used, it is possible that the wrong dose formulation was sampled for analysis. This dose formulation was remixed, and the remix was found to be within 10% of the target concentration. All animal room samples (75/75) were within 10% of the target concentration. Results of periodic referee analyses performed by the analytical chemistry laboratory during the 13-week studies agreed with the results obtained by the study laboratory (Table K4). ## 13-WEEK STUDIES The 13-week studies were conducted to evaluate the cumulative toxic effects of repeated exposure to pyridine and to determine the appropriate exposure concentrations to be used in the 2-year studies. Male and female F344/N rats and B6C3F₁ mice were obtained from Taconic Farms (Germantown, NY); male Wistar rats were obtained from Charles River Laboratories (Kingston, NY). On receipt, rats and mice were approximately 5 weeks old. Animals were quarantined for 12 to 14 days and were 7 or 8 weeks old on the first day of the studies. Before initiation of the studies, five male and five female F344/N rats and mice and five male Wistar rats were randomly selected for parasite evaluation and gross observation for evidence of disease. At the end of the studies, serologic analyses were performed on five male and five female sentinel F344/N rats and mice and five male sentinel Wistar rats using the protocols of the NTP Sentinel Animal Program (Appendix N). Groups of 10 male and 10 female F344/N rats and B6C3F₁ mice and 10 male Wistar rats were given drinking water containing 0, 50, 100, 250, 500, or 1,000 ppm pyridine (core study). Groups of 10 male and 10 female F344/N rats and 10 male Wistar rats exposed to the same concentrations were designated as special study animals for hematology and clinical chemistry analyses. Feed and water were available *ad libitum*; fresh control or treated water was provided twice weekly. F344/N and Wistar rats were housed five per cage, and mice were housed individually. Clinical findings were recorded weekly for rats and mice. Water consumption was recorded twice weekly by cage for core study animals. The animals were weighed initially and weekly thereafter. Details of the study design and animal maintenance are summarized in Table 1. Blood was collected from the retroorbital sinus of special study F344/N rats and Wistar rats on days 5 and 20 and of core study rats at study termination for hematology and clinical chemistry analyses. Erythrocyte, leukocyte, and platelet counts; hemoglobin concentration; hematocrit, mean cell volume; mean cell hemoglobin; and mean cell hemoglobin concentration were measured with a Sysmex TOA E-2500. Blood smears were stained with Wright/Giemsa; differential leukocyte counts were based on classifying a minimum of 100 cells. Reticulocyte counts were done on a smear prepared from whole blood mixed with new methylene blue N stain and incubated at room temperature; 1,000 erythrocytes were counted and the percent reticulocytes was determined. Clinical chemistry analyses were performed on the Roche Cobas FARA automated centrifugal analyzer (Roche Diagnostic Systems, Inc., Montclair, NJ). The hematology and clinical chemistry parameters measured are listed in Table 1. At the end of the 13-week studies, blood was collected from the retroorbital sinus of all rats for plasma pyridine concentration measurements. Pilot studies determined that samples could be collected between 8 a.m. and 10 a.m. The samples were taken in silicon-coated tubes which contained buffered sodium citrate. A plasma analysis procedure was developed and evaluated at the study laboratory for the analysis of plasma pyridine concentrations ranging from 0.063 to $100 \mu g/mL$. Concentrations less than the experimental level of quantitation (ELOQ= $0.63 \mu g/mL$) should be considered approximations. Plasma samples were treated with sodium hydroxide and 3-methylpyridine, the internal standard. The samples were extracted with dichloromethane, then analyzed using gas chromatography with nitrogen-phosphorous detection. The gas chromatography was performed on a 20% Carbowax 20M-TPA on 80/100 Chromosorb column, with a nitrogen carrier gas at a flow rate of 30 mL/minute, and an oven temperature of 89° C for 7 minutes, then to 170° C at 20° C per minute, with a 2-minute hold. Three standard curve ranges were used to encompass the 1,600-fold quantitation range. Results from these analyses are presented in Appendix J. At the end of the 13-week studies, samples were collected for sperm motility and vaginal cytology evaluations on F344/N rats and mice exposed to 0, 250, 500, or 1,000 ppm. The parameters evaluated are listed in Table 1. Methods used were those described in the NTP s sperm morphology and vaginal cytology evaluations protocol (NTP, 1987). For 12 consecutive days prior to scheduled terminal sacrifice, the vaginal vaults of the females were moistened with saline, if necessary, and samples of vaginal fluid and cells were stained. Relative numbers of leukocytes, nucleated epithelial cells, and large squamous epithelial cells were determined and used to ascertain estrous cycle stage (i.e., diestrus, proestrus, estrus, and metestrus). Male animals were evaluated for sperm count and motility. The left testis and left epididymis were isolated and weighed. The tail of the epididymis (cauda epididymis) was then removed from the epididymal body (corpus epididymis) and weighed. Test yolk (rats) or modified Tyrode s buffer (mice) was applied to slides, and a small incision was made at the distal border of the cauda epididymis. The sperm effluxing from the incision were dispersed in the buffer on the slides, and the numbers of motile and nonmotile spermatozoa were counted for five fields per slide by two observers. Following completion of sperm motility estimates, each left cauda epididymis was placed in buffered saline solution. Caudae were finely minced, and the tissue was incubated in the saline solution and then heat fixed at 65° C. Sperm density was then determined microscopically with the aid of a hemacytometer. To quantify spermatogenesis, the testicular spermatid head count was determined by removing the tunica albuginea and homogenizing the left testis in phosphate-buffered saline containing 10% dimethyl sulfoxide. Homogenization-resistant spermatid nuclei were counted with a hemacytometer. A necropsy was performed on all core study animals. The heart, right kidney, liver, lung, right testis, and thymus were weighed. Tissues for microscopic examination were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned to a thickness of 5 to 6 μ m, and stained with hematoxylin and eosin. A complete histopathologic examination was performed on control and 1,000 ppm F344/N rats, male Wistar rats, and mice, and target organs were examined to the no-effect level. Table 1 lists the tissues and organs routinely examined. α 2u-Globulin immunohistochemistry, using a primary antibody from Hazleton Laboratories, was done on selected animals from each exposure group. ### 2-YEAR STUDIES # **Study Design** Groups of 50 male and 50 female F344/N rats and 50 male Wistar rats were given drinking water containing 0, 100, 200, or 400 ppm pyridine for 103 (males) or 104 (females) weeks. Groups of 50 male $B6C3F_1$ mice were exposed to 0, 250, 500, or 1,000 ppm pyridine in drinking water for 104 weeks, and groups of 50 female $B6C3F_1$ mice were exposed to 0, 125, 250, or 500 ppm pyridine in drinking water for 105 weeks. #### **Source and Specification of Animals** Male and female F344/N rats and B6C3F₁ mice were obtained from Taconic Farms (Germantown, NY), and male Wistar rats were obtained from Charles River Laboratories (Portage, MI) for use in the 2-year studies. Rats and mice were quarantined for 12 to 14 days before the beginning of the studies. Five male and five female F344/N rats and mice and five male Wistar rats were randomly selected for parasite evaluation and gross observation of disease. Rats and mice were approximately 7 weeks old at the beginning of the studies. The health of the animals was monitored during the studies according to the protocols of the NTP Sentinel Animal Program (Appendix N). #### **Animal Maintenance** F344/N rats were housed five per cage, male Wistar rats were housed three per cage, and mice were housed individually. Feed and water were available *ad libitum*. Water consumption was measured weekly by cage for the first 13 weeks and every 4 weeks thereafter. Cages and racks were rotated every two weeks. Further details of animal maintenance are given in Table 1. Information on feed composition and contaminants is provided in Appendix M. #### Clinical Examinations and Pathology All animals were observed twice daily. Clinical findings were recorded at 4-week intervals, and body weights were recorded at the start of the study, weekly for the first 13 weeks, every 4 weeks until week 92 (F344/N rats), week 88 (male Wistar rats), or week 96 (mice), and then once every 2 weeks until study termination. A complete necropsy and microscopic examination were performed on all rats and mice. At necropsy, all organs and tissues were examined for grossly visible lesions, and
all major tissues were fixed and preserved in 10% neutral buffered formalin, processed and trimmed, embedded in paraffin, sectioned to a thickness of 5 to 6 μ m, and stained with hematoxylin and eosin for microscopic examination. For all paired organs (i.e., adrenal gland, kidney, ovary), samples from each organ were examined. For extended evaluation of renal proliferative lesions in male rats, kidneys were step sectioned at 1-mm intervals, and four additional sections were obtained from each kidney. Tissues examined microscopically are listed in Table 1. Microscopic evaluations were completed by the study laboratory pathologist, and the pathology data were entered into the Toxicology Data Management System. The slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were evaluated by an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy, the slide and tissue counts were verified, and the histotechnique was evaluated. For the 2-year rat studies, a quality assessment pathologist reviewed the liver and kidney of male F344/N rats, the liver of female F344/N rats, and the liver, kidney, and testis of male Wistar rats, and all neoplasms in all tissues. For the 2-year mouse studies, a quality assessment pathologist reviewed the liver, nose, and spleen of male and female mice, the adrenal cortex and lung of male mice, the ovary and pituitary gland of female mice, and all neoplasms in all tissues. The quality assessment report and the reviewed slides were submitted to the NTP Pathology Working Group (PWG) chairperson, who reviewed the selected tissues and addressed any inconsistencies in the diagnoses made by the laboratory and quality assessment pathologists. Representative histopathology slides containing examples of lesions related to chemical administration, examples of disagreements in diagnoses between the laboratory and quality assessment pathologists, or lesions of general interest were presented by the chairperson to the PWG for review. The PWG consisted of the quality assessment pathologist and other pathologists experienced in rodent toxicologic pathology. This group examined the tissues without any knowledge of dose groups or previously rendered diagnoses. When the PWG consensus differed from the opinion of the laboratory pathologist, the diagnosis was changed. Final diagnoses for reviewed lesions represent a consensus between the laboratory pathologist, reviewing pathologist(s), and the PWG. Details of these review procedures have been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). For subsequent analyses of the pathology data, the decision of whether to evaluate the diagnosed lesions for each tissue type separately or combined was generally based on the guidelines of McConnell *et al.* (1986). #### TABLE 1 #### Experimental Design and Materials and Methods in the Drinking Water Studies of Pyridine 13-Week Studies 2-Year Studies **Study Laboratory** TSI Mason Research Institute (Worcester, MA) TSI Mason Laboratories (Worcester, MA) Strain and Species Rats: F344/N and Wistar Rats: F344/N and Wistar Mice: B6C3F₁ Mice: B6C3F₁ **Animal Source** F344/N rats: Taconic Farms (Germantown, NY) F344/N rats: Taconic Farms (Germantown, NY) Wistar rats: Charles River Laboratories (Kingston, NY) Wistar rats: Charles River Laboratories (Portage, MI) Mice: Taconic Farms (Germantown, NY) Mice: Taconic Farms (Germantown, NY) **Time Held Before Studies** F344/N rats: 14 days (males) or 12 days (females) F344/N rats: 12 days (males) or 13 days (females) Wistar rats: 13 days Wistar rats: 13 days Mice: 13 days (males) or 14 days (females) Mice: 13 days (males) or 14 days (females) Average Age When Studies Began 7 weeks, except special study F344/N rats at 8 weeks 7 weeks **Date of First Exposure** Core Studies: F344/N rats: 24 January (males) or 22 January (females) 1990 Wistar rats: 14 May 1991 Wistar rats: 28 February 1990 Mice: 20 December (males) or 21 December (females) 1989 Special Studies: F344/N rats: 3 February (males) or 1 February (females) 1990 Wistar rats: 1 March 1990 **Duration of Exposure** F344/N and Wistar rats: 103 weeks (males) or 104 weeks (females) 13 weeks (core study animals) 19 days (special study F344/N rats) Mice: 104 weeks (males) or 105 weeks (females) 20 days (special study Wistar rats) **Date of Last Exposure** Core Studies: F344/N rats: 13 April (males) or 22 April (females) 1993 F344/N rats: 25 April (males) or 23 April (females) 1990 Wistar rats: 4 May 1993 Wistar rats: 30 May 1990 Mice: 25 March (males) or 1 April (females) 1993 Mice: 21 March (males) or 22 March (females) 1990 Special Studies: F344/N rats: 22 February (males) or 20 February (females) 1990 Wistar rats: 20 March 1990 **Necropsy Dates** F344/N rats: 25 April (males) or 23 April (females) 1990 F344/N rats: 13 April (males) or 20-22 April (females) 1993 Wistar rats: 30 May 1990 Wistar rats: 4 May 1993 Mice: 21 March (males) or 22 March (females) 1990 Mice: 23-25 March (males) or 1 April (females) 1993 Average Age at Necropsy 20 weeks (core study) F344/N and Wistar rats: 110 weeks (males) or 111 weeks (females) Mice: 111 weeks (males) or 112 weeks (females) F344/N rats: 23 April (males) or 24 April (females) 1991 Mice: 3 April (males) or 4 April (females) 1991 Size of Study Groups F344/N rats and mice: 10 males and 10 females F344/N rats and mice: 50 males and 50 females Wistar rats: 10 males Wistar rats: 50 males Method of Distribution Animals were distributed randomly into groups of approximately Same as 13-week studies equal initial mean body weights. Animals per Cage F344/N and Wistar rats: 5 F344/N rats: 5 Mice: 1 Wistar rats: 3 Mice: 1 #### TABLE 1 #### Experimental Design and Materials and Methods in the Drinking Water Studies of Pyridine 2-Year Studies Method of Animal Identification Tail tattoo Tail tattoo 13-Week Studies Diet NIH-07 open formula pelleted diet (Zeigler Brothers, Inc., Gardners, PA), available *ad libitum* Same as 13-week studies Water Deionized water via glass water bottles with stainless steel sipper tubes, available *ad libitum*, changed twice per week Same as 13-week studies Cages See-Through Systems polycarbonate, solid bottom (Lab Products, Inc., Rochelle Park, NJ), changed twice per week (rats) or weekly (mice) Same as 13-week studies, except changed three times per week for male rats Heat-treated hardwood chips (P.J. Murphy Forest Products, , **Bedding** F344/N and Wistar rats: Sani Chips (P.J. Murphy Products Corp., Montville, NJ), changed twice per week Mice: Beta Chips (P.J. Murphy Products Corp., Montville, NJ), Montville, NJ), changed three times per week (male rats), twice per week (female rats), or weekly (mice) changed weekly Cage Filters Nonwoven fiber (Snow Filtration, Cincinnati, OH), changed once every 2 weeks Same as 13-week studies Racks Stainless steel (Lab Products, Inc., Rochelle Park, NJ), changed once every 2 weeks Same as 13-week studies **Animal Room Environment** Temperature: 20.6° - 23.9° C (F344/N rats); 18.9° - 23.3° C (Wistar rats); 20.6°-24.4° C (mice) Relative humidity: 31%-57% (F344/N rats); 35%-56% (Wistar rats); 26%-49% (mice) Room fluorescent light: 12 hours/day Room fluorescent light: 12 hours/da Room air changes: 10/hour Temperature: 19.4°-24.4° C (F344/N rats); 18.9°-26.7° C (Wistar rats); 20.0°-24.4° C (mice) Relative humidity: 24%-71% (F344/N rats); 25%-78% (Wistar rats); 20%-65% (mice) Room fluorescent light: 12 hours/day Room air changes: 10/hour **Exposure Concentrations** 0, 50, 100, 250, 500, or 1,000 ppm F344/N and Wistar rats: 0, 100, 200, or 400 ppm Mice: 0, 250, 500, or 1,000 ppm (males); 0, 125, 250, or 500 ppm (females) Type and Frequency of Observation Observed twice daily; animals were weighed initially and weekly thereafter; clinical findings were recorded weekly. Water consumption was recorded twice per week by cage. Observed twice daily; animals were weighed initially, weekly for the first 13 weeks, every 4 weeks until week 92 (F344/N rats), week 88 (Wistar rats), or week 96 (mice), and then once every 2 weeks; clinical findings were recorded at 4-week intervals. Water consumption was measured weekly by cage for the first 13 weeks and every 4 weeks thereafter. Method of Sacrifice CO₂ 70%:30% CO₂:O₂ #### TABLE 1 Experimental Design and Materials and Methods in the Drinking Water Studies of Pyridine 13-Week Studies 2-Year Studies Necropsy performed on all core study animals. Organs weighed Necropsy performed on all animals. were heart, right kidney, liver, lung, right testis, and thymus. Clinical Pathology Blood was collected from the retroorbital sinus of special study rats None on days 5 and 20 and of core study rats at the end of the study for hematology and clinical chemistry analyses. Hematology: hematocrit; hemoglobin concentration; erythrocyte, reticulocyte, nucleated erythrocyte, and platelet counts; mean cell volume; mean cell hemoglobin; mean cell hemoglobin concentration; and leukocyte count and differentials Clinical chemistry: urea nitrogen, creatinine, protein, albumin, alanine aminotransferase, alkaline phosphatase, creatine kinase, sorbital dehyrodrogenase, bile acids Histopathology Complete histopathology was performed on 0 and 1,000 ppm Complete histopathology was performed on all rats and mice. In F344/N rats, male Wistar rats, and mice. In addition to gross addition to gross lesions and tissue masses, the following tissues were lesions and tissue masses, the following tissues were examined: examined: adrenal gland, bone (with marrow), brain, clitoral gland, adrenal gland, bone (with marrow), brain, clitoral gland, esophagus, gallbladder (mice), heart, large intestine (cecum, colon, rectum), small intestine (duodenum, jejunum, ileum), kidney, liver,
esophagus, gallbladder (mice), heart, large intestine (cecum, colon, rectum), small intestine (duodenum, jejunum, ileum), kidney, liver, lung, lymph nodes (mandibular and mesenteric), mammary gland lung, lymph nodes (mandibular and mesenteric), mammary gland (with adjacent skin), nose, ovary, pancreas, parathyroid gland, (with adjacent skin), nose, ovary, pancreas, parathyroid gland, pituitary gland, preputial gland, prostate gland, salivary gland, pituitary gland, preputial gland, prostate gland, salivary gland, spleen, stomach, testis (with epididymis and seminal vesicle), thymus, spleen, stomach, testis (with epididymis and seminal vesicle), thyroid gland, trachea, urinary bladder, and uterus. thymus, thyroid gland, trachea, urinary bladder, and uterus. The kidney of male rats and the liver of all rats were also examined in all other exposure groups. #### **Sperm Motility and Vaginal Cytology** At the end of the studies, sperm samples were collected from male F344/N rats and mice in the 0, 250, 500, and 1,000 ppm groups for sperm motility evaluations. The following parameters were evaluated: spermatid heads per gram testis, spermatid heads per testis, sperm count, epididymal sperm concentration, and epididymal sperm motility. The left cauda, epididymis, and testis were weighed. Vaginal samples were collected for up to 12 consecutive days prior to the end of the studies from all females exposed to 0, 250, 500, or 1,000 ppm for vaginal cytology evaluations. The following parameters were evaluated: estrous cycle length and relative frequency of estrous stages. #### **Determinations of Pyridine in Plasma** At the end of the 13-week studies, blood was collected from the retroorbital sinus of all rats just before sacrifice for plasma pyridine concentration measurements. None None ### STATISTICAL METHODS #### **Survival Analyses** The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals found dead of other than natural causes or removed from study for other reasons were censored from the survival analyses; animals dying from natural causes were not censored. Statistical analyses for possible dose-related effects on survival used Cox s (1972) method for testing two groups for equality and Tarone s (1975) life table test to identify dose-related trends. All reported P values for the survival analyses are two sided. #### **Calculation of Incidence** The incidences of neoplasms or nonneoplastic lesions as presented in Tables A1, A5, B1, B5, C1, C4, D1, D5, E1, and E5 are given as the number of animals bearing such lesions at a specific anatomic site and the number of animals with that site examined microscopically. For calculation of statistical significance, the incidences of most neoplasms (Tables A3, B3, C3, D3, and E3) and all nonneoplastic lesions are given as the numbers of animals affected at each site examined microscopically. However, when macroscopic examination was required to detect neoplasms in certain tissues (e.g., harderian gland, intestine, mammary gland, and skin) before microscopic evaluation, or when neoplasms had multiple potential sites of occurrence (e.g., leukemia or lymphoma), the denominators consist of the number of animals on which a necropsy was performed. Tables A3, B3, C3, D3, and E3 also give the survival-adjusted neoplasm rate for each group and each site-specific neoplasm. This survival-adjusted rate (based on the Poly-3 method described below) accounts for differential mortality by assigning a reduced risk of neoplasm, proportional to the third power of the fraction of time on study, to animals that do not reach terminal sacrifice. #### Analysis of Neoplasm and Nonneoplastic Lesion Incidences The Poly-k test (Bailer and Portier, 1988; Portier and Bailer, 1989; Piegorsch and Bailer, 1997) was used to assess neoplasm and nonneoplastic lesion prevalence. This test is a survival-adjusted quantal-response procedure that modifies the Cochran-Armitage linear trend test to take survival differences into account. More specifically, this method modifies the denominator in the quantal estimate of lesion incidence to approximate more closely the total number of animal years at risk. For analysis of a given site, each animal is assigned a risk weight. This value is one if the animal had a lesion at that site or if it survived until terminal sacrifice; if the animal died prior to terminal sacrifice and did not have a lesion at that site, its risk weight is the fraction of the entire study time that it survived, raised to the kth power. This method yields a lesion prevalence rate that depends only upon the choice of a shape parameter for a Weibull hazard function describing cumulative lesion incidence over time (Bailer and Portier, 1988). Unless otherwise specified, a value of k=3 was used in the analysis of site-specific lesions. This value was recommended by Bailer and Portier (1988) following an evaluation of neoplasm onset time distributions for a variety of site-specific neoplasms in control F344 rats and B6C3F₁ mice (Portier *et al.*, 1986). Bailer and Portier (1988) showed that the Poly-3 test gave valid results if the true value of k was anywhere in the range from 1 to 5. A further advantage of the Poly-3 method is that it does not require lesion lethality assumptions. Variation introduced by the use of risk weights, which reflect differential mortality, was accommodated by adjusting the variance of the Poly-3 statistic as recommended by Bieler and Williams (1993). Tests of significance included pairwise comparisons of each exposed group with controls and a test for an overall exposure-related trend. Continuity-corrected tests were used in the analysis of lesion incidence, and reported P values are one sided. Analysis of Continuous Variables Two approaches were employed to assess the significance of pairwise comparisons between exposed and control groups in the analysis of continuous variables. Organ and body weight data, which have approximately normal distributions, were analyzed with the parametric multiple comparison procedures of Dunnett (1955) and Williams (1971, 1972). Hematology, clinical chemistry, plasma concentration, urinalysis, spermatid, and epididymal spermatozoal data, which have typically skewed distributions, were analyzed using the nonparametric multiple comparison methods of Shirley (1977) and Dunn (1964). Jonckheere's test (Jonckheere, 1954) was used to assess the significance of the dose-related trends and to determine whether a trend-sensitive test (Williams or Shirley's test) was more appropriate for pairwise comparisons than a test that does not assume a monotonic dose-related trend (Dunnett's or Dunn's test). Prior to statistical analysis, extreme values identified by the outlier test of Dixon and Massey (1951) were examined by NTP personnel, and implausible values were eliminated from the analysis. Average severity values were analyzed for significance with the Mann-Whitney U test (Hollander and Wolfe, 1973). Because vaginal cytology data are proportions (the proportion of the observation period that an animal was in a given estrous stage), an arcsine transformation was used to bring the data into closer conformance with a normality assumption. Treatment effects were investigated by applying a multivariate analysis of variance (Morrison, 1976) to the transformed data to test for simultaneous equality of measurements across exposure concentrations. #### **Historical Control Data** Although the concurrent control group is always the first and most appropriate control group used for evaluation, historical control data can be helpful in the overall assessment of neoplasm incidence in certain instances. Consequently, neoplasm incidences from the NTP historical control database, which is updated yearly, are included in the NTP reports for neoplasms appearing to show compound-related effects. ### **QUALITY ASSURANCE METHODS** The 13-week and 2-year studies were conducted in compliance with Food and Drug Administration Good Laboratory Practice Regulations (21 CFR, Part 58). In addition, as records from the 2-year studies were submitted to the NTP Archives, these studies were audited retrospectively by an independent quality assurance contractor. Separate audits covering completeness and accuracy of the pathology data, pathology specimens, final pathology tables, and a draft of this NTP Technical Report were conducted. Audit procedures and findings are presented in the reports and are on file at NIEHS. The audit findings were reviewed and assessed by NTP staff, so all comments had been resolved or were otherwise addressed during the preparation of this Technical Report. #### GENETIC TOXICOLOGY The genetic toxicity of pyridine was assessed by testing the ability of the chemical to induce mutations in various strains of *Salmonella typhimurium*, mutations in L5178Y mouse lymphoma cells, sister chromatid exchanges and chromosomal aberrations in cultured Chinese hamster ovary cells, sex-linked recessive lethal mutations in *Drosophila melanogaster*, and increases in the frequency of micronucleated erythrocytes in bone marrow of mice. The protocols for these studies and the results are given in Appendix F. The genetic toxicity studies of pyridine are part of a larger effort by the NTP to develop a database that would permit the evaluation of carcinogenicity in experimental animals from the molecular structure and the effects of the chemical in short-term *in vitro* and *in vivo* genetic toxicity tests. These genetic toxicity tests were originally developed to study mechanisms of chemical-induced DNA damage and to predict carcinogenicity in animals, based on the electrophilicity theory of chemical mutagenesis and the somatic mutation theory of cancer (Miller and Miller, 1977; Straus, 1981; Crawford, 1985). There is a strong correlation between a chemical s potential electrophilicity
(structural alert to DNA reactivity), mutagenicity in *Salmonella*, and carcinogenicity in rodents. The combination of electrophilicity and *Salmonella* mutagenicity is highly correlated with the induction of carcinogenicity in rats and mice and/or at multiple tissue sites (Ashby and Tennant, 1991). Other *in vitro* genetic toxicity tests correlate less well with rodent carcinogenicity (Tennant *et al.*, 1987; Zeiger *et al.*, 1990), although these other tests can provide information on the types of DNA and chromosome effects that can be induced by the chemical being investigated. Data from NTP studies show that a positive response in *Salmonella* is the most predictive *in vitro* test for rodent carcinogenicity (89% of the *Salmonella* mutagens are rodent carcinogens), and that there is no complementarity among the *in vitro* genetic toxicity tests. That is, no battery of tests that included the *Salmonella* test improved the predictivity of the *Salmonella* test alone. The predictivity for carcinogenicity of a positive response in bone marrow chromosome aberration or micronucleus tests appears to be less than the *Salmonella* test (Shelby *et al.*, 1993; Shelby and Witt, 1995). Positive responses in long-term peripheral blood micronucleus tests have not been formally evaluated for their predictivity for rodent carcinogenicity. But, because of the theoretical and observed associations between induced genetic damage and adverse effects in somatic and germ cells, the determination of *in vivo* genetic effects is important to the overall understanding of the risks associated with exposure to a particular chemical. # **RESULTS** # F344/N RATS # 13-WEEK STUDY Two females exposed to 1,000 ppm died during week 1; all other F344/N rats survived until the end of the study (Table 2). Final mean body weights of 1,000 ppm males and 500 and 1,000 ppm females and mean body weight gains of males and females exposed to 500 or 1,000 ppm were significantly less than those of the controls. Water consumption by female rats exposed to 1,000 ppm was less than that by the controls. Drinking water concentrations of 50, 100, 250, 500, or 1,000 ppm pyridine resulted in average daily doses of approximately 5, 10, 25, 55, or 90 mg pyridine/kg body weight. There were no exposure-related clinical findings. Table 2 Survival, Body Weights, and Water Consumption of F344/N Rats in the 13-Week Drinking Water Study of Pyridine | Concentration | C10 | ryiyal ^a Mean Body Weight ^b (g) | | | | Water
Consumption ^c | | | |---------------|-------------------|---|-------------|---------------|--------------|-----------------------------------|---------|--| | (ppm) | Survivar — | Initial | Final | Change | Controls (%) | Week 1 | Week 13 | | | Male | | | | | | | | | | 0 | 10/10 | 149 + 4 | 346 + 9 | 197 ± 6 | | 132 | 78 | | | 50 | 10/10 | 145 ± 4 | 345 ± 7 | 201 ± 5 | 100 | 138 | 76 | | | 100 | 10/10 | 149 ± 4 | 348 ± 6 | 199 ± 5 | 101 | 145 | 74 | | | 250 | 10/10 | 148 ± 4 | 346 ± 7 | 198 ± 4 | 100 | 136 | 82 | | | 500 | 10/10 | 150 ± 4 | 328 ± 5 | $177 \pm 2**$ | 95 | 131 | 90 | | | 1,000 | 10/10 | 150 ± 4 | 296 ± 5** | 145 ± 4** | 85 | 128 | 85 | | | Female | | | | | | | | | | 0 | 10/10 | 111 ± 2 | 206 ± 3 | 95 ± 2 | | 126 | 91 | | | 50 | 10/10 | 110 + 2 | 203 ± 4 | 93 + 3 | 99 | 128 | 89 | | | 100 | 10/10 | 110 ± 2 | 202 ± 2 | 92 ± 2 | 98 | 127 | 93 | | | 250 | 10/10 | 111 ± 2 | 205 ± 4 | 95 ± 4 | 100 | 126 | 91 | | | 500 | 10/10 | 108 ± 2 | 193 ± 1** | 85 ± 2* | 94 | 123 | 98 | | | 1,000 | 8/10 ^d | 110 ± 2 | 187 ± 3** | 78 ± 3** | 91 | 85 | 89 | | ^{*} Significantly different (P≤0.05) from the control group by Williams test The hematology and clinical chemistry data for F344/N rats are listed in Table G1. On day 5, an erythrocytosis, demonstrated by increased hematocrit values, hemoglobin concentrations, and erythrocyte counts relative to controls occurred in males exposed to 100 ppm or greater. An erythrocytosis would be consistent with dehydration, which can cause a relative erythrocytosis due to decreased blood volume and hemoconcentration (Jain, 1986). On day 20, the erythrocytosis was replaced by evidence of a developing normocytic, normochromic, nonresponsive anemia, demonstrated by decreased hematocrit values, hemoglobin concentrations, and erythrocyte counts relative to controls in males and females exposed to 250 ppm or greater. Normocytosis, normochromia, and lack of an erythropoietic response were evidenced by the absence of changes relative to controls in mean cell volumes, mean cell hemoglobin concentrations, and reticulocyte counts, respectively. At week 13, evidence of the anemia persisted in 500 and 1,000 ppm males and expanded to all exposed females. ^{**} $P \le 0.01$ ^a Number of animals surviving at 13 weeks/number initially in group Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the study. Water consumption is expressed as grams of water consumed per kg body weight per day. d Week of death: 1 Albumin and total protein concentrations were increased relative to controls at various time points in males and females exposed to 100 ppm or greater. Increased albumin concentration would be consistent with dehydration and hemoconcentration; overproduction of albumin is not known to occur in any animal (Kaneko, 1989). The increase of total protein is probably a reflection of the increase of albumin. This evidence of dehydration could suggest that the severity of the anemia was tempered by the hemoconcentration and that the anemia may have been more severe than what the data indicate. There was evidence of hepatocellular injury and/or altered hepatic function demonstrated by increased serum alanine aminotransferase and sorbitol dehydrogenase activities and bile acid concentrations that predominantly occurred in 500 and 1,000 ppm males and females relative to controls. Increases of bile acid concentrations also can indicate cholestasis. But activity of serum alkaline phosphatase, another biomarker of cholestasis, was decreased relative to controls in all exposed males and females at various time points; this suggests cholestasis was not involved. However, decreased alkaline phosphatase activity was not exposure concentration-related and, thus, could indicate chemical inhibition of the enzyme or interference with the assay method. Additionally, circulating alkaline phosphatase in a normal rat is primarily of intestinal and bone origin (Righetti and Kaplan, 1971), and fasting or food restriction causes decreases in serum alkaline phosphatase activity (Jenkins and Robinson, 1975). If rats decreased their food intake due to treatment-related toxicity or poor food palatability, decreases in alkaline phosphatase activity relative to controls might be related to loss of the normally circulating intestinal fraction. Thus, increases in alkaline phosphatase activity due to cholestasis could be counterbalanced by the negative effect of decreased food intake. Final mean body weights of 500 and 1,000 ppm males and females were significantly less than those of the controls, supporting the possibility of decreased food intake. Changes in other hematology and clinical chemistry variables were minimal, inconsistent between males and females, and within physiological values; they were not considered toxicologically relevant. Left epididymis and left testis weights of 1,000 ppm males were significantly less than controls but were probably related to decreased body weights (Table I1). The estrous cycle length of 1,000 ppm females was significantly longer than that of the controls (Table I2). Absolute and relative liver weights of males exposed to 250, 500, or 1,000 ppm and of females exposed to 100, 250, 500, or 1,000 ppm were significantly greater than controls (Table H1). At the end of the study, plasma concentrations in 50, 100, 250, and 500 ppm females were greater than those in males; however, plasma concentration in 1,000 ppm females was less than males (Table J1). Multiple hepatic alterations were observed in the livers of males and females exposed to 500 or 1,000 ppm (Table 3). Incidences of centrilobular degeneration and hypertrophy were increased relative to controls in males and females exposed to 500 or 1,000 ppm. Incidences of chronic inflammation were increased in 1,000 ppm males and females and 500 ppm males compared to controls. Incidences of pigmentation were significantly increased in 500 and 1,000 ppm males and females and 250 ppm females relative to controls. Two types of enlarged centrilobular hepatocytes were separately diagnosed. Degeneration consisted of mildly to moderately enlarged, palely stained hepatocytes, primarily centrilobular, that had lacy to vacuolated cytoplasm containing an eosinophilic granular to flocculent material, and hypertrophy was a minimal increase in the size of centrilobular hepatocytes without vacuolated or lacy cytoplasm. Chronic inflammation consisted of lymphocytes, macrophages, and fibrous connective tissue that was primarily centrilobular but bridged across lobules in more severe cases. The macrophages often contained a yellow-brown pigment that special stains showed had characteristics of both lipofuscin and hemosiderin. The pigment was positive with PAS, Perl s, and Schmorl s staining but was acid-fast negative. TABLE 3 Incidences of Selected Nonneoplastic Lesions in F344/N Rats in the 13-Week Drinking Water Study of Pyridine | | 0 | ppm | 50 | ppm | 10 | 0 ppm | 250 |) ppm | 500 | ppm | 1,00 | 0 ppm | |--|----|-------|----|-------|----|-------|-----|-------|-----|-------------|------|-------| | Male | | | | | | | | | | | | | | Liver ^a | 10 | | 10 | | 10 | | 10 | | 10 | | 10 | | | Centrilobular, Degeneration ^b | 0 | | 0 | | 0 | |
0 | | 9** | $(1.0)^{c}$ | 9** | (1.8) | | Hypertrophy | 0 | | 0 | | 0 | | 0 | | 9** | (1.0) | 9** | (1.0) | | Inflammation, Chronic | 1 | (1.0) | 1 | (1.0) | 1 | (1.0) | 1 | (1.0) | 7** | (1.0) | 9** | (1.9) | | Pigmentation | 0 | | 0 | , , | 0 | , , | 0 | . , | 6** | (1.0) | 10** | (1.1) | | Kidney | 10 | | 10 | | 10 | | 10 | | 10 | | 10 | | | Casts | 0 | | 0 | | 3 | (1.0) | 3 | (1.0) | 9** | (1.0) | 9** | (1.0) | | Inflammation, Chronic | 0 | | 0 | | 0 | , | 2 | (1.0) | 4* | (1.0) | 9** | (1.0) | | Mineralization | 2 | (1.0) | 2 | (1.0) | 2 | (1.0) | 6 | (1.0) | 9** | (1.0) | 10** | (1.0) | | Renal Tubule, Regeneration | 10 | (1.0) | 10 | (1.0) | 10 | (1.0) | 10 | (1.1) | 10 | (1.6) | 10 | (1.4) | | Casts Granular | 0 | | 0 | | 0 | | 0 | | 3 | (1.0) | 8** | (1.0) | | Renal Tubule, Hyaline | | | | | | | | | | | | | | Degeneration | 1 | (1.0) | 0 | | 1 | (1.0) | 1 | (1.0) | 3 | (1.0) | 7** | (1.0) | | Female | | | | | | | | | | | | | | Liver | 10 | | 10 | | 10 | | 10 | | 10 | | 10 | | | Centrilobular, Degeneration | 0 | | 0 | | 0 | | 0 | | 9** | (1.0) | 9** | (1.8) | | Hypertrophy | 0 | | 0 | | 0 | | 0 | | 9** | (1.0) | 8** | (1.0) | | Inflammation, Chronic | 0 | | 0 | | 0 | | 0 | | 1 | (1.0) | 4* | (1.8) | | Pigmentation | 0 | | 0 | | 0 | | 7** | (1.0) | 7** | (1.0) | 8** | (1.1) | | Kidney | 10 | | | | | | | | | | 10 | | | Casts | 0 | | | | | | | | | | 2 | (1.0) | | Mineralization | 10 | (1.6) | | | | | | | | | 10 | (1.3) | ^{*} Significantly different (P≤0.05) from the control group by the Fisher exact test Many of the kidney lesions (protein casts, inflammation, mineralization, and regeneration of renal tubule epithelium) observed in male rats exposed to 500 or 1,000 ppm are components of spontaneous nephropathy that is common in male rats (Table 3). Increased incidences of protein casts, chronic inflammation, and mineralization and the increased severities of renal tubule regeneration in male rats exposed to 500 or 1,000 ppm compared to controls suggest that pyridine exacerbated nephropathy. The incidences of granular casts and renal tubule hyaline degeneration were significantly increased relative to controls in 1,000 ppm males, but the severities were minimal. Granular casts indicate more severe renal tubule damage than protein casts. Hyaline degeneration refers to eosinophilic refractile protein material in ^{**} P≤0.01 ^a Number examined microscopically b Number of animals with lesion Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked the cytoplasm of the renal tubule epithelium. Immunostaining for $\alpha 2u$ -globulin was positive in males and negative in females. Exposure Concentration Selection Rationale: A high exposure concentration of 400 ppm was selected for the 2-year F344/N rat study based on increased incidences and severities of liver (including increased alanine aminotransferase and sorbitol dehydrogenase activities and bile acids concentrations) and kidney lesions and a decrease in final mean body weights and body weight gain relative to controls in rats exposed to 500 or 1,000 ppm in the 13-week study. Lesions observed in the liver of female rats exposed to 250 ppm consisted of only scant pigment in macrophages in the vicinity of the central veins, and there was no kidney effect. Toxicokinetic data suggested that 400 to 500 ppm was in a nonlinear portion of the retention curve while 100 and 200 ppm were in the linear range. # 2-YEAR STUDY *Survival*Estimates of 2-year survival probabilities for male and female F344/N rats are shown in Table 4 and in the Kaplan-Meier survival curves (Figure 2). Survival of exposed males and females was not significantly different from controls. TABLE 4 Survival of F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--|-----------|------------|---------|---------| | Male | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Moribund | 11 | 13 | 15 | 10 | | Natural deaths | 14 | 17 | 10 | 24 | | Animals surviving to study termination | 25 | 20 | 25 | 16 | | Percent probability of survival at end of study ^a | 50 | 40 | 50 | 32 | | Mean survival (days) ^b | 663 | 666 | 665 | 646 | | Survival analysis ^c | P=0.124 | P=0.403 | P=1.000 | P=0.095 | | Female | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Moribund | 3 | 8 | 7 | 2 | | Natural deaths | 15 | 5 | 14 | 22 | | Animals surviving to study termination | 32 | 37 | 29 | 26 | | Percent probability of survival at end of study | 64 | 74 | 58 | 52 | | Mean survival (days) | 694 | 703 | 693 | 672 | | Survival analysis | P = 0.055 | P = 0.392N | P=0.700 | P=0.204 | ^a Kaplan-Meier determinations b Mean of all deaths (uncensored, censored, and terminal sacrifice) The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the exposed group columns. Lower mortality in an exposure group is indicated by **N**. FIGURE 2 Kaplan-Meier Survival Curves for Male and Female F344/N Rats Exposed to Pyridine in Drinking Water for 2 Years Body Weights, Water and Compound Consumption, and Clinical Findings Mean body weights of 200 and 400 ppm males after weeks 73 and 6, respectively, and females after weeks 61 and 9, respectively, were less than those of controls (Tables 5 and 6; Figure 3). Water consumption by 400 ppm males and females was greater than that by controls throughout the study, and water consumption by 200 ppm males and females was greater during the second year of the study (Tables L1 and L2). Drinking water concentrations of 100, 200, or 400 ppm pyridine resulted in average daily doses of approximately 7, 14, or 33 mg/kg. There were no treatment-related clinical findings. TABLE 5 Mean Body Weights and Survival of Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | on | | pm | | 100 ppm | | | 200 ppm | | | 400 ppm | | |----------|---------|-----------|---------|-----------|-----------|---------|-----------|-----------|---------|-----------|-----------| | | Av. Wt. | No. of | Av. Wt. | Wt. (% of | No. of | Av. Wt. | Wt. (% of | No. of | Av. Wt. | Wt. (% of | No. of | | Study | (g) | Survivors | (g) | controls) | Survivors | (g) | controls) | Survivors | (g) | controls) | Survivors | | 1 | 136 | 50 | 135 | 99 | 50 | 135 | 99 | 50 | 136 | 100 | 50 | | 2 | 173 | 50 | 172 | 100 | 50 | 169 | 98 | 50 | 167 | 97 | 50 | | 3 | 207 | 50 | 208 | 101 | 50 | 206 | 99 | 50 | 201 | 97 | 50 | | 4 | 236 | 50 | 234 | 99 | 50 | 232 | 98 | 50 | 227 | 96 | 50 | | 5 | 255 | 50 | 253 | 99 | 50 | 250 | 98 | 50 | 245 | 96 | 50 | | 6 | 275 | 50 | 267 | 97 | 50 | 272 | 99 | 50 | 258 | 94 | 50 | | 7 | 293 | 50 | 286 | 98 | 50 | 289 | 99 | 50 | 272 | 93 | 50 | | 8 | 302 | 50 | 295 | 98 | 50 | 295 | 98 | 50 | 282 | 94 | 50 | | 9 | 314 | 50 | 309 | 98 | 50 | 306 | 97 | 50 | 291 | 93 | 50 | | 10 | 331 | 50 | 326 | 99 | 50 | 323 | 98 | 50 | 309 | 93 | 50 | | 11 | 333 | 50 | 329 | 99 | 50 | 328 | 99 | 50 | 311 | 94 | 50 | | 12 | 342 | 50 | 339 | 99 | 50 | 340 | 100 | 50 | 323 | 95 | 50 | | 13 | 351 | 50 | 349 | 99 | 50 | 348 | 99 | 50 | 328 | 94 | 50 | | 17 | 384 | 50 | 382 | 100 | 50 | 378 | 99 | 50 | 355 | 93 | 50 | | 21 | 409 | 50 | 405 | 99 | 50 | 404 | 99 | 50 | 376 | 92 | 50 | | 25 | 426 | 50 | 420 | 99 | 50 | 420 | 98 | 50 | 392 | 92 | 50 | | 29 | 437 | 50 | 431 | 99 | 50 | 433 | 99 | 50 | 403 | 92 | 49 | | 33 | 453 | 50 | 448 | 99 | 50 | 448 | 99 | 50 | 421 | 93 | 49 | | 37 | 465 | 50 | 461 | 99 | 50 | 460 | 99 | 50 | 434 | 93 | 49 | | 41 | 478 | 50 | 468 | 98 | 50 | 469 | 98 | 49 | 443 | 93 | 49 | | 45 | 483 | 50 | 480 | 99 | 50 | 480 | 100 | 49 | 452 | 94 | 49 | | 49 | 489 | 49 | 479 | 98 | 50 | 480 | 98 | 49 | 453 | 93 | 49 | | 53 | 487 | 49 | 482 | 99 | 50 | 482 | 99 | 49 | 453 | 93 | 49 | | 57 | 502 | 47 | 489 | 98 | 50 | 484 | 97 | 49 | 462 | 92 | 49 | | 61 | 503 | 47 | 491 | 98 | 50 | 487 | 97 | 49 | 459 | 91 | 49 | | 65 | 508 | 46 | 492 | 97 | 49 | 484 | 95 | 49 | 455 | 90 | 47 | | 69 | 511 | 45 | 500 | 98 | 47 | 485 | 95 | 49 | 457 | 89 | 46 | | 73 | 511 | 45 | 500 | 98 | 47 | 480 | 94 | 48 | 446 | 87 | 46 | | 77 | 510 | 45 | 497 | 98 | 47 | 475 | 93 | 46 | 446 | 87 | 43 | | 81 | 494 | 45 | 497 | 101 | 45 | 467 | 94 | 44 | 441 | 89 | 42 | | 85 | 501 | 42 | 486 | 97 | 45 | 462 | 92 | 41 | 428 | 86 | 40 | | 89 | 499 | 39 | 484 | 97 | 41 | 440 | 88 | 39 | 414 | 83 | 37 | | 93 | 501 | 36 | 478 | 95 | 35 | 428 | 85 | 35 | 406 | 81 | 33 | | 95 | 495 | 35 | 452 | 91 | 35 | 422 | 85 | 33 | 403 | 81 | 30 | | 97 | 491 | 33 | 464 | 95 | 28 | 414 | 84 | 30 | 391 | 80 | 28 | | 99 | 474 | 33 | 459 | 97 | 25 | 401 | 85 | 29 | 379 | 80 | 24 | | 101 | 468 | 31 | 458 | 98 | 23 | 397 | 85 | 27 | 388 | 83 | 19 | | 103 | 461 | 29 | 440 | 95 | 21 | 374 | 81 | 26 | 369 | 80 | 19 | | Mean for | r weeks | | | | | | | | | | | | 1-13 | 273 | | 269 | 99 | | 269 | 99 | | 258 | 95 | | | 14-52 | 447 | | 442 | 99 | | 441 | 99 | | 414 | 93 | | | 53-103 | 495 | | 479 | 97 | | 449 | 91 | | 425 | 86 | | TABLE 6 Mean Body Weights and Survival of Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | Weeks | 0 1 | opm | | 100 ppm | | | 200 ppm | | | 400 ppm | | |-------------|---------|---------------------|---------|---------------------|---------------------|---------|---------------------|---------------------|---------|---------------------|---------------------| | on
Study | Av. Wt. | No. of
Survivors | Av. Wt. | Wt. (% of controls) | No. of
Survivors | Av. Wt. | Wt. (% of controls) | No. of
Survivors | Av. Wt. | Wt. (% of controls) | No. of
Survivors | | 1 | 110 | 50 | 110 | 100 | 50 | 110 | 101 | 50 | 111 | 101 | 50 | | 2 | 129 | 50 | 128 | 99 | 50 | 127 | 99 | 50 | 124 | 96 | 50 | | 3 | 144 | 50 | 145 | 100 | 50 | 143 | 99 | 50 | 139 | 96 | 50 | | 4 | 152 | 50 | 152 | 100 | 50 | 151 | 99 | 50 | 148 | 97 | 50 | | 5 | 160 | 50 | 160
 100 | 50 | 159 | 100 | 50 | 155 | 97 | 50 | | 6 | 167 | 50 | 167 | 100 | 50 | 164 | 98 | 50 | 160 | 96 | 50 | | 7 | 173 | 50 | 173 | 100 | 50 | 171 | 98 | 50 | 167 | 96 | 50 | | 8 | 180 | 50 | 179 | 100 | 50 | 176 | 98 | 50 | 170 | 95 | 50 | | 9 | 183 | 50 | 183 | 100 | 50 | 178 | 97 | 50 | 173 | 94 | 50 | | 10 | 186 | 50 | 185 | 100 | 50 | 181 | 98 | 50 | 175 | 94 | 50 | | 11 | 192 | 50 | 190 | 99 | 50 | 185 | 96 | 50 | 178 | 93 | 50 | | 12 | 196 | 50 | 194 | 99 | 50 | 187 | 96 | 50 | 182 | 93 | 50 | | 13 | 198 | 50 | 197 | 100 | 50 | 191 | 97 | 50 | 185 | 93 | 50 | | 17 | 213 | 50 | 210 | 99 | 50 | 204 | 96 | 50 | 196 | 92 | 50 | | 21 | 223 | 50 | 220 | 99 | 50 | 212 | 95 | 50 | 205 | 92 | 50 | | 25 | 228 | 50 | 225 | 99 | 50 | 218 | 95 | 50 | 208 | 91 | 50 | | 29 | 234 | 50 | 233 | 100 | 50 | 224 | 96 | 50 | 214 | 91 | 50 | | 33 | 242 | 50 | 238 | 98 | 50 | 228 | 94 | 50 | 220 | 91 | 50 | | 37 | 251 | 50 | 247 | 98 | 50 | 239 | 95 | 50 | 225 | 90 | 50 | | 41 | 261 | 50 | 257 | 99 | 50 | 247 | 95 | 50 | 234 | 90 | 50 | | 45 | 270 | 50 | 269 | 100 | 50 | 257 | 95 | 50 | 240 | 89 | 50 | | 49 | 279 | 50 | 280 | 101 | 50 | 266 | 95 | 50 | 247 | 89 | 50 | | 53 | 285 | 50 | 287 | 101 | 50 | 273 | 96 | 50 | 252 | 88 | 50 | | 57 | 288 | 50 | 290 | 101 | 50 | 273 | 95 | 50 | 255 | 89 | 49 | | 61 | 299 | 49 | 297 | 99 | 50 | 280 | 94 | 50 | 258 | 86 | 49 | | 65 | 301 | 49 | 302 | 100 | 50 | 284 | 94 | 50 | 259 | 86 | 49 | | 69 | 310 | 49 | 308 | 99 | 50 | 290 | 93 | 50 | 269 | 87 | 48 | | 73 | 314 | 47 | 313 | 100 | 49 | 292 | 93 | 49 | 275 | 88 | 47 | | 77 | 322 | 47 | 313 | 97 | 49 | 299 | 93 | 48 | 282 | 88 | 46 | | 81 | 326 | 47 | 323 | 99 | 47 | 299 | 92 | 47 | 283 | 87 | 46 | | 85 | 330 | 46 | 327 | 99 | 46 | 306 | 93 | 43 | 281 | 85 | 44 | | 89 | 331 | 45 | 328 | 99 | 45 | 306 | 92 | 42 | 286 | 86 | 39 | | 93 | 338 | 43 | 332 | 98 | 44 | 307 | 91 | 41 | 286 | 85 | 33 | | 95 | 334 | 42 | 335 | 100 | 43 | 305 | 91 | 41 | 281 | 84 | 32 | | 97 | 344 | 38 | 332 | 96 | 41 | 306 | 89 | 39 | 286 | 83 | 30 | | 99 | 340 | 36 | 333 | 98 | 40 | 301 | 89 | 38 | 286 | 84 | 29 | | 101 | 337 | 35 | 333 | 99 | 39 | 298 | 89 | 35 | 284 | 85 | 28 | | 103 | 340 | 35 | 332 | 98 | 39 | 303 | 89 | 31 | 286 | 84 | 26 | | Mean for | r weeks | | | | | | | | | | | | 1-13 | 167 | | 166 | 99 | | 163 | 98 | | 159 | 95 | | | 14-52 | 245 | | 242 | 99 | | 233 | 95 | | 221 | 90 | | | 53-103 | 321 | | 318 | 99 | | 295 | 92 | | 276 | 86 | | FIGURE 3 Growth Curves for Male and Female F344/N Rats Exposed to Pyridine in Drinking Water for 2 Years Pathology and Statistical Analyses This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplasms and nonneoplastic lesions of the kidney, liver, and lung and incidences of mononuclear cell leukemia. Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one animal group, and historical incidences for the neoplasms mentioned in this section are presented in Appendix A for male F344/N rats and Appendix B for female F344/N rats. *Kidney:* In the standard evaluation, incidences of renal tubule adenoma and renal tubule adenoma or carcinoma (combined) in male rats exposed to 400 ppm were significantly increased compared to controls and exceeded the historical control ranges (Tables 7, A3, and A4). One renal tubule carcinoma was observed in a 100 ppm male. Because of the increased incidence of renal tubule adenoma in 400 ppm males, additional step sections of kidneys were prepared from residual wet tissue so that each kidney yielded four additional sections spaced 1 mm apart. The step sections did not reveal additional carcinomas, but additional adenomas were observed in each group of exposed and control males (Table 7). The incidence of renal tubule hyperplasia was increased in 400 ppm males in single sections compared to controls (Tables 7 and A5). Renal tubule hyperplasia consisted of multiple layers rather than the normal single layer of epithelium, frequently accompanied by an increased tubule diameter (Plate 1). Severity of hyperplasia depended on the number of layers and the complexity of their patterns. Some had papillary projections, but cells retained their orientation to the basement membrane. The renal tubule adenomas in both single and step sections were typical of those occurring spontaneously. Adenomas were masses of epithelial cells five or more tubule diameters in size (Plate 2). Cells in the adenomas were disorganized and had lost their orientation to the tubule basement membrane. The renal tubule carcinoma observed in the single sections was TABLE 7 Incidences of Selected Neoplasms and Nonneoplastic Lesions in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|------------------|------------|------------|-------------| | Kidney | 50 | 48 | 50 | 49 | | Single Sections (Standard Evaluation) | | | | ., | | Nephropathy ^a | $47 (2.3)^{b}$ | 47 (2.3) | 49 (2.5) | 49 (2.6) | | Renal Tubule, Hyperplasia | 1 (1.0) | 0 | 4 (3.0) | 7* (1.7) | | Renal Tubule, Adenoma ^c (includes multiple |) | | | | | Overall rate ^d | 1/50 (2%) | 0/48 (0%) | 2/50 (4%) | 6/49 (12%) | | Adjusted rate ^e | 2.4% | 0.0% | 4.9% | 15.9% | | Terminal rate ^f | 1/25 (4%) | 0/20 (0%) | 1/25 (4%) | 2/16 (13%) | | First incidence (days) | 722 (T) | h | 708 | 644 | | Poly-3 test ^g | P = 0.003 | P = 0.510N | P = 0.498 | P = 0.042 | | Renal Tubule, Carcinoma ⁱ | 0 | 1 | 0 | 0 | | Renal Tubule, Adenoma or Carcinoma ^c | | | | | | Overall rate | 1/50 (2%) | 1/48 (2%) | 2/50 (4%) | 6/49 (12%) | | Adjusted rate | 2.4% | 2.6% | 4.9% | 15.9% | | Terminal rate | 1/25 (4%) | 1/20 (5%) | 1/25 (4%) | 2/16 (13%) | | First incidence (days) | 722 (T) | 722 (T) | 708 | 644 | | Poly-3 test | P = 0.008 | P = 0.750 | P = 0.498 | P = 0.042 | | Step Sections (Extended Evaluation) | | | | | | Renal Tubule, Hyperplasia | 9 (2.0) | 7 (2.1) | 11 (3.0) | 15 (2.4) | | Renal Tubule, Adenoma | 1 | 3 | 5 | 9** | | Single Sections and Step Sections | | | | | | (Combined) | | | | | | Renal Tubule, Hyperplasia | 10 (1.9) | 7 (2.1) | 14 (3.1) | 16 (2.4) | | Renal Tubule, Adenoma | | | | | | Overall rate | 2/50 (4%) | 3/48 (6%) | 6/50 (12%) | 10/49 (20%) | | Adjusted rate | 4.9% | 7.6% | 14.5% | 26.3% | | Terminal rate | 2/25 (8%) | 2/20 (10%) | 3/25 (12%) | 5/16 (31%) | | First incidence (days) | 722 (T) | 673 | 627 | 644 | | Poly-3 test | P = 0.002 | P = 0.480 | P = 0.133 | P = 0.008 | | Renal Tubule, Carcinoma | 0 | 1 | 0 | 0 | | Renal Tubule, Adenoma or Carcinoma | | | | | | Overall rate | 2/50 (4%) | 4/48 (8%) | 6/50 (12%) | 10/49 (20%) | | Adjusted rate | 4.9% | 10.2% | 14.5% | 26.3% | | Terminal rate | 2/25 (8%) | 3/20 (15%) | 3/25 (12%) | 5/16 (31%) | | First incidence (days) | 722 (T) | 673 | 627 | 644 | | Poly-3 test | P = 0.003 | P = 0.316 | P = 0.133 | P = 0.008 | Table 7 Incidences of Selected Neoplasms and Nonneoplastic Lesions in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |------------------------|---------|---------|---------|-----------| | Stomach, Glandular | 50 | 49 | 50 | 49 | | Mineralization | 0 | 2 (2.0) | 2 (1.5) | 8** (2.0) | | Parathyroid Gland | 50 | 50 | 50 | 48 | | Hyperplasia | 0 | 1 (2.0) | 3 (2.3) | 3 (2.0) | | Bone | 50 | 50 | 50 | 50 | | Fibrous Osteodystrophy | 2 (3.0) | 1 (3.0) | 4 (2.3) | 6 (2.5) | ^{*} Significantly different ($P \le 0.05$) from the control group by the Poly-3 test approximately 3 mm in diameter and had densely packed, widely pleomorphic epithelial cells that infiltrated the adjacent parenchyma. The severity of nephropathy in males increased slightly with increasing exposure concentration (Table 7). Incidences of mineralization of the stomach, parathyroid gland hyperplasia, and fibrous osteodystrophy were observed in a few exposed males, and the incidence of stomach mineralization in 400 ppm males was significantly increased compared to controls (Tables 7 and A5). These extrarenal lesions are indicative of kidney disease. ^{**} P≤0.01 ⁽T)Terminal sacrifice Number of animals with lesion b Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked Historical incidence for 2-year drinking water studies with untreated control groups (mean \pm standard deviation): 1/327 (0.3% \pm 0.8%); range, 0%-2% d Number of animals with neoplasm per number of animals with kidney examined microscopically Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality Observed incidence at terminal kill g Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A lower incidence in an exposure group is indicated by N. Not applicable; no neoplasms in animal group Historical incidence: 0/327 Mononuclear Cell Leukemia: Incidences of mononuclear cell leukemia in female rats were significantly increased in the 200 and 400 ppm groups compared to controls, and the incidence in the 400 ppm group exceeded the historical control range (Tables 8, B3, and B4). In all animals with this neoplasm, neoplastic cells were found in the spleen and usually also in the liver. Infiltrations in the lungs, bone marrow, lymph nodes, adrenal gland, and kidneys were also common. Incidences of mononuclear cell leukemia in male rats were similar to those in controls (0 ppm, 29/50; 100 ppm, 32/50; 200 ppm, 26/50; 400 ppm, 27/50; Table A3). TABLE 8 Incidences of Mononuclear Cell Leukemia in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm |
200 ppm | 400 ppm | |--|-------------|-------------|-------------|-------------| | Mononuclear Cell Leukemia ^a | | | | | | Overall rate ^b | 12/50 (24%) | 16/50 (32%) | 22/50 (44%) | 23/50 (46%) | | Adjusted rate ^c | 26.5% | 34.3% | 45.4% | 48.7% | | Terminal rate ^d | 8/32 (25%) | 12/37 (32%) | 8/29 (28%) | 5/26 (19%) | | First incidence (days) | 636 | 546 | 496 | 380 | | Poly-3 test ^e | P = 0.013 | P = 0.279 | P = 0.043 | P = 0.020 | ^a Historical incidence for 2-year drinking water studies with untreated control groups (mean \pm standard deviation): 102/330 (30.9% \pm 10.0%); range, 16%-44% b Number of animals necropsied ^c Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality d Observed incidence at terminal kill ^e Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. Liver: Incidences of hepatocellular neoplasms were not significantly increased in exposed rats compared to controls, but exposure concentration-related nonneoplastic liver lesions were observed in males and females (Tables 9, A5, and B5). Incidences of centrilobular cytomegaly and cytoplasmic vacuolization were increased in males exposed to 200 or 400 ppm and females exposed to 400 ppm relative to controls. In 400 ppm males, incidences of periportal fibrosis, fibrosis, centrilobular degeneration, and centrilobular necrosis were significantly increased relative to controls. The incidence of centrilobular degeneration was increased in 400 ppm females compared to controls. Bile duct hyperplasia was observed in control and exposed males and females, and the incidences were significantly increased in exposed females compared to controls. Incidences of pigmentation increased compared to controls in all exposed groups of males and in 400 ppm females. Incidences of basophilic focus were decreased relative to controls in 200 and 400 ppm males and all exposed groups of females. The incidence of clear cell focus relative to controls was decreased in 100 ppm males; incidences of clear cell focus were increased relative to controls in 200 and 400 ppm females. The incidence of eosinophilic focus was increased relative to controls in 100 ppm males. Centrilobular cytomegaly consisted of an increased amount of cytoplasm containing varying amounts of homogeneous eosinophilic material that enlarged hepatocytes. Cytoplasmic vacuolization referred to vacuolized hepatocytes in non-centrilobular areas. Periportal fibrosis consisted of bands of fibrous connective tissue in portal areas. Fibrosis was defined as fibrous connective tissue under the capsule of the liver and extending downward along the vasculature. Bile duct hyperplasia was a cluster of six or more bile ducts. Pigmentation was yellowish brown material in macrophages, often present in areas of fibrosis. TABLE 9 Incidences of Neoplasms and Nonneoplastic Lesions of the Liver in F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 | ppm | 100 | ppm | 200 | ppm | 400 | ppm | |---|--|---|---|--|--|---|--|--| | Male | | | | | | | | | | Number Examined Microscopically Basophilic Focus Clear Cell Focus Eosinophilic Focus Centrilobular, Cytomegaly Vacuolization Cytoplasmic Periportal Fibrosis Fibrosis Centrilobular, Degeneration Centrilobular, Necrosis Bile Duct, Hyperplasia Pigmentation | 50
12
7
14
0
4
0
1
1
0
46
4 | (1.5)
(2.0)
(2.0)
(1.4)
(1.0) | 49
5
1*
23*
4
6
0
1
3
3
43
11* | (1.3) ^b (1.8) (2.0) (2.3) (1.7) (1.5) (1.3) | 50
0**
7
23
8**
13*
2
1
2
0
44
20** | (1.3)
(1.7)
(2.5)
(1.0)
(2.0)
(1.6)
(1.3) | 50
1**
4
13
6*
17**
29**
10**
8*
5*
49
25** | (2.0)
(2.4)
(1.8)
(1.6)
(2.1)
(2.2)
(1.6)
(2.0) | | Hepatocellular Adenoma
Hepatocellular Carcinoma
Hepatocellular Adenoma or Carcinoma | 1
0
1 | | 1
0
1 | | 0
1
1 | | 3
0
3 | | | Female | | | | | | | | | | Number Examined Microscopically Basophilic Focus Clear Cell Focus Eosinophilic Focus Centrilobular, Cytomegaly Vacuolization Cytoplasmic Centrilobular, Degeneration Bile Duct, Hyperplasia Pigmentation | 50
38
4
19
0
10
1
20
6 | (1.8)
(2.0)
(1.0)
(1.5) | 50
28*
9
24
1
7
2
29*
2 | (1.0)
(1.0)
(2.5)
(1.1)
(1.5) | 50
11**
11*
22
4
9
2
34**
6 | (1.0)
(1.8)
(1.5)
(1.0)
(2.3) | 50
0**
16**
15
20**
18*
7*
29*
17** | (1.4)
(1.6)
(1.1)
(1.0)
(1.6) | | Hepatocellular Adenoma | 1 | | 0 | | 1 | | 0 | | ^{*} Significantly different (P $\!\leq\! 0.05)$ from the control group by the Poly-3 test ** $P \!\leq\! 0.01$ Lung: Incidences of alveolar/bronchiolar adenoma or carcinoma (combined) in males occurred with a positive trend (1/50, 0/50, 2/50, 4/50; Table A3). Alveolar epithelial hyperplasia was also observed in the 100 and 400 ppm groups (0/50, 3/50, 0/50, 3/50; Table A5). Although these neoplasms are relatively uncommon, incidences up to eight of 50 have occurred in untreated control groups from other recent NTP 2-year carcinogenicity studies. This marginally increased neoplasm incidence was not considered to be chemical related. ^a Number of animals with lesion Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked # WISTAR RATS ## 13-WEEK STUDY One male rat exposed to 500 ppm died during the first week of the study (Table 10). Final mean body weights and body weight gains of rats exposed to 250, 500, or 1,000 ppm were significantly less than those of the controls. Water consumption by rats exposed to 1,000 ppm was lower than that by controls. Drinking water concentrations of 50, 100, 250, 500, or 1,000 ppm pyridine resulted in average daily doses of approximately 5, 10, 30, 60, or 100 mg/kg. There were no treatment-related clinical findings. TABLE 10 Survival, Body Weights, and Water Consumption of Male Wistar Rats in the 13-Week Drinking Water Study of Pyridine | Concentration | C12 | M | Iean Body Weight ^b (| Final Weight
Relative to | Water
Consumption ^c | | | |---------------|-------------------------|-------------|---------------------------------|-----------------------------|-----------------------------------|--------|---------| | (ppm) | Survival ^a — | Initial | Final | Change | Controls
(%) | Week 1 | Week 13 | | 0 | 10/10 | 161 ± 3 | 511 ± 9 | 350 ± 9 | | 169 | 120 | | 50 | 10/10 | 161 ± 3 | 476 ± 13 | 315 ± 11 | 93 | 152 | 118 | | 100 | 10/10 | 159 ± 3 | 490 ± 7 | 331 ± 8 | 96 | 148 | 116 | | 250 | 10/10 | 159 ± 3 | $463 \pm 17**$ | $304 \pm 16**$ | 91 | 136 | 95 | | 500 | 9/10 ^d | 157 ± 4 | $443 \pm 8**$ | $286 \pm 6**$ | 87 | 141 | 127 | | 1,000 | 10/10 | 159 ± 3 | 420 ± 15** | $260 \pm 14**$ | 81 | 111 | 74 | ^{**} Significantly different ($P \le 0.01$) from the control group by Williams test The hematology and clinical chemistry data for Wistar rats are presented in Table G2. Similar to male F344/N rats, an erythrocytosis, demonstrated by increased hematocrit values, hemoglobin concentrations, and erythrocyte counts, occurred in 500 and 1,000 ppm rats on day 5. An erythrocytosis would be consistent with dehydration, which can cause a relative erythrocytosis due to decreased blood volume and hemoconcentration. Hemoconcentration would be supported by the increased albumin concentration in 1,000 ppm rats relative to controls. Additionally, urea nitrogen concentrations were increased relative to controls in 500 and 1,000 ppm rats on days 5 and 20; creatinine concentration, another marker of renal function, was unaffected. Urea nitrogen concentration can be influenced by many extrarenal factors: high a Number of animals surviving at 13 weeks/number initially in group b Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the study. Water consumption is expressed as grams of water consumed per kg body weight per day. d Week of death: 1 protein diets, dehydration, liver function, animal health, and nutritional status (Finco, 1989). Serum creatinine, a product of muscle metabolism, is not as affected by extrarenal factors (Ragan, 1989). A nonrenal effect, such as dehydration caused by decreased water intake due to poor palatability of dosed water, could result in a urea nitrogen concentration increase, while creatinine concentration remains unchanged. Also similar to F344/N rats, there was evidence of hepatocellular injury and/or altered hepatic function demonstrated by increased serum alanine aminotransferase and sorbitol dehydrogenase activities and bile acid concentrations at all time points in 500 and 1,000 ppm rats relative to controls. Decreased alkaline phosphatase activity relative to controls was observed, but with less consistency, in 250 and 1,000 ppm rats. Organ weights
of exposed rats were not significantly different from those of controls (Table H2). Plasma concentrations of pyridine increased with increasing dose (Table J2). Incidences of centrilobular degeneration, hypertrophy, chronic inflammation, and pigmentation in the liver of rats exposed to 500 or 1,000 ppm were significantly increased relative to controls (Table 11). Two types of enlarged centrilobular hepatocytes were separately diagnosed. Degeneration consisted of mildly to moderately enlarged, palely stained hepatocytes, primarily centrilobular, that had lacy to vacuolated cytoplasm containing an eosinophilic granular to flocculent material. Hypertrophy was a minimal increase in size of centrilobular hepatocytes without vacuolated or lacy cytoplasm. Chronic inflammation consisted of lymphocytes, macrophages, and fibrous connective tissue that was primarily centrilobular and bridged across lobules in more severe cases. The macrophages often contained a yellow-brown pigment that special stains showed had characteristics of both lipofuscin and hemosiderin. The pigment was positive with PAS, Perl s, and Schmorl s staining but was acid-fast negative. Incidences of kidney lesions in exposed rats were not significantly different from those of controls (Table 11). Many lesions (protein casts, inflammation, mineralization, and regeneration of renal tubule epithelium) are components of spontaneous nephropathy that is common in male rats. The incidences of spontaneous nephropathy in control Wistar males were high, and possible nephrotoxicity was not clear. Granular casts, which indicate more severe renal tubule damage than protein casts, were noted in one rat in the 1,000 ppm group. The incidence, but not the severity, of hyaline degeneration was slightly increased in the 1,000 ppm group. Hyaline degeneration refers to eosinophilic refractile protein material in the cytoplasm of renal tubule epithelium. Immunohistochemistry for $\alpha 2u$ -globulin was positive in all rats tested. TABLE 11 Incidences of Selected Nonneoplastic Lesions in Male Wistar Rats in the 13-Week Drinking Water Study of Pyridine | | 0 | ppm | 50 | ppm | 100 | 0 ppm | 250 | 0 ppm | 500 | ppm | 1,00 | 0 ppm | |--|----|-------|----|-------|-----|-------|-----|-------|-----|-------------|------|-------| | Liver ^a | 10 | | 10 | | 10 | | 10 | | 9 | | 10 | | | Centrilobular, Degeneration ^b | 0 | | 0 | | 0 | | 0 | | 9** | $(1.7)^{c}$ | 9** | (1.4) | | Hypertrophy | 0 | | 0 | | 0 | | 0 | | 9** | (1.0) | 10** | | | Inflammation, Chronic | 0 | | 0 | | 0 | | 2 | (1.0) | 9** | (1.7) | 9** | (2.2) | | Pigmentation | 0 | | 0 | | 0 | | 0 | . , | 9** | (1.0) | 9** | (1.3) | | Kidney | 10 | | 10 | | 10 | | 10 | | 9 | | 10 | | | Casts | 3 | (1.0) | 3 | (1.0) | 4 | (1.0) | 4 | (1.5) | 4 | (1.0) | 5 | (1.0) | | Inflammation, Chronic | 0 | . , | 1 | (1.0) | 1 | (2.0) | 0 | , , | 0 | , , | 2 | (1.0) | | Mineralization | 7 | (1.0) | 5 | (1.2) | 4 | (1.0) | 8 | (1.3) | 8 | (1.0) | 10 | (1.0) | | Renal Tubule, Regeneration | 5 | (1.0) | 6 | (1.0) | 5 | (1.0) | 9 | (1.0) | 7 | (1.0) | 8 | (1.1) | | Casts Granular | 0 | | 0 | | 0 | | 0 | | 0 | | 1 | (1.0) | | Renal Tubule, Hyaline | | | | | | | | | | | | | | Degeneration | 2 | (1.0) | 0 | | 0 | | 2 | (1.0) | 3 | (1.0) | 6 | (1.0) | ^{**} Significantly different ($P \le 0.01$) from the control group by the Fisher exact test Exposure Concentration Selection Rationale: A high exposure concentration of 400 ppm was selected for the 2-year Wistar rat study based on increased incidences and severities of liver lesions (including increased alanine aminotransferase and sorbitol dehydrogenase activities and bile acid concentrations) in rats exposed to 500 or 1,000 ppm compared to controls. a Number examined microscopically b Number of animals with lesion Average severity grade of lesion in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked ### 2-YEAR STUDY *Survival*Estimates of 2-year survival probabilities for male Wistar rats are shown in Table 12 and in the Kaplan-Meier survival curves (Figure 4). Survival of rats exposed to 200 or 400 ppm was significantly less than that of the controls. TABLE 12 Survival of Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ррт | 100 ppm | 200 ppm | 400 ppm | |--|---------|---------|---------|---------| | Animals initially in study | 50 | 50 | 50 | 50 | | Moribund | 2 | 9 | 9 | 10 | | Natural deaths | 26 | 27 | 30 | 33 | | Animals surviving to study termination | 22 | 14 | 11 | 7 | | Percent probability of survival at end of study ^a | 44 | 28 | 22 | 14 | | Mean survival (days) ^b | 661 | 625 | 618 | 577 | | Survival analysis ^c | P<0.001 | P=0.090 | P=0.020 | P<0.001 | ^a Kaplan-Meier determinations **Body Weights, Water and Compound Consumption, and Clinical Findings** Mean body weights of rats exposed to 100, 200, or 400 ppm were significantly less than controls beginning weeks 69, 49, and 6, respectively (Figure 5 and Table 13). Water consumption by exposed rats was similar to that by controls (Table L3). Drinking water concentrations of 100, 200, or 400 ppm pyridine resulted in average daily doses of approximately 8, 17, or 36 mg/kg. There were no treatment-related clinical findings. b Mean of all deaths (uncensored, censored, and terminal sacrifice) ^c The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the exposed group columns. FIGURE 4 Kaplan-Meier Survival Curves for Male Wistar Rats Exposed to Pyridine in Drinking Water for 2 Years FIGURE 5 Growth Curves for Male Wistar Rats Exposed to Pyridine in Drinking Water for 2 Years TABLE 13 Mean Body Weights and Survival of Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | on Study 1 2 3 4 5 6 7 8 9 10 | 201
255
294
327
357
382
413
426
448
464 | 50
50
50
50
50
50
50
50
50 | Av. Wt. (g) 198 250 289 326 359 380 411 428 | 98
98
98
100
101
99
100 | No. of
Survivors
50
50
50
50
50 | Av. Wt.
(g)
199
246
285
321 | 200 ppm
Wt. (% of
controls) | No. of
Survivors
50
50 | Av. Wt. (g) | 400 ppm
Wt. (% of
controls) | No. of
Survivors | |--------------------------------------|--|--|--|---|---|--|-----------------------------------|---------------------------------|-------------|-----------------------------------|---------------------| | 2
3
4
5
6
7
8
9 | 255
294
327
357
382
413
426
448 | 50
50
50
50
50
50
50
50 | 250
289
326
359
380
411 | 98
98
100
101
99 | 50
50
50 | 246
285 | | | | 98 | 50 | | 2
3
4
5
6
7
8
9 | 255
294
327
357
382
413
426
448 | 50
50
50
50
50
50
50
50 | 250
289
326
359
380
411 | 98
98
100
101
99 | 50
50
50 | 285 | 97 | | | | 30 | | 4
5
6
7
8
9 | 327
357
382
413
426
448 | 50
50
50
50
50 | 289
326
359
380
411 | 98
100
101
99 | 50
50 | 285 | | | 240 | 94 | 50 | | 5
6
7
8
9 | 357
382
413
426
448 | 50
50
50
50 | 359
380
411 | 101
99 | 50 | 221 | 97 | 50 | 280 | 95 | 50 | | 6
7
8
9 | 382
413
426
448 | 50
50
50 | 380
411 | 99 | 50 | 321 | 98 | 50 | 312 | 95 | 50 | | 7
8
9 | 413
426
448 | 50
50 | 411 | | | 347 | 97 | 50 | 345 | 96 | 50 | | 8
9 | 426
448 | 50 | | 100 | 50 | 372 | 97 | 50 | 358 | 94 | 50 | | 9 | 448 | | 428 | 100 | 50 | 402 | 97 | 50 | 388 | 94 | 50 | | | | | | 101 | 50 | 412 | 97 | 50 | 400 | 94 | 50 | | 10 | 464 | 50 | 446 | 100 | 50 | 435 | 97 | 50 | 419 | 94 | 50 | | 10 | | 50 | 463 | 100 | 50 | 452 | 97 | 50 | 431 | 93 | 50 | | 11 | 479 | 50 | 478 | 100 | 50 | 463 | 97 | 50 | 443 | 93 | 50 | | 12 | 494 | 50 | 492 | 100 | 50 | 479 | 97 | 50 | 457 | 93 | 50 | | 13 | 506 | 50 | 503 | 99 | 50 | 490 | 97 | 50 | 466 | 92 | 50 | | 17 | 546 | 50 | 542 | 99 | 50 | 527 | 97 | 50 | 502 | 92 | 49 | | 21 | 569 | 50 | 575 | 101 | 50 | 562 | 99 | 50 | 528 | 93 | 49 | | 25 | 599 | 50 | 602 | 101 | 50 | 583 | 97 | 50 | 552 | 92 | 49 | | 29 | 627 | 50 | 630 | 100 | 50 | 612 | 98 | 50 | 576 | 92 | 49 | | 33 | 658 | 50 | 657 | 100 | 50 | 638 | 97 | 50 | 599 | 91 | 49 | | 37 | 672 | 50 | 673 | 100 | 50 | 651 | 97 | 50 | 610 | 91 | 49 | | 41 | 691 | 50 | 686 | 99 | 50 | 664 | 96 | 50 | 627 | 91 | 49 | | 45 | 715 | 49 | 711 | 99 | 50 | 684 | 96 | 50 | 642 | 90 | 49 | | 49 | 736 | 49 | 719 | 98 | 49 | 695 | 94 | 50 | 654 | 89 | 49 | | 53 | 755 | 49 | 735 | 97 | 48 | 705 | 93 | 49 | 662 | 88 | 49 | | 57 | 774 | 49 | 748 | 97 | 47 | 714 | 92 | 49 | 668 | 86 | 49 | | 61 | 789 | 49 | 753
757 | 95 | 47 | 718 | 91 | 48 | 669 | 85 | 49 | | 65 | 795 | 49 | 757
730 | 95 | 46 | 720 | 91 | 47 | 661 | 83 | 48 | | 69 | 800 | 48 | 739 | 92 | 45 | 699 | 87 | 46 | 658 | 82 | 42 | | 73 | 803 | 48 | 736 | 92 | 43 | 706 | 88 | 39 | 657 | 82 | 37 | | 77
81 | 797
799 | 48 | 725
698 | 91
87 | 42
38 | 717
698 | 90
88 | 36
34 | 644
624 | 81
78 | 34
27 | | 85 | | 45
41 | 707 | 87
91 | | 699 | 89 | 32 | 630 | 78
81 | 21 | | 89 | 782
775 | 37 | 692 | 89 | 35
31 | 676 | 89
87 | 31 | 614 | 79 | 18 | | 92 | 773
777 | 35 | 667 | 86 | 29 | 665 | 86 | 26 | 613 | 79
79 | 15 | | 92 | 777
779 | 32 | 678 | 87 | 27 | 657 | 84 | 25 | 612 | 79
79 | 15 | | 95
95 | 753 | 31 | 671 | 89 | 24 | 630 | 84 | 24
| 581 | 77 | 14 | | 93
97 | 757 | 30 | 675 | 89 | 22 | 618 | 82 | 22 | 590 | 78 | 13 | | 99 | 715 | 27 | 666 | 93 | 20 | 618 | 86 | 17 | 609 | 85 | 8 | | 101 | 725 | 25 | 675 | 93 | 17 | 578 | 80 | 16 | 604 | 83 | 8 | | 103 | 710 | 23 | 646 | 91 | 15 | 591 | 83 | 12 | 598 | 84 | 7 | | | | | | | | | | | | | | | Mean for w | | | 206 | 00 | | 255 | 07 | | 264 | 0.4 | | | 1-13 | 388 | | 386 | 99 | | 377 | 97 | | 364 | 94 | | | 14-52 | 646 | | 644 | 100 | | 624 | 97 | | 588 | 91 | | | 53-103 | 770 | | 704 | 91 | | 671 | 87 | | 629 | 82 | | **Pathology and Statistical Analyses** This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplasms and nonneoplastic lesions of the testis, kidney, and liver. Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, and statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one animal group are presented in Appendix C for male Wistar rats. Testis: The incidence of testicular adenoma in rats exposed to 400 ppm was significantly increased compared to controls (Tables 14 and C3). Interstitial cell hyperplasia was observed in control and exposed groups and the incidences were slightly, but not significantly, increased in rats exposed to 200 or 400 ppm (Tables 14 and C4). The appearance of interstitial cells was similar in both hyperplasia and adenoma and the diagnoses were based on size. Some interstitial cell neoplasms nearly replaced normal tissue (Plate 3). Hyperplasia was defined as a proliferation no larger than the diameter of a seminiferous tubule, and adenoma was larger. Table 14 Incidences of Neoplasms and Nonneoplastic Lesions of the Testis in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|----------------------------|---------------|---------------|---------------| | Number Examined Microscopically
Interstitial Cell Hyperplasia ^a | 50
3 (2.3) ^b | 49
4 (2.0) | 49
7 (2.3) | 50
7 (2.9) | | | | | | | | Adenoma | 5/50 (10 <i>d</i>) | (140 (120) | 4/40 (0.0) | 10/50 (04%) | | Overall rate ^c | 5/50 (10%) | 6/49 (12%) | 4/49 (8%) | 12/50 (24%) | | Adjusted rated | 12.3% | 16.9% | 11.9% | 36.6% | | Terminal rate ^e | 3/22 (14%) | 3/14 (21%) | 1/11 (9%) | 3/7 (43%) | | First incidence (days) | 592 | 486 | 660 | 464 | | Poly-3 test ^f | P = 0.008 | P = 0.404 | P = 0.618N | P = 0.012 | Number examined microscopically *Kidney:* Incidences of renal tubule neoplasms in exposed rats were not significantly different from control incidences in the standard evaluation (Tables 15, C1, and C3). Renal tubule adenomas were observed in control and exposed rats and were similar to those observed in F344/N rats. Cells in renal tubule b Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked Number of animals with neoplasm per number of animals with testis examined microscopically d Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality e Observed incidence at terminal kill Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A lower incidence in an exposure group is indicated by N. adenomas were disorganized and had lost their orientation to the tubule basement membrane. One renal tubule carcinoma approximately 5 cm in diameter was observed in the 400 ppm group. This neoplasm had multiple large, solid, irregular proliferations of densely packed, enlarged epithelial cells interspersed with areas of necrosis and inflammatory cells. In an extended evaluation, kidneys were step sectioned because of the carcinoma in the 400 ppm group, because of increased incidences of renal tubule hyperplasia in 100 ppm males relative to controls (Tables 15 and C4), and for comparison with F344/N male rats. Step sections were prepared from residual wet tissue so that each kidney yielded four additional sections spaced 1 mm apart. Step sectioning did not detect any significant treatment-related increase in incidences of renal tubule hyperplasia, adenoma, or carcinoma. Hyperplasia consisted of multiple layers rather than the normal single layer of cells, frequently accompanied by an increased diameter of the tubule. Severity of hyperplasia depended on the number of layers and the complexity of their patterns. Some had papillary projections, but all maintained their orientation to the basement membrane. Nephropathy was observed in all control and exposed rats (Tables 15 and C4). Nephropathy is a common spontaneous kidney disease that increases in severity with increasing age. Lesions associated with nephropathy include renal cysts, mineralization of basement membranes, and inflammation of the renal parenchyma (Tables 15 and C4). Nephropathy was moderately severe in control and exposed groups of Wistar males and was considered to be the cause of their high mortality in this study. Probably because the kidney lesions were so severe in the controls, no treatment-related increase in the severity of nephropathy could be detected, but incidences of extrarenal lesions of kidney disease such as mineralization in the glandular stomach, parathyroid gland hyperplasia, and fibrous osteodystrophy were generally increased in rats exposed to 100 or 200 ppm compared to controls. Kidney disease in 400 ppm rats may have been less severe because of their lower body weights. TABLE 15 Incidences of Selected Neoplasms and Nonneoplastic Lesions in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--------|---------|---------|----------| | o ppin | 100 ppm | 200 ppm | 400 ppin | | Kidney ^a Single Sections (Standard Evaluation) | 50 | | 50 | | 50 | | 50 | | |---|----|-------------|------|-------|------|-------|----|-------| | Single Sections (Standard Evaluation)
Renal Tubule, Hyperplasia ^b | 6 | $(1.7)^{c}$ | 17** | (2.1) | 8 | (2.4) | 5 | (2.6) | | Nephropathy | 50 | (3.3) | 50 | (3.6) | 50 | (3.4) | 50 | (3.2) | | Cyst | 21 | (2.0) | 31 | (2.5) | 19 | (2.5) | 16 | (2.1) | | Mineralization | 8 | (1.5) | 17 | (2.1) | 8 | (1.9) | 5 | (1.4) | | Inflammation, Acute | 0 | (12) | 2 | (3.0) | 0 | | 1 | (1.0) | | Renal Tubule, Adenoma (includes multiple) | 2 | | 5 | | 1 | | 2 | | | Renal Tubule, Carcinoma | 0 | | 0 | | 0 | | 1 | | | Renal Tubule, Adenoma or Carcinoma | 2 | | 5 | | 1 | | 3 | | | Step Sections (Extended Evaluation) | | | | | | | | | | Renal Tubule, Hyperplasia | 5 | (2.2) | 13 | (2.8) | 10 | (2.1) | 9 | (2.8) | | Renal Tubule, Oncocytoma | 0 | | 1 | | 0 | | 0 | | | Renal Tubule, Adenoma | 1 | | 2 | | 4 | | 2 | | | Renal Tubule, Carcinoma | 0 | | 0 | | 1 | | 0 | | | Renal Tubule, Adenoma or Carcinoma | 1 | | 2 | | 5 | | 2 | | | Single Sections and Step Sections | | | | | | | | | | (Combined) | | | | | | | | | | Renal Tubule, Hyperplasia | 10 | (1.8) | 22 | (2.5) | 14 | (2.4) | 13 | (2.8) | | Renal Tubule, Adenoma | 3 | | 6 | | 5 | | 4 | | | Renal Tubule, Carcinoma | 0 | | 0 | | 1 | | 1 | | | Renal Tubule, Adenoma or Carcinoma | 3 | | 6 | | 6 | | 4 | | | Stomach, Glandular | 49 | | 50 | | 48 | | 48 | | | Mineralization | 8 | (2.8) | 25** | (2.8) | 16* | (2.5) | 6 | (2.7) | | Parathyroid Gland | 48 | | 47 | | 48 | | 47 | | | Hyperplasia | 16 | (3.3) | 32** | (3.2) | 29** | (3.0) | 12 | (2.5) | | Bone | 50 | | 50 | | 50 | | 50 | | | Fibrous Osteodystrophy | 10 | (2.8) | 21* | (2.8) | 16 | (2.9) | 6 | (1.7) | | | | | | | | | | | ^{*} Significantly different (P $\!\leq\!0.05)$ from the control group by the Poly-3 test ** P $\!\leq\!0.01$ a Number examined microscopically b Number of animals with lesion c Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked Liver: Incidences of hepatocellular neoplasms were not increased in exposed Wistar rats compared to controls, but exposure-related nonneoplastic liver lesions were observed (Tables 16, C1, and C4). Incidences of centrilobular degeneration (cytoplasmic vacuolization) occurred in exposed groups and increased with increasing exposure concentration, and the severities of cytoplasmic vacuolization were slightly increased in the exposed groups. The incidence of centrilobular necrosis was increased in the 400 ppm group compared to controls. Incidences of fibrosis and periportal fibrosis were increased in the 200 and 400 ppm groups relative to controls. Incidences of pigmentation were increased in each exposed group compared to controls. The incidences of eosinophilic foci decreased compared to controls in rats exposed to 200 or 400 ppm. In general, these liver lesions were more severe in Wistar rats than in F344/N rats. The overall structure was maintained, but exposed rats tended to have centrilobular hepatocytes that were necrotic or had an altered appearance and had an increase in fibrous connective tissue in portal areas and extending downward from the liver capsule. Fibrosis was defined as fibrous connective tissue under the capsule of the liver and extending downward along the vasculature. Periportal fibrosis consisted of bands of fibrous connective tissue in portal areas. Pigmentation consisted of yellowish brown material in macrophages. TABLE 16 Incidences of Neoplasms and Nonneoplastic Lesions of the Liver in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 | ppm | 100 | ppm | 200 | ppm | 400 | ppm | |---------------------------------|----|-------------|------|-------|------|-------|------|-------| | Number Examined Microscopically | 50 | | 50 | | 50 | | 50 | |
| Basophilic Focus ^a | 0 | | 0 | | 0 | | 2 | | | Clear Cell Focus | 15 | | 7 | | 8 | | 8 | | | Eosinophilic Focus | 14 | | 12 | | 4* | | 2** | | | Vacuolization Cytoplasmic | 18 | $(1.6)^{b}$ | 18 | (1.9) | 12 | (1.8) | 15 | (1.9) | | Centrilobular, Degeneration | 1 | (1.0) | 15** | (1.8) | 25** | (2.1) | 33** | (2.4) | | Centrilobular, Necrosis | 5 | (2.8) | 6 | (2.0) | 4 | (2.8) | 23** | (2.5) | | Fibrosis | 1 | (2.0) | 5 | (1.4) | 26** | (1.6) | 31** | (1.8) | | Periportal Fibrosis | 0 | | 0 | | 5* | (2.0) | 7** | (2.4) | | Pigmentation | 6 | (1.5) | 15* | (1.3) | 34** | (1.8) | 42** | (1.8) | | Hepatocellular Adenoma | 2 | | 0 | | 1 | | 0 | | ^{*} Significantly different ($P \le 0.05$) from the control group by the Poly-3 test ^{**} P≤0.01 a Number of animals with lesion b Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked ## **MICE** ## 13-WEEK STUDY One female mouse exposed to 250 ppm died during week 2 (Table 17). Final mean body weights and body weight gains of female mice exposed to 1,000 ppm were significantly less than those of controls; final mean body weights and body weight gains of all other exposed groups were similar to controls. Water consumption by exposed female mice was lower than that by controls at week 1 but generally slightly higher than controls at week 13; water consumption by exposed and control male mice was similar. Estimated water consumption declined over the course of the study. Drinking water concentrations of 50, 100, 250, 500, or 1,000 ppm pyridine resulted in average daily doses of approximately 10, 20, 50, 85, or 160 mg/kg for males and 10, 20, 60, 100, or 190 mg/kg for females. There were no treatment-related clinical findings. TABLE 17 Survival, Body Weights, and Water Consumption of Mice in the 13-Week Drinking Water Study of Pyridine | Survival ^a - | | ean Body Weight ^b (| g) | Relative to | Water
Consumption ^c | | | |-------------------------|---|--|--|--|--|--|--| | | Initial | Final | Change | Controls (%) | Week 1 | | | | | | | | | | | | | 10/10 | 23.7 ± 0.4 | 39.4 ± 0.9 | 15.7 ± 0.8 | | 395 | 147 | | | 10/10 | 23.5 ± 0.3 | 38.4 ± 1.1 | 14.9 ± 1.0 | 97 | 349 | 162 | | | 10/10 | 23.8 ± 0.3 | 39.3 ± 0.9 | 15.4 ± 0.8 | 100 | 318 | 186 | | | 10/10 | 23.8 ± 0.3 | 40.2 ± 1.1 | 16.3 ± 1.0 | 102 | 364 | 167 | | | 10/10 | 23.4 ± 0.3 | 39.1 ± 0.8 | 15.8 ± 0.6 | 99 | 336 | 146 | | | 10/10 | 23.7 ± 0.3 | 37.2 ± 0.7 | 13.5 ± 0.6 | 94 | 377 | 121 | | | | | | | | | | | | 10/10 | 19.0 ± 0.3 | 33.6 ± 1.1 | 14.6 ± 1.0 | | 441 | 149 | | | 10/10 | 18.7 ± 0.3 | 37.4 ± 1.1 | 18.8 ± 1.1 | 111 | 278 | 147 | | | 10/10 | 18.9 ± 0.1 | 34.4 ± 0.9 | 15.5 ± 0.8 | 102 | 271 | 192 | | | 9/10 ^d | 18.7 ± 0.3 | 34.2 ± 1.1 | 15.4 ± 1.0 | 102 | 375 | 214 | | | 10/10 | 19.4 ± 0.3 | 33.2 ± 0.9 | 13.8 ± 0.8 | 99 | 292 | 172 | | | 10/10 | 18.7 ± 0.2 | $29.7 \pm 0.9**$ | $11.0 \pm 0.8**$ | 88 | 201 | 195 | | | | 10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
10/10
9/10 ^d
10/10 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | ^{**} Significantly different ($P \le 0.01$) from the control group by Williams or Dunnett s test Sperm motility in exposed male mice was decreased relative to controls (Table I3). There were no significant differences in estrous cycle lengths between control and exposed females (Table I4). Absolute and relative liver weights were significantly increased relative to controls in males exposed to 100 ppm or greater and in 250 and 500 ppm females (Table H3). No histopathologic lesions were observed in the liver despite increased liver weights in both male and female mice compared to controls, nor were any chemical-related lesions observed in any other tissue. Number of animals surviving at 13 weeks/number initially in group Weights and weight changes are given as mean ± standard error. Subsequent calculations are based on animals surviving to the end of the studies. Water consumption is expressed as grams of water consumed per kg body weight per day. d Week of death: 2 Exposure Concentration Selection Rationale: The high exposure concentration for the 2-year male mouse study was set at 1,000 ppm based on the lack of target organ lesions in the 13-week study. The high exposure concentration for the 2-year female mouse study was set at 500 ppm based on decreased mean body weight gains relative to controls and decreased water consumption. # 2-YEAR STUDY *Survival*Estimates of 2-year survival probabilities for male and female mice are shown in Table 18 and in the Kaplan-Meier survival curves (Figure 6). Survival of exposed males and females was similar to that of the controls. TABLE 18 Survival of Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 250 ppm | 500 ppm | 1,000 ppm | |--|------------|----------|---------|------------| | Male | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Accidental deaths ^a | 2 | 1 | 1 | 3 | | Other ^a | 0 | 0 | 1 | 0 | | Moribund | 2 | 3 | 3 | 1 | | Natural deaths | 11 | 18 | 11 | 11 | | Animals surviving to study termination | 35 | 28 | 34 | 35 | | Percent probability of survival at end of study ^b | 73 | 57 | 71 | 75 | | Mean survival (days) ^c | 685 | 660 | 670 | 656 | | Survival analysis ^d | P = 0.507N | P=0.138 | P=0.928 | P = 1.000N | | | 0 ppm | 125 ppm | 250 ppm | 500 ppm | | Female | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Accidental deaths ^a | 3 | 6 | 4 | 5 | | Moribund | 3 | 2 | 3 | 5 | | Natural deaths | 12 | 12 | 21 | 11 | | Animals surviving to study termination | 32 | 30 | 22 | 29 | | Percent probability of survival at end of study | 68 | 68 | 48 | 65 | | Mean survival (days) | 671 | 640 | 638 | 624 | | Survival analysis | P=0.487 | P=1.000N | P=0.090 | P=0.755 | a Censored from survival analyses b Kaplan-Meier determinations Mean of all deaths (uncensored, censored, and terminal sacrifice) d The result of the life table trend test (Tarone, 1975) is in the control column, and the results of the life table pairwise comparisons (Cox, 1972) with the controls are in the exposed group columns. A negative trend or lower mortality in an exposure group is indicated by N. FIGURE 6 Kaplan-Meier Survival Curves for Male and Female Mice Exposed to Pyridine in Drinking Water for 2 Years Body Weights, Water and Compound Consumption, and Clinical Findings Mean body weights of exposed males were similar to those of the controls; mean body weights of 500 and 1,000 ppm females were less than controls from weeks 89 and 73, respectively (Tables 19 and 20; Figure 7). Water consumption by males exposed to 250 or 500 ppm was generally greater than that by controls during the last year of the study; male mice exposed to 1,000 ppm consumed less water than controls throughout the study (Table L4). Water consumption by exposed females was generally lower than that by controls during the first year of the study, but greater than controls during the second year (Table L5). Drinking water concentrations of 250, 500, or 1,000 ppm pyridine resulted in average daily doses of approximately 35, 65, or 110 mg/kg for male mice and concentrations of 125, 250, or 500 ppm pyridine resulted in average daily doses of approximately 15, 35, or 70 mg/kg for female mice. There were no treatment-related clinical findings. TABLE 19 Mean Body Weights and Survival of Male Mice in the 2-Year Drinking Water Study of Pyridine | Weeks | 0 | ppm | | 250 ppm | | | 500 ppm | | | 1,000 ppm | 1 | |---------------|--------------|-----------|--------------|------------|-----------|--------------|------------|-----------|--------------|------------------|-----------| | on | Av. Wt. | No. of | Av. Wt. | Wt. (% of | No. of | Av. Wt. | Wt. (% of | No. of | Av. Wt. | Wt. (% of | No. of | | Study | (g) | Survivors | (g) | controls) | Survivors | (g) | controls) | Survivors | (g) | controls) | Survivors | | 1 | 26.1 | 50 | 25.9 | 99 | 50 | 25.8 | 99 | 50 | 25.8 | 99 | 50 | | 2 | 27.6 | 50 | 27.4 | 99 | 49 | 27.3 | 99 | 49 | 26.6 | 96 | 49 | | 3 | 29.2 | 50 | 28.7 | 98 | 49 | 29.0 | 99 | 49 | 28.4 | 97 | 48 | | 4 | 30.9 | 50 | 30.5 | 99 | 49 | 30.7 | 99 | 49 | 30.1 | 97 | 48 | | 5 | 32.8 | 50 | 32.3 | 99 | 49 | 32.2 | 98 | 49 | 30.6 | 93 | 48 | | 6 | 33.9 | 50 | 34.2 | 101 | 49 | 33.5 | 99 | 49 | 32.0 | 94 | 48 | | 7 | 35.4 | 50 | 35.4 | 100 | 49 | 35.3 | 100 | 49 | 33.9 | 96 | 48 | | 8 | 37.6 | 50 | 37.1 | 99 | 49 | 36.7 | 98 | 49 | 35.6 | 95 | 48 | | 9 | 38.7 | 50 | 37.9 | 98 | 49 | 37.7 | 97 | 49 | 36.5 | 94 | 48 | | 10 | 39.6 | 50 | 40.1 | 101 | 49 | 39.8 | 101 | 49 | 37.7 | 95 | 47 | | 11 | 40.6 | 50 | 41.0 | 101 | 49 | 41.0 | 101 | 49 | 38.8 | 96 | 47 | | 12 | 41.8 | 50 | 42.3 | 101 | 49 | 41.7 | 100 | 49 | 39.8 | 95 | 47 | | 13 | 42.4 | 50 | 42.9 | 101 | 49 | 42.7 | 101 | 49 | 40.6 | 96 | 47 | | 17 | 47.0 | 50 | 46.2 | 98 | 49 | 45.9 | 98 | 49 | 43.5 | 93 | 47 | | 21 | 48.1 | 49 | 48.3 | 100 | 49 | 47.4 | 99 | 49 | 45.2 | 94 | 47 | | 25 | 50.0 | 49 | 49.6 | 99 | 49 | 49.9 | 100 | 49 | 47.5 | 95 | 47 | | 29 | 49.6 | 49 | 50.8 | 102 | 49 | 51.3 | 103 | 49 | 48.5 | 98 | 47 | | 33 | 51.6 | 49 | 51.7 | 100 | 49 | 51.1 | 99 | 49 | 50.0 | 97 | 47 | | 37 | 53.2 | 49 | 52.9 | 99 | 48 | 53.0 | 100 |
48 | 51.8 | 97 | 47 | | 41 | 54.5 | 49 | 53.8 | 99 | 48 | 53.7 | 99 | 48 | 52.5 | 96
2 7 | 47 | | 45 | 54.1 | 49 | 53.9 | 100 | 48 | 54.4 | 101 | 48 | 52.7 | 97 | 47 | | 49 | 55.3 | 49 | 54.6 | 99 | 48 | 55.4 | 100 | 48 | 53.4 | 97 | 47 | | 53 | 55.4 | 49 | 55.6 | 100 | 48 | 56.2 | 101 | 48 | 54.7 | 99 | 47 | | 57 | 55.2
55.2 | 49 | 55.4
56.1 | 100 | 48 | 56.0 | 101 | 48 | 54.0 | 98 | 47 | | 61
65 | 55.2
54.4 | 49
49 | 56.3 | 102
104 | 48
48 | 56.4
56.1 | 102
103 | 48
48 | 54.2
54.1 | 98
99 | 46
45 | | 69 | 55.1 | 49 | 56.5 | 104 | 48 | 55.5 | 103 | 48 | 54.1 | 99 | 45 | | 73 | 54.4 | 49
49 | 56.6 | 103 | 48
48 | 53.9 | 99 | 48
48 | 54.4
54.1 | 99
99 | 43
45 | | 73
77 | 52.8 | 48 | 55.1 | 104 | 46 | 52.2 | 99 | 45 | 52.4 | 99 | 45 | | 81 | 51.4 | 47 | 53.7 | 105 | 44 | 50.2 | 98 | 45 | 49.2 | 96 | 45 | | 85 | 49.2 | 46 | 51.5 | 105 | 42 | 47.8 | 97 | 44 | 47.3 | 96 | 45 | | 89 | 46.6 | 45 | 49.7 | 107 | 39 | 45.8 | 98 | 44 | 45.6 | 98 | 44 | | 93 | 45.5 | 41 | 46.4 | 102 | 37 | 44.7 | 98 | 39 | 43.7 | 96 | 42 | | 97 | 43.8 | 37 | 43.6 | 100 | 36 | 42.9 | 98 | 36 | 41.8 | 95 | 39 | | 99 | 44.5 | 37 | 43.5 | 98 | 32 | 42.7 | 96 | 36 | 41.2 | 93 | 37 | | 101 | 44.2 | 37 | 41.9 | 95 | 30 | 41.6 | 94 | 36 | 40.6 | 92 | 36 | | 103 | 44.0 | 35 | 41.2 | 94 | 28 | 40.0 | 91 | 35 | 39.8 | 91 | 35 | | Mean for | n vyoolea | | | | | | | | | | | | 1-13 | 35.1 | | 35.1 | 100 | | 34.9 | 99 | | 33.6 | 96 | | | 1-13
14-52 | 51.5 | | 51.3 | 100 | | 51.3 | 99
100 | | 33.6
49.5 | 96
96 | | | 53-103 | 50.1 | | 50.9 | 100 | | 31.3
49.5 | 99 | | 49.5 | 96
97 | | | 33-103 | 50.1 | | 30.9 | 102 | | 49.3 | 99 | | 40.3 | 91 | | Pyridine, NTP TR 470 85 TABLE 20 Mean Body Weights and Survival of Female Mice in the 2-Year Drinking Water Study of Pyridine | Weeks | 0 | ppm | | 125 ppm | | | 250 ppm | | | 500 ppm | | |-----------|--------------|-----------|--------------|-----------|-----------|--------------|-----------|-----------|--------------|-----------|-----------| | on | Av. Wt. | No. of | Av. Wt. | | No. of | Av. Wt. | Wt. (% of | No. of | Av. Wt. | Wt. (% of | No. of | | Study | (g) | Survivors | (g) | controls) | Survivors | (g) | controls) | Survivors | (g) | controls) | Survivors | | 1 | 20.8 | 50 | 20.7 | 100 | 50 | 20.6 | 99 | 50 | 20.5 | 99 | 50 | | 2 | 21.8 | 50 | 21.4 | 98 | 49 | 21.6 | 99 | 49 | 21.5 | 99 | 50 | | 3 | 23.2 | 50 | 22.8 | 98 | 49 | 22.8 | 98 | 49 | 22.6 | 97 | 47 | | 4 | 24.1 | 50 | 24.0 | 100 | 47 | 23.9 | 99 | 49 | 23.7 | 98 | 47 | | 5 | 25.5 | 50 | 25.3 | 99 | 47 | 25.5 | 100 | 49 | 25.6 | 100 | 47 | | 6 | 26.7 | 50 | 26.5 | 99 | 47 | 26.3 | 99 | 48 | 26.9 | 101 | 47 | | 7 | 28.2 | 50 | 28.4 | 101 | 47 | 28.8 | 102 | 47 | 28.5 | 101 | 47 | | 8 | 29.6 | 50 | 29.9 | 101 | 47 | 29.8 | 101 | 47 | 30.0 | 101 | 47 | | 9 | 31.1 | 50 | 30.1 | 97 | 47 | 30.8 | 99 | 47 | 30.4 | 98 | 47 | | 10 | 31.7 | 49 | 32.0 | 101 | 47 | 32.7 | 103 | 47 | 32.9 | 104 | 47 | | 11 | 33.3 | 49 | 33.2 | 100 | 47 | 33.7 | 101 | 47 | 33.7 | 101 | 47 | | 12 | 34.1 | 49 | 34.2 | 100 | 47 | 35.2 | 103 | 47 | 35.1 | 103 | 47 | | 13 | 35.8 | 49 | 35.5 | 99 | 47 | 36.5 | 102 | 47 | 36.3 | 101 | 47 | | 17 | 40.2 | 49 | 39.4 | 98 | 47 | 40.5 | 101 | 47 | 40.4 | 101 | 47 | | 21 | 41.1 | 49 | 40.0 | 97 | 47 | 41.6 | 101 | 47 | 41.4 | 101 | 47 | | 25 | 45.9 | 48 | 44.2 | 96 | 47 | 45.8 | 100 | 47 | 45.1 | 98 | 47 | | 29 | 45.7 | 48 | 44.9 | 98 | 46 | 47.2 | 103 | 46 | 46.5 | 102 | 46 | | 33 | 49.1 | 48 | 47.7 | 97 | 46 | 49.5 | 101 | 46 | 48.7 | 99 | 46 | | 37 | 51.0 | 48 | 49.4 | 97 | 46 | 51.0 | 100 | 46 | 50.1 | 98 | 46 | | 41 | 53.1 | 48 | 51.1 | 96 | 46 | 53.2 | 100 | 46 | 52.0 | 98 | 46 | | 45 | 54.0 | 48 | 52.5 | 97 | 46 | 54.1 | 100 | 46 | 52.2 | 97 | 45 | | 49 | 56.2 | 48 | 54.5 | 97 | 46 | 55.6 | 99 | 46 | 54.4 | 97 | 45 | | 53 | 56.9 | 48 | 55.6 | 98 | 46 | 57.1 | 100 | 46 | 55.5 | 98 | 45 | | 57 | 58.2 | 47 | 56.4 | 97 | 45 | 58.0 | 100 | 46 | 56.8 | 98 | 44 | | 61 | 59.5 | 47 | 57.9 | 97 | 44 | 59.3 | 100 | 45 | 58.1 | 98 | 44 | | 65 | 59.9 | 47 | 58.5 | 98 | 44 | 61.0 | 102 | 45 | 58.6 | 98 | 43 | | 69 | 61.6 | 46 | 59.3 | 96 | 44 | 62.1 | 101 | 45 | 58.2 | 95 | 43 | | 73 | 62.8 | 46 | 60.2 | 96 | 44 | 62.2 | 99 | 45 | 58.0 | 92 | 42 | | 77 | 63.3 | 46 | 61.0 | 96 | 44 | 61.9 | 98 | 44 | 55.4 | 88 | 40 | | 81 | 62.2 | 45 | 60.3 | 97 | 43 | 60.4 | 97 | 43 | 51.6 | 83 | 40 | | 85 | 61.1 | 43 | 58.6 | 96 | 42 | 58.8 | 96 | 41 | 48.7 | 80 | 39 | | 89 | 60.0 | 43 | 58.0 | 97 | 39 | 54.4 | 91 | 41 | 45.8 | 76 | 37 | | 93 | 57.4 | 40 | 56.3 | 98 | 38 | 50.9 | 89 | 37 | 43.7 | 76
72 | 36 | | 97 | 55.7 | 38 | 52.7 | 95 | 37 | 47.1 | 85 | 35 | 40.2 | 72 | 36 | | 99
101 | 56.1
55.5 | 37
35 | 53.3
52.5 | 95
95 | 34
33 | 46.1
42.8 | 82
77 | 33
27 | 40.1
39.9 | 72
72 | 33
30 | | | | | | | 33
31 | | 73 | | | 72 | 29 | | 103 | 56.1 | 33 | 50.7 | 90 | 31 | 41.2 | 13 | 25 | 39.1 | 70 | 29 | | Mean for | | | | | | | | | | | | | 1-13 | 28.1 | | 28.0 | 100 | | 28.3 | 101 | | 28.3 | 101 | | | 14-52 | 48.5 | | 47.1 | 97 | | 48.7 | 100 | | 47.9 | 99 | | | 53-103 | 59.1 | | 56.8 | 96 | | 54.9 | 93 | | 50.0 | 85 | | FIGURE 7 Growth Curves for Male and Female Mice Exposed to Pyridine in Drinking Water for 2 Years Pathology and Statistical Analyses This section describes the statistically significant or biologically noteworthy changes in the incidences of neoplasms and/or nonneoplastic lesions of the liver and other organs. Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one animal group, and historical incidences for the neoplasms mentioned in this section are presented in Appendix D for male mice and Appendix E for female mice. Liver: Hepatocellular neoplasms in male and female mice were clearly related to pyridine exposure. Incidences of hepatocellular adenoma were significantly increased relative to controls in 250 ppm males and females and 1,000 ppm males (Tables 21, D3, and E3). Incidences of hepatocellular carcinoma and hepatoblastoma were significantly increased relative to controls in all exposed groups of males and females except for the incidence of hepatoblastoma in 125 ppm females. Incidences of hepatocellular adenoma, hepatocellular carcinoma, or hepatoblastoma (combined) were significantly increased in all exposed male groups and in 250 and 500 ppm females relative to controls. The incidences of hepatocellular neoplasms in exposed males and females generally exceeded the historical control ranges (Tables 21, D4, and E4). Incidences of hepatoblastoma in control and exposed males and females exceeded the historical control range. TABLE 21 Incidences of Neoplasms and Nonneoplastic Lesions of the Liver in Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 250 ppm | 500 ppm | 1,000 ppm | |---|---------------------------|---------------|---------------|---------------| | Male | | | | | | Number Examined Microscopically | 50 | 50 | 49 | 50 | | Basophilic Focus ^a | 3 | 1 | 0 | 0 | | Eosinophilic Focus | 19 | 22 | 18 | 15 | | Mixed Cell Focus | 4 | 2 | 1 | 1 | | Hepatocellular Adenoma, Multiple | | | | | | Overall rate ^b | 16/50 (32%) | 29/50 (58%)* | 29/49 (59%)* | 28/50 (56%)* | | Hepatocellular Adenoma (includes multiple) | | | | | | Overall rate | 29/50 (58%) | 40/50 (80%) | 34/49 (69%) | 39/50 (78%) | | Adjusted rate ^d | 63.2% | 88.0% | 75.7% | 84.9% | | Terminal rate ^e | 24/35 (69%) | 27/28 (96%) | 27/34 (79%) | 31/35 (89%) | | First incidence (days) | 520 | 522 | 513 | 406 | | Poly-3 test ^f | P = 0.031 | P = 0.003 | P = 0.134 | P = 0.011 | | Hepatocellular Carcinoma, Multiple | | | | | | Overall rate | 3/50 (6%) | 19/50 (38%)** | 26/49 (53%)** | 18/50 (36%)** | | Hepatocellular Carcinoma (includes multiple | g | | | | | Overall rate | 15/50 (30%) | 35/50 (70%) | 41/49 (84%) | 40/50 (80%) | | Adjusted rate | 32.3% | 78.7% | 89.9% | 85.1% | | Terminal rate | 9/35 (26%) | 23/28 (82%) | 32/34 (94%) | 28/35 (80%) | | First incidence (days) | 574 | 522 | 513 | 406 | | Poly-3 test | P<0.001 | P<0.001 | P<0.001 | P < 0.001 | | Hepatoblastoma, Multiple | | | | | | Overall rate | 1/50 (2%) | 4/50 (8%) | 6/49 (12%)* | 2/50 (4%) | | Hepatoblastoma (includes multiple) ^h | | | | | | Overall rate | 2/50 (4%) | 18/50 (36%) | 22/49 (45%) | 15/50 (30%) | | Adjusted rate | 4.5% | 41.2% | 49.8% | 34.4% | | Terminal rate | 2/35 (6%) | 11/28 (39%) | 17/34 (50%) | 13/35 (37%) | | First incidence (days) | 722 (T) | 549 | 514 | 624 | | Poly-3 test | P = 0.005 | P<0.001 | P<0.001 | P<0.001 | | Hepatocellular Adenoma, Hepatocellular Car | cinoma, or Hepatoblastoma | i | | | | Overall rate | 38/50 (76%) | 47/50 (94%) | 46/49 (94%) | 47/50 (94%) | | Adjusted rate | 80.1% | 98.9% | 98.5% | 100.0% | | Terminal rate | 29/35 (83%) | 28/28 (100%) | 34/34 (100%) | 35/35 (100%) | | First incidence (days) | 520 | 522 | 513 | 406 | | Poly-3 test | P < 0.001 | P = 0.002 | P = 0.003 | P<0.001 | TABLE 21 Incidences of Neoplasms and Nonneoplastic Lesions of the Liver in Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 125 ppm | 250 ppm | 500 ppm | |---|---------------------------|--------------|---------------|---------------| | Female | | | | | | Number Examined Microscopically | 49 | 50 | 50 | 50 | | Basophilic Focus | 1 | 0 | 0 | 0 | | Eosinophilic Focus | 17 | 12 | 14 | 9 | | Mixed Cell Focus | 5 | 4 | 3 | 0 | | Hepatocellullar Adenoma, Multiple | | | | | | Overall rate | 24/49 (49%) | 34/50 (68%)* | 37/50 (74%)** | 30/50 (60%) | | Hepatocellular Adenoma (includes multiple) ^j | | | | | | Overall rate | 37/49 (76%) | 39/50 (78%) | 43/50 (86%) | 34/50 (68%) | | Adjusted rate | 82.5% | 87.9% | 97.3% | 79.1% | | Terminal rate | 27/32 (84%) | 27/30 (90%) | 22/22 (100%) |
23/29 (79%) | | First incidence (days) | 554 | 419 | 509 | 430 | | Poly-3 test | P = 0.372N | P = 0.336 | P = 0.015 | P = 0.442N | | Hepatocellular Carcinoma, Multiple | | | | | | Overall rate | 3/49 (6%) | 11/50 (22%)* | 14/50 (28%)** | 30/50 (60%)** | | Hepatocellular Carcinoma (includes multiple | k | | | | | Overall rate | 13/49 (27%) | 23/50 (46%) | 33/50 (66%) | 41/50 (82%) | | Adjusted rate | 29.8% | 55.0% | 78.1% | 97.1% | | Terminal rate | 8/32 (25%) | 18/30 (60%) | 20/22 (91%) | 29/29 (100%) | | First incidence (days) | 476 | 573 | 556 | 479 | | Poly-3 test | P<0.001 | P = 0.014 | P<0.001 | P < 0.001 | | Hepatoblastoma, Multiple | | | | | | Overall rate | 0/49 (0%) | 0/50 (0%) | 3/50 (6%) | 4/50 (8%) | | Hepatoblastoma (includes multiple) ¹ | | | | | | Overall rate | 1/49 (2%) | 2/50 (4%) | 9/50 (18%) | 16/50 (32%) | | Adjusted rate | 2.4% | 4.9% | 21.6% | 39.6% | | Terminal rate | 1/32 (3%) | 1/30 (3%) | 3/22 (14%) | 12/29 (41%) | | First incidence (days) | 729 (T) | 599 | 564 | 510 | | Poly-3 test | P<0.001 | P=0.493 | P=0.007 | P<0.001 | | Hepatocellular Adenoma, Hepatocellular Car | cinoma, or Hepatoblastoma | m | | | | Overall rate | 41/49 (84%) | 42/50 (84%) | 45/50 (90%) | 44/50 (88%) | | Adjusted rate | 89.9% | 94.6% | 99.6% | 99.5% | | Terminal rate | 29/32 (91%) | 29/30 (97%) | 22/22 (100%) | 29/29 (100%) | | First incidence (days) | 476 | 419 | 509 | 430 | | Poly-3 test | P=0.009 | P=0.323 | P=0.042 | P=0.045 | ^{*} Significantly different (P≤0.05) from the control group by the Poly-3 test Many mice had multiple hepatocellular neoplasms. Hepatocellular neoplasms in exposed mice were similar to those that occur spontaneously. A hepatocellular adenoma was typically a discrete proliferation of Number of animals with lesion Number of animals with neoplasm per number of animals with liver examined microscopically Historical incidence for 2-year drinking water studies with untreated control groups (mean \pm standard deviation): 179/289 $(61.9\% \pm 9.1\%)$; range, 47%-70% Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality Observed incidence at terminal kill Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A lower incidence in an exposure group is indicated by N. Historical incidence: $80/289 (27.7\% \pm 11.7\%)$; range, 10%-42% Historical incidence: $9/289 (3.1\% \pm 5.0\%)$; range, 0%-12% Historical incidence: $212/289 (73.4\% \pm 11.7\%)$; range, 53%-81% Historical incidence: $150/289 (51.9\% \pm 20.8\%)$; range, 26%-80% Historical incidence: $55/289 (19.0\% \pm 13.7\%)$; range, 8%-42% Historical incidence: 0/289 Historical incidence: $173/289 (59.9\% \pm 21.3\%)$; range, 32%-82% hepatocytes that compressed adjacent tissue and had uneven growth patterns resulting in a slightly abnormal architecture (Plate 4). Hepatocellular carcinomas had a distinctly altered structure, cells were often pleomorphic, and the boundary with the adjacent parenchyma was often unclear (Plate 5). Hepatoblastomas had very poorly differentiated (frequently basophilic, small, and spindloid) cells that had a markedly altered architecture of solid sheets, rosettes, ribbons, or trabeculae (Plate 6). Hepatoblastomas nearly always were found in the midst of a hepatocellular carcinoma, but unless there was a clearly separate hepatocellular carcinoma, only the diagnosis of hepatoblastoma was made. Some of the hepatocellular carcinomas and many of the hepatoblastomas had areas of necrosis, and metastatic lesions were noted in the lungs or, less frequently, in the lymph nodes or adjacent abdomenal organs (Tables D5 and E5). There were no treatment-related increased incidences of foci of cellular alteration relative to controls (Tables 21, D5, and E5). Foci of cellular alteration were contiguous hepatocytes of less than a lobule up to approximately four lobules that varied tinctorially from the rest of the liver but which tended to merge imperceptably with the adjacent parenchyma. Liver neoplasms from control mice, 500 ppm females, and 1,000 ppm males were stained for p53 protein and compared to a control carcinoma from the mammary gland of a p53 positive transgenic mouse. All of the liver sections tested were negative for p53 protein. Other Organs: Incidences of hematopoietic cell proliferation in the spleen were increased in exposed males (0 ppm, 13/49; 250 ppm, 30/50; 500 ppm, 26/47; 1,000 ppm, 23/49; Table D5) and females (0 ppm, 29/49; 125 ppm, 27/50; 250 ppm, 32/48; 500 ppm, 39/49; Table E5) relative to controls and may have been compensation for destruction of blood cells in the altered vasculature of the hepatic neoplasms and their metastases. Increased incidences of follicular cell hyperplasia in the thyroid gland of exposed males and females were not accompanied by a significant increased incidence of thyroid gland neoplasms relative to controls (males: 8/49, 14/50, 20/49, 12/50; females: 14/50, 21/50, 22/50, 23/50; Tables D1, D5, E1, and E5). An apparent decrease in the incidences of hyaline degeneration in the respiratory epithelium of exposed males and females (males: 20/50, 10/49, 15/49, 15/50; females: 26/50, 16/50, 12/47, 13/50) and increases in incidences of hyaline degeneration in the olfactory epithelium of exposed females (19/50, 27/50, 35/47, 36/50) compared to controls were of unknown biological significance. Hyaline degeneration in the nasal epithelium is an accumulation of eosinophilic material in the cytoplasm and a common alteration in aging mice. ### **GENETIC TOXICOLOGY** Pyridine (100-10,000 μ g/plate) was not mutagenic in *Salmonella typhimurium* strain TA98, TA100, TA1535, or TA1537, with or without S9 metabolic activation enzymes (Haworth *et al.*, 1983; Table F1). Further, no significant increase in mutant frequencies was observed in L5178Y mouse lymphoma cells, tested with and without S9 metabolic activation (McGregor *et al.*, 1988; Table F2). In cytogenetic tests with cultured Chinese hamster ovary cells, pyridine did not induce sister chromatid exchanges (Table F3) or chromosomal aberrations (Table F4), with or without S9. At the highest viable dose (1,673 μ g/mL) tested for sister chromatid exchange induction in the absence of S9, pyridine induced marked cell cycle delay, and an extended culture time (31 hours) was used to allow sufficient cells to accumulate for analysis. Pyridine was tested on three separate occasions in two different laboratories for induction of sex-linked recessive lethal mutations in adult male *Drosophila melanogaster* (Valencia *et al.*, 1985; Mason *et al.*, 1992; Table F5), and mixed results were obtained. In the first experiment (Valencia *et al.*, 1985), administration of pyridine by injection (7,000 ppm in aqueous 0.7% saline solution) gave negative (P=0.225) results, but feeding (700 ppm pyridine in aqueous 5% sucrose) produced an increase in recessive lethal mutations that was considered to be equivocal (P=0.043). A second experiment performed in the same laboratory using both injection (500 ppm) and feeding (729 ppm) yielded negative results. In the third experiment (Mason *et al.*, 1992) performed in a second laboratory, results of a feeding (500 ppm) experiment were negative (P=0.998), but administration of pyridine by injection (4,300 ppm) induced a significant increase in the frequency of sex-linked recessive lethal mutations (P=0.008). This positive result in the sex-linked recessive lethal test led to the performance of a test for induction of reciprocal translocations in germ cells of treated male *Drosophila melanogaster* (Mason *et al.*, 1992; Table F6); results of this test were negative. *In vivo* assays for chromosomal effects were conducted with male mice. No induction of chromosomal aberrations (Table F7) was noted in bone marrow cells at either of two sampling times (400-600 mg/kg pyridine; single injection), and no increase in the frequency of micronucleated polychromatic erythrocytes (Table F8) was noted in bone marrow after intraperitoneal injection of pyridine (up to 500 mg/kg administered three times at 24-hour intervals). In summary, with the exception of the single positive result obtained in a *Drosophila melanogaster* sexlinked recessive lethal assay, no indication of mutagenic activity was seen with pyridine in a variety of *in vitro* and *in vivo* assays for gene mutation and chromosomal damage. #### PLATE 1 Kidney from a male F344 rat given exposed to 400 ppm pyridine in drinking water for 2 years. Hyperplasia of the renal tubular epithelium are indicated by asterisks. Note that multiple cross sections of the tubule are distended with epithelial cells. H&E; $66 \times$ #### PLATE 2 Kidney from a male F344 rat exposed to 400 ppm pyridine in drinking water for 2 years. Note the renal tubule adenoma consisting of a larger cluster of cells than a hyperplasia and resulting in a loss of tubular structure. H&E; $66 \times$ #### PLATE 3 Testis from a male Wistar rat exposed to 400 ppm pyridine in drinking water for 2 years. A large interstitial cell adenoma compresses degenerate seminiferous tubules (arrows). H&E; $13\times$ #### PLATE 4 Liver from a female B6C3F1 mouse exposed to 250 ppm pyridine in the drinking water for 2 years. A large hepatocellular adenoma compresses (arrow) the parenchyma. H&E; $8 \times$ Liver from a male B6C3F1 mouse exposed to 1,000 ppm pyridine for 2 years. A hepatocellular carcinoma with a trabecular pattern shows clusters of hepatocytes (arrows) rather than the normal lobular architecture. H&E; $33 \times$ PLATE 6 Liver from a male B6C3F1 mouse exposed to 500 ppm pyridine for 2 years. Note the small spindle-shaped cells of a hepatoblastoma rather than normal polyhedral hepatocytes. H&E; $66 \times$ #
DISCUSSION AND CONCLUSIONS Pyridine was nominated by the National Cancer Institute for toxicity and carcinogenicity studies because of its large annual production and the potential for human exposure. No previous 2-year carcinogenesis bioassays for pyridine have been reported in the literature. Pyridine is used in a variety of industrial processes including the production of pesticides and herbicides, and it is found as a natural component in some foods. Based on water consumption in the 13-week studies, the estimated dose of pyridine delivered to animals exposed to 50, 100, 250, 500, or 1,000 ppm pyridine was 5, 10, 25, 55, or 90 mg pyridine/kg body weight for male and female F344/N rats; 5, 10, 30, 60, or 100 mg/kg for male Wistar rats; 10, 20, 50, 85, or 160 mg/kg for male mice; and 10, 20, 60, 100, or 190 mg/kg for female mice. The target organs in the 13-week rat studies included the liver and kidney in male F344/N and Wistar rats and the liver in female F344/N rats. The liver lesions consisted of centrilobular degeneration, hypertrophy, chronic inflammation, and pigmentation at 500 and 1,000 ppm. The liver lesions in male Wistar rats were similar to those in F344/N rats. Kidney lesions in male rats included renal tubule regeneration and hyaline degeneration, protein casts, chronic inflammation, and/or mineralization. These lesions are components of chronic nephropathy, a spontaneous condition in rats that usually increases in severity with age. In the 13-week study, incidences of refractile eosinophilic protein material (hyaline degeneration) in the renal tubule epithelium were increased relative to controls in 1,000 ppm male F344/N rats but were of the same minimal severity. These protein droplets typically contain a low-molecular weight protein, $\alpha 2u$, that is synthesized in the liver under the control of androgens. The $\alpha 2u$ protein is normally filtered in the glomerulus; approximately half is reabsorbed by proximal tubule epithelium, and half is excreted in the urine (Neuhaus *et al.*, 1981). Normally only small amounts of the reabsorbed α 2u protein are visible as hyaline droplets because it is soon degraded by enzymes in the tubule epithelium. Some chemicals (inducers) combine with reabsorbed α 2u and make it more resistant to enzymatic degradation, resulting in protein material accumulation in the renal tubule epithelium (Lehman-McKeeman *et al.*, 1989). In this study, although there appeared to be increased incidences of hyaline protein droplets in the renal tubule epithelium of male F344/N and Wistar rats, the minimal severities of this finding in control and exposed males suggested that pyridine did not cause a retention of α 2u protein. Immunohistochemistry for α 2u demonstrated its presence in all male F344/N and Wistar rats, both control and exposed, in the 13-week studies. The liver and kidney have previously been reported as target organs in rats administered pyridine in feed at 0.34% to 1.0% for up to 4 months (Baxter, 1948). Liver toxicity was observed in Sprague-Dawley rats administered pyridine at 50 mg/kg per day by oral gavage for 13 weeks (Anderson, 1987). Thus, the target organs in the current studies were similar to what has previously been reported. Decreased water consumption and/or body weight effects were observed in 1,000 ppm mice relative to controls in the 13-week study, but no target organ lesions were observed. Based on water consumption in the 2-year studies, the estimated dose of pyridine delivered to rats exposed to 100, 200, or 400 ppm in drinking water was 7, 14, or 33 mg/kg for male and female F344/N rats and 8, 17, or 36 mg/kg for male Wistar rats. In the 2-year rat studies, there was a subtle increase in the severities of nephropathy in 200 and 400 ppm male F344/N rats. Nephropathy in 100 and 200 ppm male Wistar rats was more severe than in F344/N rats and was accompanied by incidences of extrarenal lesions associated with kidney disease. Incidences of dilated renal tubules, in particular, were more frequent in Wistar rats than in F344/N rats. A slight increase relative to controls in incidences of renal tubule hyperplasia in 400 ppm male F344/N rats and 100 ppm Wistar rats was also observed. The extrarenal lesions were not as significantly increased in 400 Pyridine, NTP TR 470 95 ppm Wistar rats as in the 100 and 200 ppm groups. The low survival rate and decreased mean body weights of 400 ppm Wistar rats may have decreased their chance for developing kidney disease. In 400 ppm male F344/N rats, there was a marginal increase in the incidence of renal tubule adenoma relative to controls. The NTP has found that examination of the entire kidney by step sectioning may enable a more precise evaluation of the potential chemical-related induction of renal proliferative lesions than observations made from single sections, particularly when the proliferative lesions are small and identified only by microscopic examination (Eustis *et al.*, 1994). For pyridine, this extended evaluation showed an exposure concentration-related increase in the incidence of renal tubule adenoma, which was significantly increased relative to controls in 400 ppm male F344/N rats; this was considered some evidence for a carcinogenic effect. The subtle increase in the severities of nephropathy observed in exposed male F344/N rats may have influenced the induction, development, or progression of renal neoplasms in several ways, including a reduction in target cell population and/or increased numbers of cells in the replicative cycle due to chronic inflammation and continued degeneration and necrosis, alterations in vascularity as a result of fibrosis, or other alterations in the microenvironment that might have contributed to the development of cancer at this site. Kidney changes consistent with a marginally increased severity of nephropathy were observed in both the 13-week and 2-year rat studies. With certain chemicals, binding to α 2u-globulin has been associated with male rat renal tubule neoplasms and exacerbated nephropathy (USEPA, 1991), but in these studies of pyridine, this phenomenon did not appear to account for the renal tubule neoplasms. Both control and exposed male rats stained positive for α 2u-globulin in the 13-week studies, as was indicated earlier, but retention of this material in the kidneys of exposed rats was inconsequential, and α 2u-globulin formation was not considered to be involved in the kidney neoplasm formation. There was no evidence for a carcinogenic effect in the kidney of Wistar rats. The same diagnostic criteria and terminology were used in evaluating lesions in the kidney of both strains of rats. The severity of spontaneous nephropathy in control Wistar rats was moderate, whereas that in control male F344/N rats was mild. The results of these studies suggest that the male Wistar rat is not as susceptible as the male F344/N rat to the formation of kidney neoplasms from pyridine exposure. The NTP has not compared the susceptibility of male F344/N rats and male Wistar rats to other kidney carcinogens. In the Wistar rat at 2 years, the incidence of interstitial cell adenomas of the testis was increased in the 400 ppm group relative to controls. There was no corresponding increase in interstitial cell hyperplasia. The NTP does not have a historical database for neoplasms in Wistar rats. In one study analyzing neoplasm rates in 1,370 control Wistar rats (from Charles River, Kingston, NY, or Hilltop Laboratory Animals, Scottdale, PA, and studied from 1980 to 1990) a control rate of 3.9% (range, 0%-22%) was reported for interstitial cell neoplasms of the testis in animals weighing between 556 and 717 g (Walsh and Poteracki, 1994). The rate for interstitial cell adenomas in the 400 ppm pyridine Wistar rat was only marginally outside this historical range, and incidences of this neoplasm were not increased relative to controls in the 100 or 200 ppm groups. This was considered to be equivocal evidence for a carcinogenic effect. The mean body weights of the control male Wistar rats in this study were somewhat higher during the second year of the study (reaching a high of 803 g at week 73). Increased body weights have been associated with higher neoplasm rates at some sites in rodents, and this difference, combined with other differences in animal husbandry condition and time of study, may be a factor in the incidences of interstitial cell neoplasms observed in the present study. The spontaneous rate for interstitial cell neoplasms of the testis in F344/N rats is high (about 90%) and often precludes the detection of a carcinogenic effect at this site. Mononuclear cell leukemia is a common neoplasm in F344/N rats. The Wistar rat was added to these studies because it has a low background incidence of mononuclear cell leukemia in comparison to the male F344/N rat, and there was concern from a previous study by Dieter *et al.* (1989) that pyridine may cause leukemia. However, in these studies, pyridine did not appear to affect the rate for leukemia in male rats. Incidences of mononuclear cell leukemia were increased in 200 and 400 ppm F344/N female rats relative to controls and were considered to be equivocal evidence of carcinogenic activity rather than some evidence of carcinogenic activity because the increase was at or just outside the historical control range for this neoplasm (range, 16%-44%) and there was no supportive evidence for an increase in mononuclear cell leukemia in male rats. Relative to incidences of mononuclear cell leukemia in control animals in a concurrent drinking water study at the same laboratory (19/50; NTP, 1997a), the rate of 23/50 observed in the 400 ppm group in this study does not seem to be significant. Liver lesions in F344/N rats were characterized by centrilobular cytomegaly, degeneration, and necrosis; cytoplasmic vacuolization; foci of cellular alteration; fibrosis; and
pigmentation in Kupffer's cells and macrophages. Bile duct hyperplasia was observed in all exposed groups of males and females and the incidences were significantly increased in exposed females compared to controls. Periportal fibrosis was a prominent lesion in 400 ppm males. There were no statistically significant increases in the incidences of hepatocellular neoplasms in exposed F344/N or Wistar rats. The same diagnostic criteria and terminology were applied to the liver lesions in both strains of rats. In general, except for the incidences of centrilobular cytomegaly, which was highest in 400 ppm females, periportal fibrosis, which was highest in 400 ppm male F344/N rats, and cytoplasmic vacuolization, which occurred in control and exposed Wistar rats, treatment-related nonneoplastic liver lesions occurred at higher incidences and with greater severities in Wistar rats than in male or female F344/N rats. These lesions, along with nephropathy, probably contributed to early deaths in Wistar rats. Incidences of fibrosis, extending from the liver capsule downwards into the parenchyma, were significantly increased relative to controls in 200 and 400 ppm Wistar rats but were increased less significantly in 400 ppm male F344/N rats and were not treatment related in females. Based on water consumption in the 2-year study, the estimated doses of pyridine delivered to male mice exposed to 250, 500, or 1,000 ppm were 35, 65, or 110 mg/kg, and for female mice exposed to 125, 250, or 500 ppm, were 15, 35, or 70 mg/kg. Exposure to pyridine was associated with progression of liver neoplasms from benign to malignant in male and female mice. Hepatocellular adenomas, hepatocellular carcinomas, and hepatoblastomas represent a biological and morphological continuum in progression of proliferative lesions. It is probable that hepatoblastomas do not represent further progression to a more malignant state but rather are composed of cells that are more primitive. Hepatoblastomas are considered to represent a phenotypic, and possibly genotypic, variant of a malignant liver neoplasm. Because the malignant potential of hepatocellular carcinomas and hepatoblastomas appear similar and hepatoblastomas are generally observed in the hepatocellular neoplasms (mostly carcinomas), it is appropriate to combine the incidences of hepatoblastomas with those of hepatocellular adenoma and carcinoma when interpreting the carcinogenic potential of a chemical. Hepatoblastomas, which are rare, are observed in relatively high numbers only after chemical administration (primarily in mice) and have previously been observed in NTP studies with primidone (NTP, 1997b), oxazepam (NTP, 1993a), *o*-nitroanisole (NTP, 1993b), benzofuran (NTP, 1989), ethylene thiourea (NTP, 1992), 1-amino-2,4-dibromoanthraquinone (NTP, 1996), methylphenidate hydrochloride (NTP, 1995), and coumarin (NTP, 1993c). Liver cancer accounts for approximately 2% to 3% of all cancer deaths in the United States (Parker *et al.*, 1996). In children, hepatoblastomas account for approximately 70% of the liver cancers (Ding *et al.*, 1994). Pyridine is metabolized primarily by N-methylation and/or aromatic hydroxylation. Metabolites identified include N-methylpyridinium, 3-hydroxy pyridine, and N-methyl pyridinium hydroxide. Pyridine is metabolized by cytochromes P2E1 and P4B (CYP2E1 and CYP4B) (Nikula *et al.*, 1995) and enhances the expression of several forms of P₄₅₀, including CYP2E1, CYP1A1/1A2, and CYP2B1/2B2 in both hepatic and renal tissues (tissues from rat used as the model system) (Kim and Novak, 1990; Kim *et al.*, 1991a; Kim *et al.*, 1993). Pyridine, like primidone (NTP, 1997b), phenobarbital (McClain, 1990), and oxazepam (NTP, 1993a, 1997c), induces liver neoplasms in mice but not in rats, even though in rats these chemicals cause a spectrum of toxic liver lesions. The mouse, an animal with a high background rate of liver neoplasms, seems to be particularly sensitive to subsequent development of malignant neoplasms after chemical exposure (Drinkwater *et al.*, 1990; Drinkwater, 1994; Bennett *et al.*, 1995; Lee *et al.*, 1995). While there are no studies of the relationship between pyridine exposure and cancer incidence, it is of interest that use of primidone and phenobarbital to treat epilepsy in humans has not been associated with liver cancer in humans (NTP, 1997b). Some studies suggest that the induction of cytochrome $P_{450}2B$ enzymes are associated with mouse liver neoplasm formation (Lubet *et al.*, 1989; Rice *et al.*, 1994). Pyridine-induced liver neoplasms from control, 500 ppm male, and 1,000 ppm female mice showed no accumulation of p53 antibody, a marker that correlates with p53 gene alterations. Another nonmutagenic mouse liver carcinogen, methylphenidate, also showed no evidence for p53 protein accumulation in methylphenidate-induced liver neoplasms in the B6C3F₁ mouse and was negative in the p53 (+/-) transgenic mouse model (Tennant *et al.*, 1995). Pyridine is negative in most studies for genotoxicity. Pyridine was not mutagenic in *Salmonella typhimurium* strain TA98, TA100, TA1535, or TA1537, with or without S9 metabolic activation enzymes. Further, no significant increase in mutant frequencies was observed in L5178Y mouse lymphoma cells, tested with and without S9 metabolic activation. In cytogenetic tests with cultured Chinese hamster ovary cells, pyridine did not induce sister chromatid exchanges or chromosomal aberrations, with or without S9. Results were positive for the induction of sex-linked recessive lethal mutations in *Drosophila melanogaster* following injection of pyridine but were negative by the same route of administration for induction of reciprocal translocations in germ cells of *D. melanogaster*. No induction of chromosomal aberrations and no increase in the frequency of micronucleated polychromatic erythrocytes was noted in mouse bone marrow cells after intraperitoneal injection of pyridine. There is a developing field of study regarding specific genetic changes in mouse and human liver neoplasms. In one series of human hepatoblastomas, p53 alterations were not seen in hepatoblastomas of fetal or mesenchymal origin but did occur in hepatoblastomas classified as small cell (Ruck *et al.*, 1994). Other studies also report a low frequency of p53 mutations in hepatoblastomas (Kar *et al.*, 1993; Kennedy *et al.*, 1994). In contrast, in a study of hepatoblastomas in Japanese patients, p53 mutations were found in nine of 10 cases (Oda *et al.*, 1995). Overexpression of p53 is a rare event in Caucasian patients with hepatocellular carcinoma (Laurent-Puig *et al.*, 1992). Accumulation of p53 protein has been associated with liver neoplasms caused by viral hepatitis (42%) (Ojanguren *et al.*, 1995; Greenblatt *et al.*, 1997) and in aflatoxin hepatocarcinogenesis (Shen and Ong, 1996). Three studies of liver neoplasms in mice suggest that the p53 gene plays a minimal role in the development of these neoplasms (Kress *et al.*, 1992; Chen *et al.*, 1993; Calvert *et al.*, 1995). Mutations of the neoplasm suppressor gene p53 have been found in hepatocellular carcinomas from patients in many countries (e.g., Japan and Asian countries) where there may be an association between neoplasms and virus infection or aflatoxin exposure. In the United States, p53 mutations are usually not found in hepatocellular carcinomas (Kazachkov *et al.*, 1996), and the etiology of the liver cancer is not known. #### **CONCLUSIONS** Under the conditions of these 2-year drinking water studies, there was *some evidence of carcinogenic activity** of pyridine in male F344/N rats based on increased incidences of renal tubule neoplasms. There was *equivocal evidence of carcinogenic activity* of pyridine in female F344/N rats based on increased incidences of mononuclear cell leukemia. There was *equivocal evidence of carcinogenic activity* in male Wistar rats based on an increased incidence of interstitial cell adenoma of the testis. There was *clear evidence of carcinogenic activity* of pyridine in male and female B6C3F₁ mice based on increased incidences of malignant hepatocellular neoplasms. In F344/N rats, exposure to pyridine resulted in increased incidences of centrilobular cytomegaly and degeneration, cytoplasmic vacuolization, and pigmentation in the liver of males and females; periportal fibrosis, fibrosis, and centrilobular necrosis in the liver of males; and bile duct hyperplasia in females. In male Wistar rats, pyridine exposure resulted in increased incidences of centrilobular degeneration and necrosis, fibrosis, periportal fibrosis, and pigmentation in the liver, and secondary to kidney disease, mineralization in the glandular stomach and parathyroid gland hyperplasia. ^{*} Explanation of Levels of Evidence of Carcinogenic Activity is on page 16. ## REFERENCES Abe, S., and Sasaki, M. (1977). Chromosome aberrations and sister chromatid exchanges in Chinese hamster cells exposed to various chemicals. *J. Natl. Cancer Inst.* **58**, 1635-1641. Agarwal, R., Jugert, F.K., Khan, S.G., Bickers, D.R., Merk, H.F., and Mukhtar, H. (1994). Evidence for multiple inducible cytochrome P450 isozymes in Sencar mouse skin by pyridine. *Biochem. Biophys. Res. Commun.* **199**, 1400-1406. Agency for Toxic Substances and Disease Registry (ATSDR) (1992). Toxicological Profile for Pyridine. TP-91/24. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. American Conference of Governmental Industrial Hygienists (ACGIH) (1997). 1997 Threshold Limit Values and Biological Exposure Indices. Cincinnati, OH. Anderson, R.C. (1987). 90-Day Subchronic Oral Toxicity in Rats. Test Material: Pyridine. Vol. I. Report to Dynamac Corporation, Rockville, MD, by Arthur D. Little, Inc., Cambridge, MA. Ashby, J., and Tennant, R.W. (1991). Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals
tested by the U.S. NTP. *Mutat. Res.* **257**, 229-306. Bailer, A.J., and Portier, C.J. (1988). Effects of treatment-induced mortality and tumor-induced mortality on tests for carcinogenicity in small samples. *Biometrics* **44**, 417-431. Baxter, J.H. (1948). Hepatic and renal injury with calcium deposits and cirrhosis produced in rats by pyridine. *Am. J. Pathol.* **24**, 503-525. Bennett, L.M., Farnham, P.J., and Drinkwater, N.R. (1995). Strain-dependent differences in DNA synthesis and gene expression in the regenerating livers of C57BL/6J and C3H/HeJ mice. *Mol. Carcinog*. **14**, 46-52. Bieler, G.S., and Williams, R.L. (1993). Ratio of estimates, the delta method, and quantal response tests for increased carcinogenicity. *Biometrics* **49**, 793-801. Boorman, G.A., Montgomery, C.A., Jr., Eustis, S.L., Wolfe, M.J., McConnell, E.E., and Hardisty, J.F. (1985). Quality assurance in pathology for rodent carcinogenicity studies. In *Handbook of Carcinogen Testing* (H.A. Milman and E.K. Weisburger, Eds.), pp. 345-357. Noyes Publications, Park Ridge, NJ. Calvert, R.J., Tashiro, Y., Buzard, G.S., Diwan, B.A., and Weghorst, C.M. (1995). Lack of *p53* point mutations in chemically induced mouse hepatoblastomas: an end-stage, highly malignant hepatocellular tumor. *Cancer Lett.* **95** 175-180. Caspary, W.J., Lee, Y.J., Poulton, S., Myhr, B.C., Mitchell, A.D., and Rudd, C.J. (1988). Evaluation of the L5178Y mouse lymphoma cell mutagenesis assay: Quality-control guidelines and response categories. *Environ. Mol. Mutagen.* 12 (Suppl. 13), 19-36. Chen, B., Liu, L., Castonguay, A., Maronpot, R.R., Anderson, M.W., and You, M. (1993). Dose-dependent *ras* mutation spectra in *N*-nitrosodiethylamine induced mouse liver tumors and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induced mouse lung tumors. *Carcinogenesis* **14**, 1603-1608. Code of Federal Regulations (CFR) 21, Part 58. Code of Federal Regulations (CFR) 21, § 172.515. Code of Federal Regulations (CFR) 40, § 261. Code of Federal Regulations (CFR) 40, § 264. Code of Federal Regulations (CFR) 40, § 268. Code of Federal Regulations (CFR) 40, § 302.4. Code of Federal Regulations (CFR) 40, § 372. Code of Federal Regulations (CFR) 40, § 712.30. Code of Federal Regulations (CFR) 40, § 716.120. Cox, D.R. (1972). Regression models and life-tables. J. R. Stat. Soc. **B34**, 187-220. Crawford, B.D. (1985). Perspectives on the somatic mutation model of carcinogenesis. In *Advances in Modern Environmental Toxicology*. *Mechanisms and Toxicity of Chemical Carcinogens and Mutagens* (M.A. Mehlman, W.G. Flamm, and R.J. Lorentzen, Eds.), pp. 13-59. Princeton Scientific Publishing Co., Inc., Princeton, NJ. Curvall, M., Enzell, C.R., and Pettersson, B. (1984). An evaluation of the utility of four *in vitro* short term tests for predicting the cytotoxicity of individual compounds derived from tobacco smoke. *Cell Biol. Toxicol.* **1**, 173-193. Damani, L.A., Crooks, P.A., Shaker, M.S., Caldwell, J., D Souza, J., and Smith, R.L. (1982). Species differences in the metabolic *C*- and *N*-oxidation, and *N*-methylation of [¹⁴C]pyridine *in vivo*. *Xenobiotica* **12**, 527-534. Dieter, M.P., Jameson, C.W., French, J.E., Gangjee, S., Stefanski, S.A., Chhabra, R.S., and Chan, P.C. (1989). Development and validation of a cellular transplant model for leukemia in Fischer rats: A short-term assay for potential anti-leukemic chemicals. *Leuk. Res.* 13, 841-849. Ding, S.-F., Michail, N.E., and Habib, N.A. (1994). Genetic changes in hepatoblastoma. *J. Hepatol.* **20**, 672-675. Dixon, W.J., and Massey, F.J., Jr. (1951). *Introduction to Statistical Analysis*, 1st ed., pp. 145-147. McGraw-Hill Book Company, Inc., New York. Drinkwater, N.R. (1994). Genetic control of hepatocarcinogenesis in C3H mice. *Drug Metab. Rev.* **26**, 201-208. Drinkwater, N.R., Hanigan, M.H., and Kemp, C.J. (1990). Genetic and epigenetic promotion of murine hepatocarcinogenesis. *Prog. Clin. Biol. Res.* **331**, 163-176. D Souza, J., Caldwell, J., and Smith, R.L. (1980). Species variations in the *N*-methylation and quaternization of [¹⁴C]pyridine. *Xenobiotica* **10**, 151-157. - Dunn, O.J. (1964). Multiple comparisons using rank sums. Technometrics 6, 241-252. - Dunnett, C.W. (1955). A multiple comparison procedure for comparing several treatments with a control. *J. Am. Stat. Assoc.* **50**, 1096-1121. - Eatough, D.J., Benner, C.L., Bayona, J.M., Richards, G., Lamb, J.D., Lee, M.L., Lewis, E.A., and Hansen, L.D. (1989). Chemical composition of environmental tobacco smoke. 1. Gas-phase acids and bases. *Environ. Sci. Technol.* 23, 679-687. - Ellis, D., Jone, C., Larson, R., and Schaeffer, D. (1982). Organic constituents of mutagenic secondary effluents from wastewater treatment plants. *Arch. Environ. Contam. Toxicol.* **11**, 373-382. - Eustis, S.L., Hailey, J.R., Boorman, G.A., and Haseman, J.K. (1994). The utility of multiple-section sampling in the histopathological evaluation of the kidney for carcinogenicity studies. *Toxicol. Pathol.* 22, 457-472. - Finco, D.R. (1989). Kidney function. In *Clinical Biochemistry of Domestic Animals* (J.J. Kaneko, Ed.), pp. 496-542. Academic Press, Inc., San Diego. - Florin, I., Rutberg, L., Curvall, M., and Enzell, C.R. (1980). Screening of tobacco smoke constituents for mutagenicity using the Ames test. *Toxicology* **15**, 219-232. - Galloway, S.M., Armstrong, M.J., Reuben, C., Colman, S., Brown, B., Cannon, C., Bloom, A.D., Nakamura, F., Ahmed, M., Duk, S., Rimpo, J., Margolin, B.H., Resnick, M.A., Anderson, B., and Zeiger, E. (1987). Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. *Environ. Mol. Mutagen.* 10 (Suppl. 10), 1-175. - Greenblatt, M.S., Feitelson, M.A., Zhu, M., Bennett, W.P., Welsh, J.A., Jones, R., Borkowski, A., and Harris, C.C. (1997). Integrity of p53 in hepatitis B x antigen-positive and -negative hepatocellular carcinomas. *Cancer Res.* **57**, 426-432. - Griffin, R.J., Burka, L.T., and Cunningham, M.L. (1995). Activity of hepatic drug metabolizing enzymes following oxazepam-dosed feed treatment in B6C3F1 mice. *Toxicol. Lett.* **76**, 251-256. - Harper, B.L., Sadagopa Ramanujam, V.M., Gad-El-Karim, M.M., and Legator, M.S. (1984). The influence of simple aromatics on benzene clastogenicity. *Mutat. Res.* **128**, 105-114. - Hawley s Condensed Chemical Dictionary (1987). 11th ed. (N.I. Sax and R.J. Lewis, Sr., Eds.), p. 982, Van Nostrand Reinhold, New York. - Haworth, S., Lawlor, T., Mortelmans, K., Speck, W., and Zeiger, E. (1983). Salmonella mutagenicity test results for 250 chemicals. *Environ. Mutagen.* **5** (Suppl. 1), 3-142. - Hollander, M., and Wolfe, D.A. (1973). *Nonparametric Statistical Methods*, pp. 120-123. John Wiley and Sons, New York. - Hotchkiss, J.A., Kim, S.G., Novak, R.F., and Dahl, A.R. (1993). Enhanced hepatic expression of P450IIE1 following inhalation exposure to pyridine. *Toxicol. Appl. Pharmacol.* **118**, 98-104. - Iba, M.M., Bennett, S., Storch, A., Ghosal, A., and Thomas, P.E. (1993). Synergistic induction of rat microsomal CYP1A1 and CYP1A2 by acetone in combination with pyridine. *Cancer Lett.* **74**, 69-74. - Ishidate, M., Jr., and Odashima, S. (1977). Chromosome tests with 134 compounds on Chinese hamster cells in vitro A screening for chemical carcinogens. *Mutat. Res.* **48**, 337-354. Jain, N.C. (1986). Clinical and laboratory evaluation of anemias and polycythemias. In *Schalm s Veterinary Hematology*, 4th ed. (N.C. Jain, Ed.), pp. 563-576. Lea and Febiger, Philadelphia. Jenkins, F.P., and Robinson, J.A. (1975). Serum biochemical changes in rats deprived of food or water for 24 h. *Proc. Nutr. Soc.* **34**, 37A. Jonckheere, A.R. (1954). A distribution-free *k*-sample test against ordered alternatives. *Biometrika* **41**, 133-145. Jori, A., Calamari, D., Cattabeni, F., Di Domenico, A., Galli, C.L., Galli, E., and Silano, V. (1983). Ecotoxicological profile of pyridine. *Ecotoxicol. Environ. Safety* 7, 251-275. Junk, G., and Ford, C. (1980). A review of organic emissions from selected combustion processes. *Chemosphere* **9**, 187-230. Kaneko, J.J. (1989). Serum proteins and the dysproteinemias. In *Clinical Biochemistry of Domestic Animals*, 4th ed. (J.J. Kaneko, Ed.), pp. 142-165. Academic Press, Inc., San Diego. Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. *J. Am. Stat. Assoc.* **53**, 457-481. Kar, S., Jaffe, R., and Carr, B.I. (1993). Mutation at codon 249 of p53 gene in a human hepatoblastoma. *Hepatology* **18**, 566-569. Kastenbaum, M.A., and Bowman, K.O. (1970). Tables for determining the statistical significance of mutation frequencies. *Mutat. Res.* **9**, 527-549. Kawachi, T., Komatsu, T., Kada, T., Ishidate, M., Sasaki, M., Sugiyama, T., and Tazima, Y. (1980). Results of recent studies on the relevance of various short-term screening tests in Japan. In *The Predictive Value of Short-Term Screening Tests in Carcinogenicity Evaluation* (G.M. Williams *et al.*, Eds.), pp. 253-267. Elsevier/North-Holland Biomedical Press, New York. Kazachkov, Y., Khaoustov, V., Yoffe, B., Solomon, H., Klintmalm, G.B.G., and Tabor, E. (1996). p53 Abnormalities in hepatocellular carcinoma from United States patients: analysis of all 11 exons. *Carcinogenesis* 17, 2207-2212. Kennedy, S.M., MacGeogh, C., Jaffe, R., and Spurr, N.K. (1994). Overexpression of the oncoprotein p53 in primary hepatic tumors of childhood does not correlate with gene mutations. *Hum. Pathol.* **25**, 438-442. Kim, H., Putt, D., Reddy, S., Hollenberg, P.F., and Novak, R.F. (1993). Enhanced expression of rat hepatic CYP2B1/2B2 and 2E1 by pyridine: Differential induction kinetics and molecular basis of expression. *J. Pharmacol. Exp. Ther.* **267**, 927-936. Kim, S.G., and Novak, R.F. (1990). Induction of rat hepatic P450IIE1 (CYP 2E1) by pyridine: Evidence for a role of protein synthesis in the absence of transcriptional activation. *Biochem.
Biophys. Res. Commun.* **166**, 1072-1079. Kim, S.G., Philpot, R.M., and Novak, R.F. (1991a). Pyridine effects on P450IIE1, IIB and IVB expression in rabbit liver: Characterization of high- and low-affinity pyridine N-oxygenases. *J. Pharmacol. Exp. Ther.* **259**, 470-477. Kim, S.G., Reddy, S.L., States, J.C., and Novak, R.F. (1991b). Pyridine effects on expression and molecular regulation of the cytochrome P450IA gene subfamily. *Mol. Pharmacol.* **40**, 52-57. Kress, S., König, J., Schweizer, J., Löhrke, H., Bauer-Hofmann, R., and Schwarz, M. (1992). *p53* Mutations are absent from carcinogen-induced mouse liver tumors but occur in cell lines established from these tumors. *Mol. Carcinog.* **6**, 148-158. Laurent-Puig, P., Flejou, J.-F., Fabre, M., Bedossa, P., Belghiti, J., Gayral, F., and Franco, D. (1992). Overexpression of p53: A rare event in a large series of white patients with hepatocellular carcinoma. *Hepatology* **16**, 1171-1175. Lee, G.-H., Ogawa, K., and Drinkwater, N.R. (1995). Conditional transformation of mouse liver epithelial cells. An *in vitro* model for analysis of genetic events in hepatocarcinogenesis. *Am. J. Pathol.* **147**, 1811-1822. Lehman-McKeeman, L.D., Rodriguez, P.A., Takigiku, R., Caudill, D., and Fey, M.L. (1989). d-Limonene-induced male rat-specific nephrotoxicity: Evaluation of the association between d-limonene and α_{2n} -globulin. *Toxicol. Appl. Pharmacol.* **99**, 250-259. Lewis, R.J., Sr. (1993). *Hazardous Chemicals Desk Reference*, 3rd ed., p. 1103. Van Nostrand Reinhold, New York. Lubet, R.A, Nims, R.W., Ward, J.M., Rice, J.M., and Diwan, B.A. (1989). Induction of cytochrome P_{450b} and its relationship to liver tumor promotion. *J. Am. Coll. Toxicol.* **8**, 259-268. McClain, R.M. (1990). Mouse liver tumors and microsomal enzyme-inducing drugs: Experimental and clinical perspectives with phenobarbital. In *Mouse Liver Carcinogenesis: Mechanisms and Species Comparisons*, pp. 345-365. Alan R. Liss, Inc. McConnell, E.E., Solleveld, H.A., Swenberg, J.A., and Boorman, G.A. (1986). Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. *JNCI* **76**, 283-289. McFee, A.F. (1989). Genotoxic potency of three quinoline compounds evaluated in vivo in mouse marrow cells. *Environ. Mol. Mutagen.* **13**, 325-331. McFee, A.F., Lowe, K.W., and San Sebastian, J.R. (1983). Improved sister-chromatid differentiation using paraffin-coated bromodeoxyuridine tablets in mice. *Mutat. Res.* **119**, 83-88. McGregor, D.B., Brown, A., Cattanach, P., Edwards, I., McBride, D., Riach, C., and Caspary, W.J. (1988). Responses of the L5178Y tk⁺/tk⁻ mouse lymphoma cell forward mutation assay: III. 72 coded chemicals. *Environ. Mol. Mutagen.* **12**, 85-154. Margolin, B.H., Collings, B.J., and Mason, J.M. (1983). Statistical analysis and sample-size determinations for mutagenicity experiments with binomial responses. *Environ. Mutagen.* **5**, 705-716. Margolin, B.H., Resnick, M.A., Rimpo, J.Y., Archer, P., Galloway, S.M., Bloom, A.D., and Zeiger, E. (1986). Statistical analyses for in vitro cytogenetic assays using Chinese hamster ovary cells. *Environ. Mutagen.* **8**, 183-204. Margolin, B.H., Risko, K.J., Frome, E.L., and Tice, R.R. (1990). A general purpose statistical analysis program for micronucleus assay data. Appendix 2: Micronucleus data management and analysis version 1.4a. Integrated Laboratory Systems, Research Triangle Park, NC. Maronpot, R.R., and Boorman, G.A. (1982). Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. *Toxicol. Pathol.* **10**, 71-80. Masek, V. (1981). Determination of pyridine bases present in the air of workplaces in metallurgical plants. *Staub-Reinhalt. Luft.* **41**, 26-28. Mason, J.M., Valencia, R., and Zimmering, S. (1992). Chemical mutagenesis testing in *Drosophila*: VIII. Reexamination of equivocal results. *Environ. Mol. Mutagen.* **19**, 227-234. Mason, M.M., Cate, C.C., and Baker, J. (1971). Toxicology and carcinogenesis of various chemicals used in the preparation of vaccines. *Clin. Toxicol.* **4** (Suppl. 2), 185-204. The Merck Index (1989). 11th ed. (S. Budavari, Ed.), p. 1267. Merck and Company, Rahway, NJ. Meril, F., Wiesler, D., Maskarinec, M.P., Novotny, M., Vassilaros, D.L., and Lee, M.L. (1981). Characterization of the basic fraction of marijuana smoke by capillary gas chromatography/mass spectrometry. *Anal. Chem.* **53**, 1929-1935. Miller, J.A., and Miller, E.C. (1977). Ultimate chemical carcinogens as reactive mutagenic electrophiles. In *Origins of Human Cancer* (H.H. Hiatt, J.D. Watson, and J.A. Winsten, Eds.), pp. 605-627. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Miyamoto, T., Taniguchi, K., Tanouchi, T., and Hirata, F. (1980). Selective inhibitor of thromboxane synthetase: Pyridine and its derivatives. *Adv. Prostaglandin Thromboxane Res.* **6**, 443-445. Morrison, D.F. (1976). *Multivariate Statistical Methods*, 2nd ed., pp. 170-179. McGraw-Hill Book Company, New York. Nagao, M., and Sugimura, T. (1972). Sensitivity of repair-deficient mutants and similar mutants to 4-nitroquinoline 1-oxide, 4-nitropyridine 1-oxide, and their derivatives. *Cancer Res.* **32**, 2369-2374. National Air Toxics Information Clearinghouse (NATICH) (1989). NATICH Database Report on State, Local, and EPA Air Toxics Activities. Report to the USEPA, Research Triangle Park, NC, by Radian Corporation, Austin, TX. National Cancer Institute (NCI) (1976). Guidelines for Carcinogen Bioassay in Small Rodents. Technical Report Series No. 1. NIH Publication No. 76-801. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. National Cancer Institute (NCI) (1985). Monograph on Human Exposure to Chemicals in the Workplace: Pyridine. Division of Cancer Etiology, National Cancer Institute, Bethesda, MD. National Institute for Occupational Safety and Health (NIOSH) (1985). Pocket Guide to Chemical Hazards. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety and Health, Washington, DC. National Institute for Occupational Safety and Health (NIOSH) (1990). National Occupational Exposure Survey (1981 to 1983), unpublished data as of July 1, 1990. Cincinnati, OH. National Institutes of Health (NIH) (1978). Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. U.S. Department of Health, Education, and Welfare, Public Health Service, NIH, Bethesda, MD. National Toxicology Program (NTP) (1987). Technical Protocol for Sperm Morphology and Vaginal Cytology Evaluations in Toxicity Testing for Rats and Mice, 10/31/82 version (updated December 1987). Research Triangle Park, NC. National Toxicology Program (NTP) (1989). Toxicology and Carcinogenesis Studies of Benzofuran (CAS No. 271-89-6) in F344/N Rats and B6C3F₁ Mice (Gavage Studies). Technical Report Series No. 370. NIH Publication No. 90-2825. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. National Toxicology Program (NTP) (1992). Toxicology and Carcinogenesis Studies of Ethylene Thiourea (CAS No. 96-45-7) in F344/N Rats and B6C3F₁ Mice (Feed Studies). Technical Report Series No. 388. NIH Publication No. 92-2843. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. National Toxicology Program (NTP) (1993a). Toxicology and Carcinogenesis Studies of Oxazepam (CAS No. 604-75-1) in B6C3F₁ Mice (Feed Studies). Technical Report Series No. 443. NIH Publication No. 93-3359. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. National Toxicology Program (NTP) (1993b). Toxicology and Carcinogenesis Studies of *o*-Nitroanisole (CAS No. 91-23-6) in F344 Rats and B6C3F₁ Mice (Feed Studies). Technical Report Series No. 416. NIH Publication No. 93-3147. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. National Toxicology Program (NTP) (1993c). Toxicology and Carcinogenesis Studies of Coumarin (CAS No. 91-64-5) in F344/N Rats and B6C3F₁ Mice (Gavage Studies). Technical Report Series No. 422. NIH Publication No. 93-3153. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. National Toxicology Program (NTP) (1995). Toxicology and Carcinogenesis Studies of Methylphenidate Hydrochloride (CAS No. 2981-59-9) in F344/N Rats and B6C3F₁ Mice (Feed Studies). Technical Report Series No. 439. NIH Publication No. 95-3355. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. National Toxicology Program (NTP) (1996). Toxicology and Carcinogenesis Studies of 1,-Amino-2,4-dibromoanthraquinone (CAS No. 81-49-2) in F344/N Rats and B6C3F₁ Mice (Feed Studies). Technical Report Series No. 383. NIH Publication No. 96-2838. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. National Toxicology Program (NTP) (1997a). Toxicology and Carcinogenesis Studies of 1-Chloro-2-propanol (CAS No. 127-00-4) in F344/N Rats and B6C3F₁ Mice (Drinking Water Studies). Technical Report Series No. 477. NIH Publication No. 98-3967. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. (In preparation) National Toxicology Program (NTP) (1997b). Toxicology and Carcinogenesis Studies of Primidone (CAS No. 125-33-7) in F344/N Rats and B6C3F₁ Mice (Feed Studies). Technical Report Series No. 476. NIH Publication No. 98-3966. U.S. Department of Health and Human Services, Public Health Service, National
Institutes of Health, Research Triangle Park, NC. (In press) National Toxicology Program (NTP) (1997c). Toxicology and Carcinogenesis Studies of Oxazepam (CAS No. 604-75-1) in F344/N Rats (Feed Studies). Technical Report Series No. 468. NIH Publication No. 98-3958. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC. (In press) Neuhaus, O.W., Flory, W., Biswas, N., and Hollerman, C.E. (1981). Urinary excretion of $_{\alpha 2u}$ -globulin and albumin by adult male rats following treatment with nephrotoxic agents. *Nephron* **28**, 133-140. Nikula, K.J., and Lewis, J.L. (1994). Olfactory mucosal lesions in F344 rats following inhalation exposure to pyridine at threshold limit value concentrations. *Fundam. Appl. Toxicol.* **23**, 510-517. Nikula, K.J., Novak, R.F., Chang, I.Y., Dahl, A.R., Kracko, D.A., Zangar, R.C., Kim, S.G., and Lewis, J.L. (1995). Induction of nasal carboxylesterase in F344 rats following inhalation exposure to pyridine. *Drug Metab. Dispos.* 23, 529-535. Oda, H., Nakatsuru, Y., Imai, Y., Sugimura, H., and Ishikawa, T. (1995). A mutational hot spot in the *p53* gene is associated with hepatoblastomas. *Int. J. Cancer* **60**, 786-790. - Ojanguren, I., Castella, E., Llatjos, M., Ariza, A., and Palacios, J.J.N. (1995). p53 Immunoreaction in hepatocellular carcinoma and its relationship to etiologic factors. *Acta Cytologica* **40**, 1148-1153. - Okuda, Y. (1959). Studies on the methylation of pyridine compound in animal organisms. III. The methylation pattern of pyridine in dog organisms dosed with pyridine. *J. Biochem.* **46**, 967-971. - Pai, V., Bloomfield, S.F., Jones, J., and Gorrod, J.W. (1978). Mutagenicity testing of nitrogenous compounds and their N-oxidised products using TRP⁺ reversion in <u>E. coli</u>. In *Biological Oxidation of Nitrogen* (J.W. Gorrod, Ed.), pp. 375-382. Elsevier/North-Holland Biomedical Press, Amsterdam. - Parker, S.L., Tong, T., Bolden, S., and Wing, P.A. (1996). Cancer Statistics, 1996. *CA Cancer J. Clin.* 46, 5-27. - Piegorsch, W.W., and Bailer, A.J. (1997). *Statistics for Environmental Biology and Toxicology*, Section 6.3.2. Chapman and Hall, London. - Portier, C.J., and Bailer, A.J. (1989). Testing for increased carcinogenicity using a survival-adjusted quantal response test. *Fundam. Appl. Toxicol.* **12**, 731-737. - Portier, C.J., Hedges, J.C., and Hoel, D.G. (1986). Age-specific models of mortality and tumor onset for historical control animals in the National Toxicology Program s carcinogenicity experiments. *Cancer Res.* **46**, 4372-4378. - Ragan, H.A. (1989). Markers of renal function and injury. In *The Clinical Chemistry of Laboratory Animals* (W.F. Loeb and F.W. Quimby, Eds.), pp. 321-343. Pergamon Press, Inc., New York. - Rice, J.M., Diwan, B.A., Hu, H., Ward, J.M., Nims, R.W., and Lubet, R.A. (1994). Enhancement of hepatocarcinogenesis and induction of specific cytochrome P450-dependent monooxygenase activities by the barbiturates allobarbital, aprobarbital, pentobarbital, secobarbital and 5-phenyl- and 5-ethylbarbituric acids. *Carcinogenesis* **15**, 395-402. - Riebe, M., Westphal, K., and Fortnagel, P. (1982). Mutagenicity testing, in bacterial test systems, of some constituents of tobacco. *Mutat. Res.* **101**, 39-43. - Righetti, A.B.-B., and Kaplan, M.M. (1971). The origin of the serum alkaline phosphatase in normal rats. *Biochim. Biophys. Acta* **230**, 504-509. - Ruck, P., Xiao, J.-C., and Kaiserling, E. (1994). p53 Protein expression in hepatoblastoma: An immunohistochemical investigation. *Pediatric Pathol.* 14, 79-85. - Sadtler Standard Spectra. IR No. 15; UV No. 9. Sadtler Research Laboratories, Philadelphia. - Schmeltz, I., and Hoffmann, D. (1977). Nitrogen-containing compounds in tobacco and tobacco smoke. *Chem. Rev.* 77, 295-311. - Schumacher, J.N., Green, C.R., Best, F.W., and Newell, M.P. (1977). Smoke composition. An extensive investigation of the water-soluble portion of cigarette smoke. *J. Agric. Food Chem.* **25**, 310-320. - Seader, J., Einhorn, I., Drake, W., and Milfeith, C. (1972). Analysis of volatile combustion products and a study of their toxicological effects. *Polym. Eng. Sci.* **12**, 125-133. Shelby, M.D., and Witt, K.L. (1995). Comparison of results from mouse bone marrow chromosome aberration and micronucleus tests. *Environ. Mol. Mutagen.* **25**, 302-313. Shelby, M.D., Erexson, G.L., Hook, G.J., and Tice, R.R. (1993). Evaluation of a three-exposure mouse bone marrow micronucleus protocol: Results with 49 chemicals. *Environ. Mol. Mutagen.* **21**, 160-179. Shelton, L., and Hites, R. (1978). Organic compounds in the Delaware River. *Environ. Sci. Technol.* 12, 1199-1194. Shen, H., and Ong, C.N. (1996). Mutations of the p53 tumor suppressor gene and ras oncogenes in aflatoxin hepatocarcinogenesis. *Mutat. Res.* **366**, 23-44. Shirley, E. (1977). A non-parametric equivalent of Williams test for contrasting increasing dose levels of a treatment. *Biometrics* **33**, 386-389. Sittig, M. (1991). *Handbook of Toxic and Hazardous Chemicals and Carcinogens*. 3rd ed., Vol. 2, pp. 1400-1402. Noyes Publications, Park Ridge, NJ. Straus, D.S. (1981). Somatic mutation, cellular differentiation, and cancer causation. JNCI 67, 233-241. Stuermer, D.H., Ng, D.J., and Morris, C.J. (1982). Organic contaminants in groundwater near an underground coal gasification site in northeastern Wyoming. *Environ. Sci. Technol.* **16**, 582-587. Tai, H.-H., Lee, N., and Tai, C.L. (1980). Inhibition of thromboxane synthesis and platelet aggregation by pyridine and its derivatives. *Adv. Prostaglandin Thromboxane Res.* **6**, 447-452. Tarone, R.E. (1975). Tests for trend in life table analysis. *Biometrika* 62, 679-682. Tennant, R.W., Margolin, B.H., Shelby, M.D., Zeiger, E., Haseman, J.K., Spalding, J., Caspary, W., Resnick, M., Stasiewicz, S., Anderson, B., and Minor, R. (1987). Prediction of chemical carcinogenicity in rodents from *in vitro* genetic toxicity assays. *Science* **236**, 933-941. Tennant, R.W., French, J.E., and Spalding, J.W. (1995). Identifying chemical carcinogens and assessing potential risk in short-term bioassays using transgenic mouse models. *Environ. Health Perspect.* **103**, 942-950. - U.S. Environmental Protection Agency (USEPA) (1978). Second Report of the TSCA Interagency Testing Committee to the Administrator, Environmental Protection Agency. Office of Toxic Substances, Washington, DC. - U.S. Environmental Protection Agency (USEPA) (1991). Alpha_{2u}-globulin: Association with Chemically Induced Renal Toxicity and Neoplasia in the Male Rat. EPA/625/3-91/019F. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, DC. Valencia, R., Mason, J.M., Woodruff, R.C., and Zimmering, S. (1985). Chemical mutagenesis testing in *Drosophila*. III. Results of 48 coded compounds tested for the National Toxicology Program. *Environ*. *Mutagen*. 7, 325-348. Vernot, E.H., MacEwen, J.D., Haun, C.C., and Kinkead, E.R. (1977). Acute toxicity and skin corrosion data for some organic and inorganic compounds and aqueous solutions. *Toxicol. Appl. Pharmacol.* **42**, 417-423. Voogd, C.E., van der Stel, J.J., and Jacobs, J.J.J.A.A. (1980). The mutagenic action of quindoxin, carbadox, olaquindox and some other *N*-oxides on bacteria and yeast. *Mutat. Res.* **78**, 233-242. Walsh, K.M., and Poteracki, J. (1994). Spontaneous neoplasms in control Wistar rats. *Fundam. Appl. Toxicol.* **22**, 65-72. Warren, G., Abbott, E., Schultz, P., Bennett, K., and Rogers, S. (1981). Mutagenicity of a series of hexacoordinate rhodium(III) compounds. *Mutat. Res.* 88, 165-173. Williams, D.A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose control. *Biometrics* 27, 103-117. Williams, D.A. (1972). The comparison of several dose levels with a zero dose control. *Biometrics* **28**, 519-531. Zeiger, E., Haseman, J.K., Shelby, M.D., Margolin, B.H., and Tennant, R.W. (1990). Evaluation of four in vitro genetic toxicity tests for predicting rodent carcinogenicity: Confirmation of earlier results with 41 additional chemicals. *Environ. Mol. Mutagen.* **16** (Suppl. 18), 1-14. Zimmermann, F.K., Henning, J.H., Scheel, I., and Oehler, M. (1986). Genetic and anti-tubulin effects induced by pyridine derivatives. *Mutat. Res.* **163**, 23-31. ## APPENDIX A SUMMARY OF LESIONS IN MALE F344/N RATS IN THE 2-YEAR DRINKING WATER STUDY OF PYRIDINE | TABLE A1 | Summary of the Incidence of Neoplasms in Male F344/N Rats | | |----------|--|------------| | | in the 2-Year Drinking Water Study of Pyridine | A-3 | | TABLE A2 | Individual Animal Tumor Pathology of Male F344/N Rats | | | | in the 2-Year Drinking Water Study of Pyridine | A-6 | | TABLE A3 | Statistical Analysis of Primary Neoplasms in Male F344/N Rats | | | | in the 2-Year Drinking Water Study of Pyridine | A-22 | | TABLE A4 | Historical Incidence of Renal Tubule Neoplasms in Untreated Male F344/N Rats | A-26 | | TABLE A5 | Summary of the Incidence of Nonneoplastic Lesions in Male F344/N Rats | | | | in the 2-Year Drinking Water Study of Pyridine | A-27 | A-2 Pyridine, NTP TR 470 TABLE A1 Summary of the Incidence of Neoplasms in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine^a | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |-------------------------------------|------------|---------|----------|----------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | | | | | | Moribund | 11 | 13 | 15 | 10 | | Natural deaths | 14 | 17 | 10 | 24 | | Survivors | | | | | | Terminal sacrifice | 25 | 20 | 25 | 16 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Intestine large, colon | (50) | (48) | (50) | (49) | | Lipoma | // | \ -/ | 1 (2%) | X = 7 | | Intestine large, cecum | (49) | (47)
 (50) | (49) | | Lipoma | * / | ` / | 1 (2%) | × / | | Intestine small, duodenum | (50) | (47) | (50) | (48) | | Intestine small, jejunum | (50) | (47) | (50) | (47) | | Carcinoma | 1 (2%) | · / | * / | × / | | Intestine small, ileum | (50) | (47) | (50) | (47) | | Liver | (50) | (49) | (50) | (50) | | Cholangiocarcinoma | * * | • / | • • | 1 (2%) | | Hepatocellular carcinoma | | | 1 (2%) | , , | | Hepatocellular adenoma | 1 (2%) | 1 (2%) | ` ' | 2 (4%) | | Hepatocellular adenoma, multiple | . , | * * | | 1 (2%) | | Histiocytic sarcoma | 1 (2%) | | | , , | | Mesentery | (11) | (14) | (7) | (8) | | Schwannoma benign | 1 (9%) | ` ′ | | * * | | Oral mucosa | (1) | | (2) | | | Pharyngeal, squamous cell papilloma | 1 (100%) | | 1 (50%) | | | Pancreas | (50) | (48) | (50) | (49) | | Acinus, adenoma | 2 (4%) | 1 (2%) | 1 (2%) | 1 (2%) | | Salivary glands | (50) | (50) | (50) | (50) | | Stomach, forestomach | (50) | (49) | (50) | (49) | | Squamous cell papilloma | , | ` ' | 1 (2%) | , , | | Stomach, glandular | (50) | (49) | (50) | (49) | | Tongue | | | | (1) | | Squamous cell papilloma | | | | 1 (100%) | | Cardiovascular System | | | | | | Heart | (50) | (50) | (50) | (50) | | Endocrine System | | | | | | Adrenal cortex | (50) | (49) | (50) | (50) | | Carcinoma | | 1 (2%) | | | | Adrenal medulla | (50) | (49) | (50) | (49) | | Pheochromocytoma complex | | | | 1 (2%) | | Pheochromocytoma benign | 11 (22%) | 2 (4%) | 14 (28%) | 4 (8%) | | Bilateral, pheochromocytoma benign | 6 (12%) | 1 (2%) | ` ' | , , | | Islets, pancreatic | (50) | (48) | (50) | (49) | | Adenoma | 4 (8%) | 2 (4%) | 1 (2%) | , , | | Parathyroid gland | (50) | (50) | (50) | (48) | A-4 Pyridine, NTP TR 470 TABLE A1 Summary of the Incidence of Neoplasms in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---------------------------------------|----------|----------|----------|----------| | Endocrine System (continued) | | | | | | Pituitary gland | (50) | (50) | (50) | (50) | | Pars distalis, adenoma | 16 (32%) | 13 (26%) | 12 (24%) | 11 (22%) | | Pars intermedia, adenoma | 1 (2%) | - (, | (11) | (, | | Γhyroid gland | (50) | (50) | (50) | (49) | | Bilateral, C-cell, adenoma | | 1 (2%) | | | | C-cell, adenoma | 2 (4%) | | 3 (6%) | 2 (4%) | | C-cell, carcinoma | | 1 (2%) | | | | Follicular cell, adenoma | | 2 (4%) | | | | General Body System | | | | | | | | | | | | Genital System
Epididymis | (49) | (49) | (49) | (48) | | Preputial gland | (50) | (47) | (49) | (48) | | Adenoma | 3 (6%) | () | 7 (14%) | 2 (4%) | | Carcinoma | 5 (10%) | 2 (4%) | . (**/*/ | 1 (2%) | | Prostate | (50) | (48) | (50) | (49) | | Seminal vesicle | (50) | (47) | (50) | (48) | | 'estes | (49) | (49) | (49) | (48) | | Bilateral, interstitial cell, adenoma | 33 (67%) | 35 (71%) | 37 (76%) | 40 (83%) | | Interstitial cell, adenoma | 9 (18%) | 8 (16%) | 6 (12%) | 3 (6%) | | Hematopoietic System | | | | | | Bone marrow | (50) | (50) | (50) | (50) | | Histiocytic sarcoma | 1 (2%) | (30) | (30) | (50) | | Melanoma malignant, metastatic, skin | (11) | | 1 (2%) | | | Lymph node | (20) | (25) | (20) | (23) | | Lymph node, mandibular | (50) | (50) | (50) | (50) | | Lymph node, mesenteric | (50) | (47) | (50) | (48) | | Spleen | (49) | (48) | (50) | (49) | | Γhymus | (50) | (49) | (48) | (50) | | Thymoma benign | | | | 1 (2%) | | Integumentary System | | | | | | Mammary gland | (49) | (48) | (50) | (49) | | Carcinoma | | 1 (2%) | | | | Fibroadenoma | 4 (8%) | 3 (6%) | 6 (12%) | 4 (8%) | | kin | (50) | (50) | (50) | (50) | | Basal cell adenoma | | | | 1 (2%) | | Keratoacanthoma | 6 (12%) | 4 (8%) | 1 (2%) | 5 (10%) | | Keratoacanthoma, multiple | | , | 1 (2%) | | | Squamous cell papilloma | 4 (8%) | 1 (2%) | 1 (2%) | | | Trichoepithelioma | | 1 (2%) | 1 (201) | 1 (2%) | | Pinna, melanoma malignant | 4 (0.01) | 0 (40) | 1 (2%) | 2 (4%) | | Subcutaneous tissue, fibroma | 4 (8%) | 2 (4%) | 4 (8%) | | | Subcutaneous tissue, lipoma | 1 (2%) | | 1 (2%) | | | Musculoskeletal System | | | | | | Skeletal muscle | | (1) | | | | | | (1) | | | TABLE A1 Summary of the Incidence of Neoplasms in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ррт | 100 ppm | 200 ppm | 400 ppm | |---|----------|----------------|----------|----------| | Nervous System | | | | | | Brain | (50) | (50) | (48) | (50) | | Oligodendroglioma malignant | | 1 (2%) | | | | Spinal cord | (1) | | | | | Respiratory System | | | | | | Lung | (50) | (50) | (50) | (50) | | Alveolar/bronchiolar adenoma | 1 (2%) | | | 4 (8%) | | Alveolar/bronchiolar carcinoma | | | 2 (4%) | | | Carcinoma, metastatic, mammary gland | | 1 (2%) | | | | Carcinoma, metastatic, Zymbal s gland
Melanoma malignant, metastatic, skin | | 1 (2%) | 1 (2%) | | | Osteosarcoma, metastatic, nose | 1 (2%) | | 1 (2%) | | | Nose | (50) | (50) | (49) | (50) | | Osteosarcoma | 1 (2%) | \/ | V - / | \ / | | Respiratory epithelium, squamous cell | • | | | | | carcinoma | | 1 (2%) | | | | Trachea | (50) | (50) | (50) | (50) | | Special Senses System | | | | | | Zymbal s gland | (1) | (1) | (1) | (1) | | Carcinoma | 1 (100%) | 1 (100%) | 1 (100%) | 1 (100%) | | | | | | | | Urinary System | (50) | (49) | (50) | (49) | | Kidney Mesenchymal tumor malignant | (30) | (48)
1 (2%) | (50) | (49) | | Renal tubule, adenoma | 1 (2%) | 1 (270) | 1 (2%) | 4 (8%) | | Renal tubule, adenoma, multiple | 1 (2/0) | | 1 (2%) | 2 (4%) | | Renal tubule, carcinoma | | 1 (2%) | - (=/-/) | _ (.,,, | | Urinary bladder | (50) | (47) | (50) | (49) | | Systemic Lesions | | | | | | Multiple organs ^b | (50) | (50) | (50) | (50) | | Histiocytic sarcoma | 1 (2%) | (50) | (50) | (30) | | Leukemia mononuclear | 29 (58%) | 32 (64%) | 26 (52%) | 27 (54%) | | Lymphoma malignant | . , | . , | , | 1 (2%) | | Mesothelioma benign | 1 (2%) | | 1 (2%) | | | Mesothelioma malignant | 1 (2%) | 1 (2%) | | | | Neoplasm Summary | | | | | | Total animals with primary neoplasms ^c | 49 | 49 | 49 | 49 | | Total primary neoplasms | 151 | 120 | 133 | 123 | | Total animals with benign neoplasms | 47 | 46 | 48 | 49 | | Total benign neoplasms | 112 | 77 | 102 | 89 | | Total animals with malignant neoplasms | 34 | 40 | 29 | 29 | | Total malignant neoplasms | 39 | 43 | 31 | 34 | | Total animals with metastatic neoplasms | 1 | 2 | 1 | | | Total metastatic neoplasms | 1 | 2 | 2 | | a Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms TABLE A2 Individual Animal Tumor Pathology of Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine: 0 ppm | individual Animal Tumor Pathology | oi Maie F 344 | +/1N I | xais | | ne z | ,-1 e | ar 1 | /1 111 | KIII | 5 ** | att | 1 3 | tuu | ıy (| ,,, | ı yı | Iui | пс | | ppin | |--------------------------------------|---------------|------------|------------|-----|------|------------|------|--------|------|------|--------|--------|-----|--------|--------|--------|--------|----|--------|------| | Number of Days on Study | | 3 4
8 3 | 4 5
7 7 | | | 5 6
9 0 | | | 6 6 | | 6 | 6 | 6 | 6
9 | 7
0 | 7
1 | 7
1 | | 7
1 | | | valider of Days on Study | | 8 4 | 3 1 | | 9 | | | | 0 4 | | | | | | | | | 8 | | | | | 0 0 | 0 0 | 0 0 | 0 | 0 | 0 0 | 0 | 0 | 0 (| 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Carcass ID Number | | 3 4
4 5 | 2 4 3 1 | | | 1 1
1 0 | | | 0 3 | | | | 0 | | 2 | 4
9 | | 1 | | | | Alimentary System | Esophagus | + + - | + + | + + | + | + | + + | + | + | + + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, colon | + + - | + + | + + | . + | + | + + | + | + | + + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, rectum | + + - | + + | + + | + | + | + + | + | + | + + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, cecum | + + - | + + | + + | + | + | + + | + | + | + + | + | + | + | + | + | + | + | M | + | + | + | | Intestine small, duodenum | + + - | + + | + + | + | + | + + | + | + | + + | + | + | + | + | + | + | + | + | + | + | + | | Intestine small, jejunum | + + - | + + | + + | + | + | + + | + | + | + + | + | + | + | + | + | + | + | + | + | + | + | | Carcinoma
Intestine small, ileum | + + - | + + | + + | + | + | + + | + | + | + + | - + | X
+ | + | + | + | + | + | + | + | + | + | | Liver | + + - | + + | + + | . + | + | + + | + | + | + + | | + | + | + | + | + | + | + | + | + | + | | Hepatocellular adenoma | | | • | | | | | | | | | | | | | | X | | | | | Histiocytic sarcoma | Mesentery | - | + + | + | | | | + | | | | | | + | | | | | | + | + | | Schwannoma benign | X | | Oral mucosa | | | | | | + | | | | | | | | | | | | | | | | Pharyngeal, squamous cell papilloma | | | | | | X | | | | | | | | | | | | | | | | Pancreas | + + - | + + | + + | + | + | + + | + | + | + + | + | + | + | + | + | + | + | + | + | + | + | | Acinus, adenoma | | | | | | | | | | | | | | | | | | | , | | | Salivary glands | + + - | + + | + + | + | + | + + | + | + | + + | - + | + | + | + | + | + | + | + | + | + | + | | Stomach, forestomach | + + - | + + | + + | + | + | + + | + | + | + + | + | + | + | + | + | + | + | + | + | | + | | Stomach, glandular
Tooth | + + - | + + | + + | + | + | + + | + | + | + + | - + | + | + | + | + | + | + | + | + | + | + | | 10001 | Cardiovascular System | Heart | + + - | + + | + + | + | + | + + | + | + | + + | + | + | + | + | + | + | + | + | + | + | + | | Endocrine System | Adrenal cortex | + + - | + + | + + | + | + | + + | + | + | + + | - + | + | + | + | + | + | + | + | + | + | + | | Adrenal medulla | + + - | + + | + + | | + | + + | + | + | + + |
+ | + | + | + | | | + | | + | + | + | | Pheochromocytoma benign | | | X | | | | | | | | | 37 | | X | X | | X | 37 | | | | Bilateral, pheochromocytoma benign | | | | | | , . | | | | | | X | | | | | | X | , | | | Islets, pancreatic Adenoma | + + - | + + | + + | + | + | + + | + | +
X | + + | - + | + | +
X | + | + | + | + | +
X | + | + | + | | Agenoma
Parathyroid gland | | | 400 | | _ | + + | + | | + + | - + | + | л
+ | + | + | + | + | | + | + | _ | | Paradiyroid giand
Pituitary gland | + + - | + + | + + | . + | + | | | | + + | | + | + | | | | | | + | + | | | Pars distalis, adenoma | тт. | X | X | | | + +
X | т | ı- | T 7 | | Т | Г | X | | Г | Υ | | | Г | 1 | | Pars intermedia, adenoma | | 21 | Λ | | | | | X | 2 | • | | | | | | -1 | | | | | | Thyroid gland | + + - | + + | + + | . + | + | + + | + | | + + | - + | + | + | + | + | + | + | + | + | + | + | | C-cell, adenoma | | | | | | | • | | | | • | | • | | | | | • | | | | General Body System | None | NOHE | Genital System | Epididymis | + + - | + + | + + | + | + | + + | + | + | + + | + | + | + | + | + | + | M | + | + | + | + | | Penis | Preputial gland | + + - | + + | + + | + | + | + + | | + | + + | + | + | + | + | + | + | + | + | + | + | + | | Adenoma | | | | | | | X | | | | | | | | | | | | | | | Carcinoma | X | +: Tissue examined microscopically A: Autolysis precludes examination M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined TABLE A2 Individual Animal Tumor Pathology of Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine: 0 ppm | Number of Days on Study | 7 2 | 2 | 7 2 | 7 2 | 7 2 | 2 | _ | | 2 | 7 7 2 2 | 2 2 | 7 2 | 7 2 | 7 2 | 7 2 | 7 2 | 7 2 | 7 | 7 | 7 2 | 7 2 | 7 2 | 2 | 7 2 | | |--|-----|---|-----|-----|-----|---|---|--------------|-----|------------|-----|-----|-----|-----|-----|-----|-----|----|----|-----|-----|-----|--------------|--------------|----------| | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 0 | | | 0 | | | | | 0 | | | | 0 | 0 | | 0 | | 0 | | 0 | 0 | 0 | 0 | | Total | | Carcass ID Number | 0 | | 0 | 1 | 1 | 1 | | | | 2 2 | | | 3 | 3 | 3 | 3 | | 3 | | 4 | 4 | 4 | 4 | | Tissues/ | | | 6 | 8 | 9 | 4 | 7 | 8 | 0 | 1 | 4 | 5 7 | 7 8 | 9 | 0 | 1 | 2 | 3 | 5 | 7 | 9 | 0 | 2 | 6 | 7 | 0 | Tumors | | Alimentary System | Esophagus | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine large, colon | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine large, rectum | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine large, cecum | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Intestine small, duodenum | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine small, jejunum Carcinoma | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50
1 | | Intestine small, ileum | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Liver | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Hepatocellular adenoma | 1 | | Histiocytic sarcoma | X | | | 1 | | Mesentery | + | | + | | | | | | + | | | | | | | | | | | | | | | + | 11 | | Schwannoma benign | 1 | | Oral mucosa | 1 | | Pharyngeal, squamous cell papilloma | 1 | | Pancreas | + | + | + | + | + | + | + | | + - | + + | + + | + | + | + | + | + | + | | | + | + | + | + | + | 50 | | Acinus, adenoma | | | | | | | | | X | | | | | | | | | | X | | | | | | 2 | | Salivary glands | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Stomach, forestomach
Stomach, glandular | + | + | + | + | + | + | + | + | + - | + +
+ + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50
50 | | Tooth | | | т | т | + | т | т | + | т - | | г т | т | т | т | т | т | т | Τ. | Τ. | _ | т | т | _ | Τ | 2 | | 10011 | | | | | ' | | | ' | | | | | | | | | | | | | | | | | | | Cardiovascular System | Heart | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Adrenal medulla | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Pheochromocytoma benign | | | | | | X | | | 2 | K | | | | X | | | | | X | | | X | \mathbf{X} | X | 11 | | Bilateral, pheochromocytoma benign | | | | | | | | X | | | | | | | | X | | X | | X | | | | | 6 | | Islets, pancreatic | + | + | + | + | + | + | | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Adenoma | | | | | | | | X | | | | | | | | | | | | | | | | | 4 | | Parathyroid gland | + | + | + | + | + | + | | | | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | | 50 | | Pituitary gland | + | + | + | + | + | + | | | | + + | | + | + | + | | + | + | + | + | + | + | + | + | + | 50 | | Pars distalis, adenoma | | | X | X | | | | X. | X | X. | X | | | | X | X | | | | | | X | | | 16 | | Pars intermedia, adenoma | 1 | | Thyroid gland | + | | + | + | | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | C-cell, adenoma | | X | | | X | 2 | | General Body System None | Constal Crestons | Genital System | Epididymis | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Penis | | | | | | | | | | | ١. | | | | | | | | | | | | , | | 1 | | Preputial gland | + | + | + | + | + | + | + | + | | + +
, | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Adenoma
Carcinoma | | | | | | | | | 1 | K | | | | X | | X | | | | X | | | X | \mathbf{v} | 3
5 | | Carcinonia | | | | | | | | | | | | | | Λ | | | | | | Λ | | | Λ | Λ | 3 | A-8 Pyridine, NTP TR 470 | | 3 | 3 | 3 | 4 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 5 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | |---|---|---|---|-----|---|----|---|-----|-----|-----------|------|------------|-----|--------|----|----|---|---|----|----|--------|---|----|---| | Number of Days on Study | 0 | 8 | 8 | 3 | 7 | | | | 9 | | | | 1 4 | | 6 | | | 9 | | | | 1 | | | | Number of Days on Study | 9 | 8 | 8 | 4 | | | | | | | | |) 4 | | | | | | | | | | 9 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (|) (| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Carcass ID Number | 2 | 1 | 3 | | | 4 | | | | | | |) 3 | | | | | | | | | 1 | | | | | 5 | 2 | | | | | | | | | | | 8 | | | | | | | | | | | | | Genital System (continued) | Prostate | + | + | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Seminal vesicle | + | + | + | + | + | + | + | + | | | + - | + + | + + | + | + | | + | + | + | + | + | + | | + | | Testes | + | + | + | + | + | + | | | | | | | + | | | | + | | | M | | | | | | Bilateral, interstitial cell, adenoma
Interstitial cell, adenoma | | | | | X | X | | X | | X | X | () | X | | X | X | X | | X | | X | X | X | X | | · | _ | | | | | Hematopoietic System Bone marrow | + | + | + | + | + | + | + | + | + | + | + - | ⊢ ⊣ | + + | + | + | + | + | + | + | + | + | + | + | + | | Histiocytic sarcoma | ' | | | | | • | | | | | | | | | ' | ' | | | | | • | | | | | Lymph node | + | | | | + | + | + | | | + | + - | + - | + | + | | + | | + | | + | + | + | + | | | Lymph node, mandibular | + | + | + | + | + | + | • | + | | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Lymph node, mesenteric | + | + | + | + | + | + | + | + | + . | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Spleen | + | + | + | + | + | + | + | + | + . | + | + - | + + | + + | + | A | + | + | + | + | + | + | + | + | + | | Гһутиѕ | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | | ntegumentary System | Mammary gland | + | + | + | + | + | + | + | + | + | + | + - | + + | + + | + | M | + | + | + | + | + | | + | + | + | | Fibroadenoma | | J | | JI. | | ر | _ | _ | _ | _ | _ | | | .1 | _1 | ر | _ | _ | ر | _ | X
+ | | _1 | _ | | Skin
Keratoacanthoma | + | + | + | + | + | + | + | + | + | + | + - | r + | + + | +
X | | + | + | + | + | + | + | + | + | + | | Squamous cell papilloma | | | | | | | | | | | | | | 1 | | | | | | | | | | | | Subcutaneous tissue, fibroma | | | | | | | | | | | , | ζ | | | X | | | | | | | | | | | Subcutaneous tissue, lipoma | | | | | | | | | | | • | | | | - | | | | | | | | | X | |
Musculoskeletal System | Bone | + | + | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Nervous System | Brain | + | + | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Spinal cord | , | | | | | | | | | | | | | | | • | | | | Ċ | | + | | , | | Respiratory System | _ | _ | _ | | | Lung | + | + | + | + | + | + | + | + | + | + | + - | ⊢ ⊣ | + + | + | + | + | + | + | + | + | + | + | + | + | | Alveolar/bronchiolar adenoma | • | Osteosarcoma, metastatic, nose | | | | | | | | | | | | K | | | | | | | | | | | | | | Nose | + | + | + | + | + | + | + | + | + | + | + - | H H | + + | + | + | + | + | + | + | + | + | + | + | + | | Osteosarcoma | | | | | | | | | | | . 2 | ζ. | | | | | | | | | | | | | | Frachea Frachea | + | + | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Special Senses System | Zymbal s gland | | | | | | | | | | | | 4 | | | | | | | | | | | | | | Carcinoma | | | | | | | | | | | | Σ | | | | | | | | | | | | | | Urinary System | Kidney | + | + | + | + | + | + | + | + | + | + | + - | ⊢ + | + + | + | + | + | + | + | + | + | + | + | + | + | | Renal tubule, adenoma | Jrinary bladder | + | + | + | + | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Systemic Lesions | Multiple organs | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | | Histiocytic sarcoma | X | | | | v | X | | Y | Y · | Y | X | 7 3 | 7 | X | | X | | | X | X | Y | v | Y | | | Leukemia mononuclear
Mesothelioma benign | Λ | | | | Λ | 21 | | 21. | A . | /1 | 21 2 | 1 2 | • | 21 | | 21 | | | 21 | 21 | 21 | Λ | 21 | | | Number of Days on Study | 7
2
2 | 7
2
2 | | 7
2
2 | 7
2
2 | 7
2
2 | 7 7
2 2
2 2 | | _ | 7
2
2 | |--|------------------|-------------|-------------|-------------|-------------|-------------|-------------------|--------------------------|-------------|-------------|-----------------------|-------------|-------------|-------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------------------|-------------|-------------|---------------------------------------| | Carcass ID Number | 0
0
6 | 0 | 0 | 1 | 0
1
7 | 1 | 0 0
2 2
0 1 | 2 | | 0
2
7 | 2 | 0
2
9 | | 3 | 0
3
2 | 3 | 0
3
5 | 3 | 0
3
9 | 0
4
0 | 0
4
2 | 0
4
6 | | 0
5
0 | Total
Tissues/
Tumors | | Genital System (continued) Prostate Seminal vesicle Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma | +
+
+
X | +
+
X | | | +
+
X | +
+
X | + -
+ -
X | - +
- +
- +
X | | +
+
X | +
+
+ | | +
+
X | | | | | | +
+
X | | +
+
X | + + + | + | +
+
X | 50
50
49
33
9 | | Hematopoietic System Bone marrow Histiocytic sarcoma Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus | + + + + + + | + + + + + | + + + + + + | + + + + + | + + + + + + | + + + + + | + - | - +
- +
- +
- + | + + + + + + | + + + + + | + + + + + + | + + + + + | + + + + + + | + + + + + + | + + + + + + | + + + + + + | + + + + + + | + + + + + + | + ++++ | + + + + + | + + + + + | +
X
+
+
+
+ | + + + + + + | + + + + + | 50
1
20
50
50
49
50 | | Integumentary System Mammary gland Fibroadenoma Skin Keratoacanthoma Squamous cell papilloma Subcutaneous tissue, fibroma Subcutaneous tissue, lipoma | + | +
X | + | + | + | + | + - | ζ. | +
+
X | +
+
X | +
X
+
X
X | + | + | X
+ | X | + | + | +
+
X | +
+
X | + | + | + | +
+
X | + | 49
4
50
6
4
4 | | Musculoskeletal System
Bone | + | + | + | + | + | + | + - | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Nervous System
Brain
Opinal cord | + | + | + | + | + | + | + - | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50
1 | | Respiratory System Lung Alveolar/bronchiolar adenoma Osteosarcoma, metastatic, nose Nose Osteosarcoma Trachea | + | + + + | + + + | + + + | + + + + | + + + | + - | - + | · +
· + | + + + | + + + | + + + | + + + | | +
X
+
+ | + + + | + + + | + + + | + + + | + + + | + + + | + + + | + + + | + + + | 50
1
1
50
1
50 | | Special Senses System
Zymbal s gland
Carcinoma | 1 | | Urinary System
Kidney
Renal tubule, adenoma
Urinary bladder | + | + | +
X
+ | | + | + | + - | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50
1
50 | | Systemic Lesions Multiple organs Histiocytic sarcoma Leukemia mononuclear Mesothelioma benign Mesothelioma malignant | +
X | +
X | +
X | + | +
X | +
X | + - | - + | + | + | + | +
X | +
X
X | + | +
X | | +
X | + | +
X | + | + | +
X | +
X | +
X | 50
1
29
1 | A-10 Pyridine, NTP TR 470 TABLE A2 Individual Animal Tumor Pathology of Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine: 100 ppm | Individual Animal Tumor Pathology | y of Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine: 100 ppm | | |---------------------------------------|---|--| | | 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | | Number of Days on Study | 4 5 6 3 5 9 0 0 0 1 2 2 2 4 4 6 6 6 6 6 6 7 7 8 | | | | 4 5 6 8 3 8 4 4 7 8 0 5 8 1 2 4 5 5 6 6 6 7 3 7 2 | | | | 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 | | | Carcass ID Number | 9 9 5 7 9 6 7 8 7 8 0 8 7 5 6 9 6 7 5 6 7 9 9 9 6 | | | | 4 9 6 7 8 9 9 1 2 7 0 9 1 3 2 1 0 4 2 7 3 0 6 5 6 | | | Alimentary System | | | | Esophagus | + | | | Intestine large, colon | + + + + + + + + + + + + + + + + + + + | | | Intestine large, rectum | + + + + + + + + + + + + + + + + + + + | | | Intestine large, cecum | + + + + + + + + + + + + + + + + + + + | | | Intestine small, duodenum | + + + + + + + + + + + + + + + + + + + | | | Intestine small, jejunum | + + + + + + + + + + + + + + + + + + + | | | Intestine small, ileum | + + + + + + + + + + + + + + + + + + + | | | Liver | + + + + + + + + + + + + + + + + + + + | | | Hepatocellular adenoma | | | | Mesentery | ++ + + + + | | | Pancreas | + + + + + + + + + + + + + + + + + + + | | | Acinus, adenoma | | | | Salivary glands | + | | | Stomach, forestomach | + + + + + + + + + + + + + + + + + + + | | | Stomach, glandular | + + + + + + + + + + + + + + + + + + + | | | Tooth | | | | Cardiovascular System | | | | Heart | + | | | Endocrine System | | | | Adrenal cortex | + + + + + + + + + + + + + + M + + + + + | | | Carcinoma | | | | Adrenal medulla | + + + + + + + + + + + + + + + + + + + | | | Pheochromocytoma benign | X | | | Bilateral, pheochromocytoma benign | | | | Islets, pancreatic | + + + + + + + + + + + + + + + + + + + | | | Adenoma | | | | Parathyroid gland | + | | | Pituitary gland | + | | | Pars distalis, adenoma | \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} | | | Thyroid gland | + | | | Bilateral, C-cell, adenoma | | | | C-cell, carcinoma | X | | | Follicular cell, adenoma | | | | General Body System | | | | None | | | | Genital System | | | | Epididymis | + + + + + + + + + + + + + + + + + + + | | | Preputial gland | + + + + + + + + + M + + + + + + + + + + | | | Carcinoma | | | | Prostate | + + + + + + + + + + + + + + + + + + + | | | Seminal vesicle | + + + + + + + + + M + + + + + M + + + + | | | Testes | + + + + + + + + + + + + + + + + + + + | | | Bilateral, interstitial cell, adenoma | f X X X X X X X X X X | | | | | | TABLE A2 Individual Animal Tumor Pathology of Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine: 100 ppm | | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 ′ | 7 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | |---------------------------------------|----|-----|-----|------|----|---|----|-----|-----|---|-----|------------|-----|----|----|----|----|----|------------|----|----|-----|---|----|----------| | Number of Days on Study | 9 | 0 | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 8 | 0 | 1 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | C | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (| 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Total | | Carcass ID Number | 5 | | | | | 5 | 5 | | | | | 66 | | | 7 | 7 | 8 | | 8 | 8 | 8 | 9 | 9 | | Tissues/ | | Carcass ID Tamber | 9 | | | | | | | 5 | | | | 3 4 | | | | 8 | | | | | | | | | Tumors | | | , | U | , , | | 5 | 1 | - | 5 | | 0 | 1 . | <i>,</i> + | . , | 0 | U | 0 | U | - | J | U | o | | 3 | | Tuillois | | Alimentary System | Esophagus | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine large, colon | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | +
 + | 48 | | Intestine large, rectum | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Intestine large, cecum | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Intestine small, duodenum | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Intestine small, jejunum | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Intestine small, ileum | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Liver | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Hepatocellular adenoma | | | | | | X | | | | | | | | | | | | | | | | | | | 1 | | Mesentery | + | + | | | | + | | | + | | | | | + | + | | | | | + | | | + | | 14 | | Pancreas | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Acinus, adenoma | X | 1 | | Salivary glands | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Stomach, forestomach | + | . + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Stomach, glandular | + | . + | - + | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Tooth | | | | | | | | | | | + | | | | | | | | | | | | | | 1 | | Cardiovascular System | Heart | _ | | | | _ | _ | _ | _ | _ | + | + - | | - + | + | + | _ | _ | _ | + | _ | _ | _ | _ | + | 50 | | Heart | | 7 | | | | т | Т | Т | T | Т | Т - | гт | | | | т | Т | т_ | Т | Т | т | + | Т | Т | 50 | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Carcinoma | | | | | | | | | | | | | X | | | | | | | | | | | | 1 | | Adrenal medulla | + | + | + | | | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Pheochromocytoma benign | | | | X | 2 | | Bilateral, pheochromocytoma benign | X | 1 | | Islets, pancreatic | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Adenoma | | | | | | | X | | X | | | | | | | | | | | | | | | | 2 | | Parathyroid gland | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Pituitary gland | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Pars distalis, adenoma | | | | | | | | X | | X | 2 | X X | | | | X | | | X | X | | | | | 13 | | Thyroid gland | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Bilateral, C-cell, adenoma | | | | | | | | | | | | | | | | | | X | | | | | | | 1 | | C-cell, carcinoma | 1 | | Follicular cell, adenoma | | | | | | | | | | | | X | | | | X | | | | | | | | | 2 | | Conoral Body System | General Body System | None | Genital System | Epididymis | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Preputial gland | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | M | + | + | + | + | + | + | 47 | | Carcinoma | | | | | | | | | X | | 2 | X | | | | | | | | | | | | | 2 | | Prostate | + | + | + | + | + | + | + | | | + | | + + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Seminal vesicle | + | . + | - + | + | + | + | + | + | | | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Testes | 4 | | | . + | + | + | + | + | | | |
+ + | . + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Bilateral, interstitial cell, adenoma | X | X | X | Ý | X | | | | X | | | XX | × | | | X | X | | • | X | X | x | | X | 35 | | Interstitial cell, adenoma | 21 | . 2 | | . 21 | /1 | | 41 | X | 4.2 | | | | | 21 | 21 | 41 | 41 | | X | 41 | 21 | . 1 | | 4. | 8 | | inconstitui cen, acenonia | | | | | | | | 4 h | | | | | | | | | | | ≠ 1 | | | | | | 0 | A-12 Pyridine, NTP TR 470 | | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | |--|------|-----|-----|------|-----|---|---|---|---|-----|----|----|----|----|----|-----|----|---|---|---|---|----------|---|----------|---|--| | Namel on of Done on Charles | | | 4 | 5 | 5 | | | 6 | Number of Days on Study | 4 | | 6 | | 5 | | | 0 | | | | | | | | 6 | 6 | | 6 | | 6 | | 7 | 7 | | | | | 4 | 5 | 6 | 8 | 3 | 8 | 4 | 4 | 7 | 8 | 0 | 5 | 8 | 1 | 2 | 4 | 5 | 5 | 6 | 6 | 6 | 7 | 3 | 7 | 2 | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Carcass ID Number | 9 | 9 | 5 | 7 | 9 | 6 | 7 | 8 | 7 | 8 | 0 | 8 | 7 | 5 | 6 | 9 | 6 | 7 | 5 | 6 | 7 | 9 | 9 | 9 | 6 | | | | 4 | 9 | 6 | 7 | 8 | 9 | 9 | 1 | 2 | 7 | 0 | 9 | 1 | 3 | 2 | 1 | 0 | 4 | 2 | 7 | 3 | 0 | 6 | 5 | 6 | | | Hematopoietic System | Bone marrow | + | | | Lymph node | | | + | + | + | + | + | + | + | | + | | + | | + | • | • | | + | • | + | + | + | | • | | | Lymph node, mandibular | + | + | + | + | + | + | + | + | + | + | + | | | + | | + | + | + | + | + | + | + | + | + | + | | | Lymph node, mesenteric | + | + | + | + | + | + | + | + | | M | | | + | | | M | | + | + | + | + | + | + | M | | | | Spleen | + | + | + | + | + | + | + | + | | M | | | | + | | | | + | + | + | + | + | + | | + | | | Thymus | + | + | + | + | + | | | | | | | + | | + | | + | | | + | + | + | | | + | | | | Thymus | | ' | | | - | - | | | - | | | | _ | | _ | ' | ' | _ | | ' | | <u> </u> | | <u> </u> | | | | Integumentary System | Mammary gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | | | Carcinoma | Fibroadenoma | Skin | + | | | Keratoacanthoma | X | | | | | Squamous cell papilloma | Trichoepithelioma | Subcutaneous tissue, fibroma | | | | | X | X | | | Musculoskeletal System | Bone | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | + | _ | _ | _ | _ | _ | _ | _ | _ | _ | + | | | Skeletal muscle | + | Т | Т | т | Т | Т | Г | - | - | Г | 17 | 1 | 17 | 17 | 1. | 1- | 1- | | ۲ | ۲ | Г | - | - | Г | ' | | | DACICIAI IIIUSCIC | Nervous System | Brain | + | | | Oligodendroglioma malignant | | X | Respiratory System | Lung | + | | | Carcinoma, metastatic, mammary gland | | 1 | 1 | 1. | 1 | 1 | 1 | | ' | ' | | ' | ' | ' | | ' | ' | | 1 | 1 | 1 | | 1 | ' | | | | Carcinoma, metastatic, maninary grand
Carcinoma, metastatic, Zymbal s gland | Nose | _ | | | | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | | | _ | | | Respiratory epithelium, squamous cell carcinoma | _ | | т | т | - | т | - | 7 | 7 | 7 | Τ* | Τ- | т* | Τ' | Τ' | 7 | Τ- | | - | _ | - | 7 | | _ | т | | | Frachea | + | | | | - 1" | - 1 | - 1 | - 11 | - ' | - | 1 | _ | | ' | | - | • | _ | _ | • | • | | - | 1 | 1 | | - | | | | | Special Senses System | Eye | Zymbal s gland | Carcinoma | Urinary System | Kidney | _ | _ | _ | _ | + | _ | _ | + | + | м | + | + | + | + | + | м | + | _ | _ | _ | _ | _ | _ | _ | + | | | • | + | + | + | + | + | + | + | т | т | IVI | т | _ | _ | т | _ | IVI | т | + | + | + | + | + | + | + | _ | | | Mesenchymal tumor malignant | Renal tubule, carcinoma | | | | | | | , | , | | | | | | | | ١,, | | , | | | | | | | | | | Urinary bladder | + | + | + | + | + | + | + | + | + | IVI | + | + | + | + | + | IVI | + | + | + | + | + | + | + | IVI | + | | | Systemic Lesions | Multiple organs | + | Leukemia mononuclear | | | X | X | X | X | X | X | X | | X | X | X | X | X
| | X | X | X | | X | X | X | | | | | Individual Animal Tumor Pathology of M | lale | F3 | 44/ | 'N] | Ra | ts i | n t | he : | 2-Տ | <i>l</i> ea | r I |)rii | ıki | ng | Wa | ate | r S | tuo | dy | of | Py | rid | ine | : 1 | 100 | ppm | |--|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------|-------------|-------------|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--| | Number of Days on Study | 6
9
8 | 7
0
0 | 7
0
1 | 7
0
8 | 7
1
8 | 7
2
2 | | Carcass ID Number | 0
5
9 | 7 | 0
8
3 | 8 | 0
7
5 | 0
5
1 | 0
5
4 | | 5 | 0
5
8 | 0
6
1 | 6 | 6 | 0
6
5 | 6 | | 7 | | | 0
8
5 | 0
8
6 | 0
8
8 | 0
9
2 | 9 | 0
9
7 | Total
Tissues/
Tumors | | Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus | + + + + + + | + + + + + + | + + + + + + | + + + + + | + + + + + + | + + + + + + | + + + + + | + + + + + + | + + + + + + | + + + + + | + + + + + + | + + + + + | + + + + + + | + + + + + | + + + + + | + + + + + | +
+
+
M | + + + + + | + + + + + + | + + + + + | + ++++ | + + + + + | + ++++ | +++++ | + + + + + | 50
25
50
47
48
49 | | Integumentary System Mammary gland Carcinoma Fibroadenoma Skin Keratoacanthoma Squamous cell papilloma Trichoepithelioma Subcutaneous tissue, fibroma | M
+ | + | + | +
X
+ | | +
X
+ | + | + | + | + | + | +
+
X | + | +
X
+
X | + | + | + | +
+
X | + | + | + | +
X
+ | +
X | + | + | 48
1
3
50
4
1
1
2 | | Musculoskeletal System Bone keletal muscle | + | 50
1 | | Nervous System
Brain
Oligodendroglioma malignant | + | 50
1 | | Respiratory System Lung Carcinoma, metastatic, mammary gland Carcinoma, metastatic, Zymbal s gland Nose Respiratory epithelium, squamous cell carcinoma Trachea | + + + | + + + | +
X
+ | | + + + | + + + | + + + | + + + | + + + | + + + | + + + | + + + | + + + | +
X
+
+ | + + + | + + + | + + + | + + + | + + + | + + + | + + + | + + + | + + + | + + + | + + + | 50
1
1
50
1
50 | | Special Senses System Eye Zymbal s gland Carcinoma | | | +
X | | | | | | | | | | | | | | | | | | + | | | | | 1
1
1 | | Urinary System Kidney Mesenchymal tumor malignant Renal tubule, carcinoma Jrinary bladder | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X
+ | + | + | +
X
+ | + | + | + | + | 48
1
1
47 | | Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant | +
X | +
X | + | + | +
X + | +
X | +
X | + | + | + | + | + | + | + | +
X | +
X | +
X | + | 50
32
1 | A-14 Pyridine, NTP TR 470 | | 2 | 4 | - 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 6 | | | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | |---------------------------------------|---|---|-----|-----|---|---|---|---|-----|---|-----|---------|------------|---|---|---|---|---|---|---|---|---|---|---| | Number of Days on Study | | | | | 5 | | | | | | | | 6 | | | | | | | | | | | | | Number of Days on Study | 6 | | | | | | 8 | | | | | | 3 4 | | | | | 6 | | | | 0 | | | | | | U | , | , | + | 0 | U | 3 | , | U | , | | . 0 | - | 0 | 0 | | , | 3 | , | U | U | 0 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Carcass ID Number | 1 | | | 4 | 2 | 4 | | | | | 4 5 | | | 0 | | | | | | | | | | | | | 7 | 8 | 5 | 9 | 3 | 7 | 3 | 3 | 4 | 8 | 6 (|) 2 | 2 4 | 9 | 0 | 1 | 9 | 0 | 8 | 6 | 8 | 1 | 4 | 7 | | Alimentary System | Esophagus | + | + | + | + | + | + | + | + | + - | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, colon | + | + | + | + | + | | | | | | + - | + + | + + | | | + | | | | + | + | + | + | + | | Lipoma | Intestine large, rectum | + | + | + | + | + | + | + | + | + . | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, cecum | + | + | + | + | + | + | + | + | + - | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Lipoma | Intestine small, duodenum | + | + | + | + | + | + | + | + | + - | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Intestine small, jejunum | + | + | + | + | + | + | + | + | + · | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | | Intestine small, ileum | + | + | + | + | + | + | + | + | + - | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Liver | + | + | + | + | + | + | + | + | + · | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | | Hepatocellular carcinoma | Mesentery | | | | | | | | | | | | | + | | + | | | | + | + | | | | | | Oral mucosa | | | | | | | | | | | | | | | + | | | | | | | | | | | Pharyngeal, squamous cell papilloma | Pancreas | + | + | + | + | + | + | + | + | + - | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | | Acinus, adenoma | Salivary glands | + | + | + | + | + | + | + | + | + - | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | | Stomach, forestomach | + | + | | | + | + | + | + | + - | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Squamous cell papilloma | | | X | Stomach, glandular | + | + | + | + | + | + | + | + | + - | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | Tooth | Cardiovascular System | Heart | + | + | + | + | + | + | + | + | + - | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | Endocrine System | Adrenal cortex | + | + | + | + | + | + | | | | | | + + | | + | + | | + | + | + | + | + | | + | | | Adrenal medulla | + | + | + | + | + | + | | | + - | | | + + | + + | + | | | + | + | | | + | + | + | | | Pheochromocytoma benign | | | | | | | | X | | | X | | | | | X | | | X | | | | | X | | Islets, pancreatic | + | + | + | + | + | + | + | + | + - | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | | Adenoma | Parathyroid gland | + | + | | | + | | | | | | | | + + | | | | | | | | | | | | | Pituitary gland | + | | | | | | + | + | + - | | | + | + + | | + | + | + | + | + | + | + | | + | + | | Pars distalis, adenoma | X | | X | | X | | | | | | X | | X | | | | | | | | | X | | | | Thyroid gland | + | + | + | + | + | + | + | + | + . | + | + + | - + | + + | + | + | + | + | + | + | + | + | + | + | + | | C-cell, adenoma | General Body System | None | | | | _ | | | _ | | | | | | | | | | | | | | | | | | | Genital System | Epididymis | + | | + | + | + | + | + | + | + - | + | + - | - N | 1 + | + | + | + | + | + | + | + | + | + | + | + | | Preputial gland | T | | . + | + | + | + | + | + | + - | + | + - | - IV | _ | + | + | + | + | + | + | + | + | + | + | + | | Adenoma | ' | • | | X | X | | | | X | | | | - ' | | ' | | | ' | • | | | ' | | • | | Prostate | + | | + | + | + | + | + | | | + | + + | - 4 | + + | + | + | + | + | + | + | + | + | + | + | + | | Seminal vesicle | + | | . + | + | + | + | + | + | + . | + | + - |
- + | + + | + | + | + | + | + | + | + | + | + | + | + | | Testes | + | | . + | + | + | + | + | + | + . | + | + - | - N | 1 + | + | + | + | + | + | + | + | + | + | + | + | | Bilateral, interstitial cell, adenoma | | ' | | X | | | • | X | | X | . 3 | ζ | - ' | X | X | X | X | X | X | X | X | X | x | • | | Interstitial cell, adenoma | | | | 2.1 | | X | | | X | | Χ | - | X | | | | | | | | | | | | | | 7 | 7 | 7 | 7 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 3 | 7 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | |---------------------------------------|---|-----|-----|------------|----|---|---|---|---|---|---|---|---|-----|-----|-----------------|-----|----|----|---|-----|---|---|---|----------| | Number of Days on Study | 2 | 2 | . 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 2 | | | | | | | 2 | 2 | 2 | | 2 | | | 2 2 | | | | 2 | 2 | 2 | | 2 | | | | | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Total | | Carcass ID Number | 0 | | | | | | 1 | | | 1 | 2 | | | | 2 2 | | | 3 | 3 | 4 | 4 | 4 | | 4 | Tissues/ | | | 1 | | | 3 5 | Tumors | | Alimentary System | Esophagus | + | - 4 | - 4 | + + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | 50 | | ntestine large, colon | + | - + | - + | + + | + | + | + | + | + | + | + | + | + | + . | + - | + + | + | + | + | + | + | + | + | + | 50 | | Lipoma | | | | | | | | | | | | | | | | | | X | | | | | | | 1 | | ntestine large, rectum | + | + | - + | + + | + | + | + | + | + | + | + | + | + | + . | + - | + + | + | + |
+ | + | + | + | + | + | 50 | | ntestine large, cecum | + | + | - + | + + | + | + | + | + | + | + | + | + | + | + . | + - | + + | + | + | + | + | + | + | + | + | 50 | | Lipoma | X | 1 | | ntestine small, duodenum | + | + | - + | + + | + | + | + | + | + | + | + | + | + | + . | + - | + + | + | + | + | + | + | + | + | + | 50 | | ntestine small, jejunum | + | + | - + | + + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | 50 | | ntestine small, ileum | + | + | - + | + + | + | + | + | + | + | + | + | + | + | + . | + - | + + | + | + | + | + | + | + | + | + | 50 | | Liver | + | - + | - + | + + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | 50 | | Hepatocellular carcinoma | | | | | | | | | | | | | | | | | X | | | | | | | | 1 | | Mesentery | + | | | | | + | | | + | | | | | | | | | | | | | | | | 7 | | Oral mucosa | + | | | | | 2 | | Pharyngeal, squamous cell papilloma | X | | | | | 1 | | ancreas | + | . + | - 4 | + + | + | + | + | + | + | + | + | + | + | + . | + - | + + | + | + | + | + | + | + | + | + | 50 | | Acinus, adenoma | | | | | | | | | | | | | | | | | | X | | | | | | | 1 | | alivary glands | + | . + | - + | + + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | 50 | | tomach, forestomach | + | . 4 | - 4 | + + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | 50 | | Squamous cell papilloma | 1 | | Stomach, glandular | + | . 4 | - 4 | + + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | 50 | | Cooth | | | + | H | 1 | | Cardiovascular System | Heart | + | + | - + | + + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | 50 | | Endocrine System | Adrenal cortex | + | . + | - 4 | + + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | 50 | | Adrenal medulla | + | . 4 | - 4 | - + | + | + | + | + | + | + | + | + | + | + . | + - | - + | + | + | + | + | + | + | + | | 50 | | Pheochromocytoma benign | | | | | | | X | | • | X | | | X | | X | | | ď | X | | X | | X | | 14 | | slets, pancreatic | 4 | . 4 | - 4 | ⊢ + | + | + | + | + | + | + | + | | | | + - | + + | - + | + | + | + | + | + | + | + | 50 | | Adenoma | | | | | | | | | • | | | | X | • | | | | | | | • | | | | 1 | | Parathyroid gland | 4 | . 4 | | + + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | 50 | | Pituitary gland | | . + | - + | · · | + | + | + | + | + | + | + | + | | + . | + - | · ·
- + | - + | + | + | + | + | + | + | + | 50 | | Pars distalis, adenoma | Т | 7 | , , | | 1- | 1 | ' | ' | 1 | X | | X | | ' | | Γ Τ | - | 1- | 1. | 1 | - 1 | 1 | ' | ' | 12 | | Thyroid gland | + | . + | | | + | + | + | + | + | + | | + | | + - | | `
⊦ + | - + | + | + | _ | _ | _ | + | + | 50 | | C-cell, adenoma | ' | Σ | | ' | ' | ' | ' | ' | ' | ' | ' | ' | ' | | X | ' ' | | | ' | ' | | | ' | X | 30 | | General Body System Jone | Genital System | | | | | | | | | | | | | | | | | | , | | | | | | | 40 | | Epididymis | + | . + | - + | + | + | + | + | + | + | + | + | + | + | + · | + - | + + | + | + | + | + | + | + | + | + | 49 | | Preputial gland | + | . + | - + | + + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | 49 | | Adenoma | X | | | | | X | | | | X | | | X | | | | | | | | | | | | 7 | | Prostate | + | . + | - + | + + | + | + | + | + | + | + | + | + | + | + . | + - | + + | + | + | + | + | + | + | + | + | 50 | | Seminal vesicle | + | . + | - + | + + | + | + | + | + | + | + | + | + | + | + . | + - | + + | + | + | + | + | + | + | + | + | 50 | | Testes | + | . + | | + + | + | + | + | + | + | + | + | + | + | + . | | + + | + | + | + | + | + | + | + | + | 49 | | Bilateral, interstitial cell, adenoma | X | Σ. | | X | X | | X | X | X | X | X | X | X | X : | X X | X | X | X | X | X | X | X | X | X | 37 | | Interstitial cell, adenoma | | | | | | X | | | | | | | | | | | | | | | | | | | 6 | A-16 Pyridine, NTP TR 470 | Number of Days on Study | 2 6 | 8 | 2 | 5 2 | 5 | | 8 | 8 8 | 3 9 | | 2 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 7 | 6 | | 0 | 7 | 1 | |--------------------------------------|--------|-----|---|--------|-----|--------|---|-----|------|---|---|---|--------|---|---|---|--------|---|--------|--------|---|---|---|--------| | | 9 | 6 | 5 | 9 | 4 | 8 | 0 | 5 9 | 9 6 | 9 | 7 | 2 | 0 | 4 | 8 | 8 | 2 | 9 | 3 | 9 | 0 | 0 | 8 | 9 | | Carcass ID Number | | 1 3 | 1 | | 1 2 | | | 1 3 | 1 1 | | | | | | | | | | | | 1 | | 1 | | | Carcass ID Number | 1
7 | | 5 | 4
9 | _ | 4
7 | | 3 4 | | | | 4 | | | | | 2
9 | | 4
8 | 1
6 | | | | | | Hematopoietic System | Bone marrow | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Melanoma malignant, metastatic, skin | Lymph node | | | | + | + | | + | + - | + + | | + | | | + | | + | | + | + | | + | | + | + | | Lymph node, mandibular | + | + | + | + | + | + | + | + - | + + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Lymph node, mesenteric | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Spleen
Thymus | + | + | + | + | + | + | + | + - |
 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | | - | | | - | | | | | | - | - | - | | - | | | | | | | - | | | | Integumentary System | 1 | | Mammary gland
Fibroadenoma | | | _ | т | т | Υ | т | т - | гт | | т | т | +
X | т | т | т | т | т | _ | т | т | т | т | +
X | | Skin | + | + | + | + | + | + | + | + - | + + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | | Keratoacanthoma | | | | | ' | ' | ' | | | | ' | ' | ' | ' | ' | ' | | | | ' | | ' | | ' | | Keratoacanthoma, multiple | X | | | Squamous cell papilloma | Pinna, melanoma malignant | Subcutaneous tissue, fibroma | | | | | | | X | | | | | | | | | | | X | | | | | | | | Subcutaneous tissue, lipoma | | | | | X | Musculoskeletal System | Bone | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Nervous System | Brain | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | - | | | | | | | | | | | | | | | | | | | _ | _ | | _ | | | Respiratory System | Lung | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Alveolar/bronchiolar carcinoma | Melanoma malignant, metastatic, skin | Nose
Trachea | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Tracilea | | + | + | + | + | + | + | + - | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Special Senses System | Zymbal s gland | | + | Carcinoma | | X | Urinary System | Kidney | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Renal tubule, adenoma | Renal tubule, adenoma, multiple | X | | | Urinary bladder | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Systemic Lesions | Multiple organs | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Leukemia mononuclear | | | | X | | • | | ΧX | | | X | • | | X | | | | X | | • | X | | • | X | Individual Animal Tumor Pathology o | f Male | F. | 344 | /N | Ra | ts i | n tl | he 2 | 2-Y | ea | r D | rin | kiı | ng ` | Wa | ıteı | r S | tuc | ly (| of] | Py | rid | ine | : 2 | 200 | ppm | |---|-------------|-----|------------|-----------------------------| | Number of Days on Study | 7
2
2 | 2 | 2 | 7
2
2 | | Carcass ID Number | C | | 0 | 0 | 0 | 1
0
7 | 1
1
0 | 1 | 1 | 1
1
9 | 2 | 2 | 2 | 2 | 2 | 1
2
8 | 1
3
2 | 1
3
5 | 1
3
6 | 1
3
9 | 1
4
0 | 1
4
1 | 1
4
3 | 4 | 1
4
5 | Total
Tissues/
Tumors | | Hematopoietic System | Bone marrow Melanoma malignant, metastatic, skin | 4 | | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | 50
1 | | Lymph node
Lymph node,
mandibular | 4 | | - + | 20
50 | | Lymph node, mesenteric | + | | - + | 50 | | Spleen
Thymus | + | | - +
- + | +
• M | +
M | + | 50
48 | | Integumentary System | Mammary gland | + | | - + | 50 | | Fibroadenoma
Skin | | _ | 1 | | + | + | + | _ | _ | _ | _ | _ | _ | X | _ | _ | _ | _ | X | _ | | | | X | + | 6
50 | | Keratoacanthoma | 7 | | | Т. | | X | | т | т | т | т | т | Т | _ | т | т | Т | Т | т | Т | Т | Т | Т | Т | т | 1 | | Keratoacanthoma, multiple | 1 | | Squamous cell papilloma | X | | | | 1 | | Pinna, melanoma malignant | | | τ. | | | | | | | | | | | | v | | | | X | | | | | | | 1 | | Subcutaneous tissue, fibroma
Subcutaneous tissue, lipoma | | | Х | | | | | | | | | | | | X | | | | | | | | | | | 4 | | Musculoskeletal System
Bone | + | - + | - + | 50 | | Nervous System
Brain | 4 | | - | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | 48 | | Respiratory System | Lung | + | - + | - + | 50 | | Alveolar/bronchiolar carcinoma | | | | | | | | | | | X | X | | | | | | | v | | | | | | | 2 | | Melanoma malignant, metastatic, skin
Nose | 4 | | _ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | X
+ | + | + | + | + | + | + | 1
49 | | Frachea | 4 | | | + | 50 | | Special Senses System
Zymbal s gland
Carcinoma | 1
1 | | Urinary System | Kidney | + | | - + | 50 | | Renal tubule, adenoma
Renal tubule, adenoma, multiple | | | | | | | | | | | | | | | | | | | X | | | | | | | 1
1 | | Urinary bladder | + | - + | - + | 50 | | Systemic Lesions | Multiple organs Leukemia mononuclear | + | | - + | + | +
X | + | + | +
X | + | + | + | | +
X | + | + | +
X | + | + | +
X | + | + | + | + | | +
X | 50
26 | A-18 Pyridine, NTP TR 470 | | 1 | 1 | 1 | 1 | - | 5 | 5 | 5 4 | 5 5 | - 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |--|---|-----|--------|--------|--------|---|-----|----------|------------|-----|--------|-----|--------|--------------|--------|--------|--------|-----|--------|--------|--------|--------|--------|--------| | Namel on of Dong on Ctards | Number of Days on Study | 9 | | | | | | 2 | | | | | | | | | | | | | | | | 7
6 | | | | 4 | ٥ | 4 | 3 | 3 | U | 3 | 3 2 | 2 4 | ٥ | 1 | 0 | 2 | / | 4 | 4 | 1 | / | 1 | U | 2 | J | 0 | 1 | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Carcass ID Number | 5 | 7 | 6 | 9 | 7 | 9 | 6 | 7 6 | 5 9 | 9 | 9 | 5 | 5 | 8 | 5 | 6 | 5 | 8 | 5 | 8 | 7 | 6 | 8 | 6 | | | 5 | 7 | 3 | 9 | 4 | 8 | 5 | 0 2 | 2 2 | 5 | 1 | 2 | 4 | 7 | 1 | 9 | 3 | 3 | 6 | 0 | 1 | 6 | 8 | 0 | | Alimentary System | Esophagus | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, colon | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, rectum | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | | Intestine large, cecum | + | + | + | + | + | + | + . | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Intestine small, duodenum | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | | Intestine small, jejunum | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | M | M | + | + | + | + | + | | Intestine small, ileum | + | + | + | + | + | + | + . | + + | + + | + | + | + | + | + | + | + | + | M | M | + | + | + | + | + | | Liver | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Cholangiocarcinoma | Hepatocellular adenoma | | | | | | | | | | | | | X | | | | | | | | | | | | | Hepatocellular adenoma, multiple | Mesentery | | | | | | | + | | | | + | | | + | + | | | | + | | | | | | | Pancreas | + | + | + | + | + | + | + . | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Acinus, adenoma | Salivary glands | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Stomach, forestomach | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Stomach, glandular | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Tongue | Squamous cell papilloma | Cardiavagaular Systam | Cardiovascular System | Heart | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Adrenal medulla | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | | Pheochromocytoma complex | Pheochromocytoma benign | X | | | | Islets, pancreatic | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Parathyroid gland | M | [+ | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | | Pituitary gland | + | | | + | + | + | | | + + | | | + | | | | | | | | | | | + | | | Pars distalis, adenoma | | X | | | | | | | X | X | | X | | X | | X | | | | | | | | | | Thyroid gland | M | | | + | + | + | + | | | | + | + | | | | | | + | + | + | + | + | + | + | | C-cell, adenoma | General Body System | None | Conital System | Genital System Epididymis | + | + | + | + | + | + | + - | + - | + + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | | Preputial gland | | + | | + | + | + | + | . T |
 | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | | Adenoma | Т | - | - | 1. | ' | 1 | ' | . 7 | | 1. | 1 | 141 | ' | ' | ' | | ' | ' | 1 | ' | 1 | ' | ' | • | | Carcinoma | Prostate | | | | | | _ | _ | | | | | _ | _ | _ | _ | _ | _ | _ | _ | | | | | _ | | Seminal vesicle | + | + | + | | M | | Τ. | T 7 | - +
L ' | | | | т
Т | т
т | т
_ | т
Т | т
Т | | | | T | | | T
_ | | | + | + | + | + | IVI | + | Τ. | T 1 | r + | + | + | T | _ | T . | _ | T . | T | T . | + | + | + | + | + | T | | Testes Bilateral, interstitial cell, adenoma | + | + | +
v | +
v | +
v | + | v | ⊤ †
v | r +
√12 | + | +
v | M | v | + | +
X | + | + | v | +
v | +
v | +
v | +
v | +
X | +
v | | Interstitial cell, adenoma | | | A | X | Λ | X | X . | Λ | X | | X | | X | X | | X | | Λ | Λ | Λ | Λ | Λ | Λ | Λ | | mici suuai cen, auchoilla | | | | | | ^ | | | | | | | | $^{\lambda}$ | | ^ | | | | | | | | | TABLE A2 Individual Animal Tumor Pathology of Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine: 400 ppm | murviduai Ammai Tumoi Tathology | or wrate | т. | , | /11 | | U D 11 | | 10 2 | | | | | | | | | | -5 | | • | | | | | PP··· | |---|----------|------------|-----|-----|-----|---------------|---|------|----------|----------|-----|-------------------|---|---|---|---|---|----|---|---|---|---|---|---|----------| | | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 ′ | 7 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | Number of Days on Study | 8 | 9 | 9 | 9 | 9 | 0 | 1 | 1 | 1 | 2 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | • | 5 | 1 | 1 | 7 | 7 | 0 | 7 | 9 | 9 | 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | . 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | Total | | Carcass ID Number | 6 | 7 | 9 | 6 | 7 | 5 | 9 | 7 | 8 | 5 5 | 5 6 | | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 0 | Tissues/ | | | 8 | 3 | 0 | 1 | 5 | 8 | 4 | | | | | 7 | | | | 2 | | | | | 3 | 6 | | | Tumors | | Alimentary System | Esophagus | + | - + | + | + | + | + | + | + | + - | + - | + + | -
+ | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine large, colon | + | - + | . + | + | + | M | + | + | + . | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Intestine large, rectum | + | - + | . + | + | + | + | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Intestine large, cecum | + | - + | + | + | + | M | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Intestine small, duodenum | + | - + | + | + | + | M | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Intestine small, jejunum | + | - + | + | + | + | M | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Intestine small, ileum | + | - + | + | + | + | M | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Liver | + | - + | + | + | + | + | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Cholangiocarcinoma | X | | | | 1 | | Hepatocellular adenoma | | | | | | X | | | | | | | | | | | | | | | | | | | 2 | | Hepatocellular adenoma, multiple | | | | | | | | | | | | | | | | | X | | | | | | | | 1 | | Mesentery | | | + | | | | | | | | + + | _ | | | | | - | | | | | | | | 8 | | Pancreas | + | - + | . + | + | + | M | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Acinus, adenoma | X | | | 1 | | Salivary glands | + | - + | + | + | + | + | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Stomach, forestomach | + | - + | + | + | + | M | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Stomach, glandular | + | - + | + | + | + | M | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Tongue | + | 1 | | Squamous cell papilloma | X | 1 | | Cardiovascular System | Heart | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Endocrine System | Adrenal cortex | + | - + | - + | + | + | + | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Adrenal medulla | + | - + | . + | . + | + | + | + | + | + - | ·
+ - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Pheochromocytoma complex | • | | | · | | - | | - | | - | | | | | | • | | | • | • | | X | • | • | 1 | | Pheochromocytoma benign | | | | | | | | | | | Х | | | | | | | X | X | | | | | | 4 | | slets, pancreatic | + | - + | - + | + | + | M | + | + | + - | + - | + + | | + | + | + | + | + | | + | + | + | + | + | + | 49 | | Parathyroid gland | + | - + | . + | . + | + | + | + | + | <u>.</u> | | + + | | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Pituitary gland | + | - + | . + | + | + | + | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Pars distalis, adenoma | • | | | · | | - | X | - | | | XX | | | | | • | | | • | • | | | • | • | 11 | | Γhyroid gland | + | - + | - + | + | + | + | | + | + - | | | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | C-cell, adenoma | | | | | | | | | | X | | | | | | | | X | | | | | | | 2 | | General Body System | None | Genital System | Epididymis | + | - + | + | + | + | M | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Preputial gland | + | | | | | | | | | | | - + | | | | | | | | | | | + | + | 48 | | Adenoma | | · | | • | | - | | | | | X | | | X | | | | | | | | • | | | 2 | | | | | | | | | | | | • | | | | - | | | | | X | | | | | | 1 | | Carcinoma | | - + | - + | + | + | M | + | + | + - | + - | + + | + | + | + | + | + | + | + | | + | + | + | + | + | 49 | | Carcinoma
Prostate | - | 48 | | Prostate | 4 | | - + | + | - + | M | + | + | + . | + - | + + | - + | + | + | + | | | | | | + | + | + | + | 40 | | Prostate
Seminal vesicle | + | + | · + | Caremonia Prostate Seminal vesicle Festes Bilateral, interstitial cell, adenoma | + | - +
- + | | + | + | M | + | + | + - | + - | + + | - +
- +
X X | + | + | + | + | + | + | + | + | + | + | + | + | 48
40 | A-20 Pyridine, NTP TR 470 | Number of Days on Study | 1
9
4 | 2 | 4 | 6 | | 2 | 2 | 4 | 6 | 8 | 9 | 0 | 6
1
6 | 2 | 2 | 3 | 6
4
4 | 4 | 4 | 6
5
1 | 6
7
0 | 7 | 6
7
5 | | 8 | |--|-----------------------|-----------|------------|---|--------|-------------|-----------|-------------|-----------|-------------|-------|---------|-------------|-------------|------|-----------|-------------|-----------|-----------|-------------|-------------|-------------|-------------|-------------|-----------------------| | Carcass ID Number | 1
5
5 | 1 | 1 6 | 1 9 | 1 | 1 9 | 1 6 | 1 7 | 1 6 | 1
9 | 1 | 1
9 | 1 5 | 1 5 | 1 8 | 1 5 | 1 6 | 1 5 | 1 8 | 1 5 | 1 8 | 1
7 | 1 6 | 1 8 | 1 6 | | Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus Thymoma benign | +
+
M
+
+ | + + + + + | - + | + | + + | + + + + + + | + + + + + | + + + + + + | + + + + + | + | +++ | +++ | + + + + | +
+
+ | ++++ | + + + + + | + + + + + | + + + + + | + + + + + | + + + + + + | + + + + + | + + + + + + | + + + + + | + + + + + + | +
+
+
+
+ | | Integumentary System Mammary gland Fibroadenoma Skin Basal cell adenoma Keratoacanthoma Trichoepithelioma Pinna, melanoma malignant | + | + | - + | +
+ | + | + | + | + | + | +
+
X | + | + | + | + | + | + | + | + | + | + | +
+
X | M
+ | + | + | +
X
+
X | | Musculoskeletal System Bone | + | + | - + | | Nervous System
Brain | + | + | - + | | Respiratory System Lung Alveolar/bronchiolar adenoma Nose Trachea | + + + | ++++ | - +
- + | +++++++++++++++++++++++++++++++++++++++ | +++++ | + + + | + + + | + + + + | + + + + | + + + + | + + + | + + + + | + + + + | +++++ | ++++ | + + + + | + + + + | + + + + | + + + | + + + | + + + | + + + | + + + | + + + | + + + + | | Special Senses System
Ear
Zymbal s gland
Carcinoma | | | | + | | | | | +
X | + | | | | | | | | | | | | | | | | | Urinary System
Kidney
Renal tubule, adenoma
Renal tubule, adenoma, multiple
Urinary bladder | + | + | - + | + | + | + | + | + | + | + | + | + | + + | + | + | | +
X
+ | + | + | + | + | +
X
+ | + | + | + | | Systemic Lesions Multiple organs Leukemia mononuclear Lymphoma malignant | + | + | | +
X | +
X | | + | | +
X | | | +
X | | + | | +
X | | + | + | +
X | + | +
X | + | +
X | +
X | | | | | _ | _ | - | _ | ~ | ~ | ~ | - | ~ | - | - | ~ | - | - | - | ~ | ~ | ~ | _ | _ | ~ | _ | _ | _ | | |---------------------------------|--------|---|----------|----|----------|--------|-----|----------|----------|-----|---|-----|----------|----------|-----|-----|----------|----------|----------|---|----------|----------|----------|-----|----|---|----------| | N I CD CLI | | | | | | | 7 | | | | | | | | | | | | | 7 | | 7 | | 7 | | 7 | | | Number of Days on Study | 8
5 | | | 9 | | | | | | | 2 | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | | | | J | | 1 | 1 | 7 | 7 | 0 | / | 9 | 9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 1 | | 1 | 2 | Total | | Carcass ID Number | 6 | , | 7 | 9 | 6 | 7 | 5 | 9 | 7 | 8 | 5 | 5 | 6 | 6 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 0 | Tissues/ | | | 8 | | 3 | 0 | 1 | 5 | 8 | 4 | 6 | 1 | 7 | 9 | 4 | 7 | 2 | 8 | 9 | 2 | 4 | 5 | 6 | 9 | 3 | 6 | 7 | 0 | Tumors | | Hematopoietic System | Bone marrow | + | | + - | + | 50 | | Lymph node | + | | ·
+ - | + | + | | | + | | | • | • | + | · | • | | + | | + | | + | • | + | · | + | | 23 | | Lymph node, mandibular | | | ·
+ - | + | 50 | | Lymph node, mesenteric | | | ·
- | | <u>.</u> | | M | <u>.</u> | <u>.</u> | + | + | + | <u>.</u> | <u>.</u> | + | + | <u>+</u> | <u>.</u> | <u>.</u> | Ţ | <u>.</u> | <u>.</u> | <u>.</u> | · | + | + | 48 | | Spleen | ' | | | | | | M | 1 | | | 1 | | | | 1 | | | | | + | + | + | | | + | + | 49 | | Thymus | 7 | | T ' | Τ. | T | T
1 | 141 | T . | T . | T . | + | T . | T . | T . | T . | T . | T . | T . | T . | + | + | + | + | T . | + | + | 50 | | | 7 | | т - | т | _ | т | т | т | т | т | т | т | т | _ | _ | т | т | _ | т | т | т | | т | т | т | т | | | Thymoma benign | X | | | | | 1 | | Integumentary System | Mammary gland | + | - | + - | + | 49 | | Fibroadenoma | | | X | | | | X | | | | | | | | | | | | X | | | | | | | | 4 | | Skin | + | - | + - | + | 50 | | Basal cell adenoma | | | | | | | X | | | |
 | | | | | | | | | | | | | | | 1 | | Keratoacanthoma | | | | | | | | X | X | | | | | | | | | | | | | X | | | | | 5 | | Trichoepithelioma | | | | | | | | | | | | | | | | X | | | | | | | | | | | 1 | | Pinna, melanoma malignant | 2 | | Musculoskeletal System | Bone | + | | + - | + | 50 | | Nonvoya System | Nervous System
Brain | + | | . | + | 50 | | Biani | ' | | | ' | | ' | - | _ | _ | ' | _ | _ | | - | - | _ | | | ' | | ' | | | | | ' | | | Respiratory System | Lung | + | - | + - | + | | + | 50 | | Alveolar/bronchiolar adenoma | | | | | | X | | | | | | | | | | | | | X | | | | | | X | X | 4 | | Nose | + | - | + - | + | 50 | | Ггасhеа | + | - | + - | + | 50 | | Special Senses System | Ear | 2 | | Zymbal s gland | 1 | | Carcinoma | 1 | | Ca. Chroma | Urinary System | Kidney | + | - | + - | + | + | + | M | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Renal tubule, adenoma | | | | | | | | X | X | | | | | | | | | | | | | | | | | X | 4 | | Renal tubule, adenoma, multiple | X | | | 2 | | Urinary bladder | + | - | + - | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Systemic Lesions | Multiple organs | + | | + - | + | _ | + | 50 | | Leukemia mononuclear | 7 | | X | | | Υ | | | Υ | Т | т | Т | т | Υ | т | | Υ | Т | | Υ | | | | Τ* | Τ* | Т | 27 | | | τ. | | Λ. | ^ | | Λ | Λ | | Λ | | | | | Λ | | | Λ | | Λ | Λ | Λ | Λ | Λ | | | | 1 | | Lymphoma malignant | X | I | A-22 Pyridine, NTP TR 470 TABLE A3 Statistical Analysis of Primary Neoplasms in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--|----------------------------|------------|-------------|-------------| | Adrenal Medulla: Benign Pheochromocytoma | | | | | | Overall rate ^a | 17/50 (34%) | 3/49 (6%) | 14/50 (28%) | 4/49 (8%) | | Adjusted rate ^b | 40.4% | 7.5% | 32.8% | 10.6% | | Terminal rate ^c | 11/25 (44%) | 1/20 (5%) | 7/25 (28%) | 3/16 (19%) | | First incidence (days) | 571 | 628 | 585 | 675 | | Poly-3 test ^d | P = 0.014N | P < 0.001N | P = 0.306N | P = 0.002N | | Adrenal Medulla: Benign or Complex Pheochro | omocytoma | | | | | Overall rate | 17/50 (34%) | 3/49 (6%) | 14/50 (28%) | 5/49 (10%) | | Adjusted rate | 40.4% | 7.5% | 32.8% | 13.3% | | Terminal rate | 11/25 (44%) | 1/20 (5%) | 7/25 (28%) | 4/16 (25%) | | First incidence (days) | 571 | 628 | 585 | 675 | | Poly-3 test | P = 0.030N | P < 0.001N | P = 0.306N | P = 0.005N | | Kidney (Renal Tubule): Adenoma (Single Section | ons) | | | | | Overall rate | 1/50 (2%) | 0/48 (0%) | 2/50 (4%) | 6/49 (12%) | | Adjusted rate | 2.4% | 0.0% | 4.9% | 15.9% | | Terminal rate | 1/25 (4%) | 0/20 (0%) | 1/25 (4%) | 2/16 (13%) | | First incidence (days) | 722 (T) | e | 708 | 644 | | Poly-3 test | P = 0.003 | P = 0.510N | P = 0.498 | P=0.042 | | Kidney (Renal Tubule): Adenoma or Carcinom | a (Single Sections) | | | | | Overall rate | 1/50 (2%) | 1/48 (2%) | 2/50 (4%) | 6/49 (12%) | | Adjusted rate | 2.4% | 2.6% | 4.9% | 15.9% | | Terminal rate | 1/25 (4%) | 1/20 (5%) | 1/25 (4%) | 2/16 (13%) | | First incidence (days) | 722 (T) | 722 (T) | 708 | 644 | | Poly-3 test | P = 0.008 | P = 0.750 | P = 0.498 | P = 0.042 | | Kidney (Renal Tubule): Adenoma (Single and S | Step Sections) | | | | | Overall rate | 2/50 (4%) | 3/48 (6%) | 6/50 (12%) | 10/49 (20%) | | Adjusted rate | 4.9% | 7.6% | 14.5% | 26.3% | | Terminal rate | 2/25 (8%) | 2/20 (10%) | 3/25 (12%) | 5/16 (31%) | | First incidence (days) | 722 (T) | 673 | 627 | 644 | | Poly-3 test | P = 0.002 | P = 0.480 | P = 0.133 | P = 0.008 | | Kidney (Renal Tubule): Adenoma or Carcinom | a (Single and Step Section | ons) | | | | Overall rate | 2/50 (4%) | 4/48 (8%) | 6/50 (12%) | 10/49 (20%) | | Adjusted rate | 4.9% | 10.2% | 14.5% | 26.3% | | Terminal rate | 2/25 (8%) | 3/20 (15%) | 3/25 (12%) | 5/16 (31%) | | First incidence (days) | 722 (T) | 673 | 627 | 644 | | Poly-3 test | P = 0.003 | P = 0.316 | P = 0.133 | P = 0.008 | | Liver: Hepatocellular Adenoma | | | | | | Overall rate | 1/50 (2%) | 1/49 (2%) | 0/50 (0%) | 3/50 (6%) | | Adjusted rate | 2.4% | 2.5% | 0.0% | 7.8% | | Terminal rate | 0/25 (0%) | 1/20 (5%) | 0/25 (0%) | 1/16 (6%) | | First incidence (days) | 718 | 722 (T) | | 622 | | Poly-3 test | P = 0.153 | P = 0.754 | P = 0.501N | P=0.283 | | Liver: Hepatocellular Adenoma or Carcinoma | | | | | | Overall rate | 1/50 (2%) | 1/49 (2%) | 1/50 (2%) | 3/50 (6%) | | Adjusted rate | 2.4% | 2.5% | 2.4% | 7.8% | | Terminal rate | 0/25 (0%) | 1/20 (5%) | 1/25 (4%) | 1/16 (6%) | | First in did not (done) | 718 | 722 (T) | 722 (T) | 622 | | First incidence (days) Poly-3 test | 710 | . == (-) | P=0.760 | P=0.283 | TABLE A3 Statistical Analysis of Primary Neoplasms in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | Adjusted rate Terminal rate First incidence (days) Poly-3 test Lung: Alveolar/bronchiolar Adenoma or Carcinoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Terminal rate Preputial Gland: Adenoma Overall rate Adjusted rate | 5 (4%)
2 (T)
60.024
00 (2%)
%
5 (4%)
2 (T)
60.033
00 (8%)
%
5 (12%)
3
60 (8%)
%
5 (12%) | 0/50 (0%) 0.0% 0/20 (0%) P=0.503N 0/50 (0%) 0.0% 0/20 (0%) P=0.503N 3/50 (6%) 7.4% 2/20 (10%) 708 P=0.507N 4/50 (8%) 9.9% 3/20 (15%) 708 P=0.637 | 0/50 (0%) 0.0% 0/25 (0%) P=0.501N 2/50 (4%) 4.9% 2/25 (8%) 722 (T) P=0.498 6/50 (12%) 14.4% 3/25 (12%) 538 P=0.378 6/50 (12%) 14.4% 3/25 (12%) 538 | 4/50 (8%) 10.4% 3/16 (19%) 697 P=0.157 4/50 (8%) 10.4% 3/16 (19%) 697 P=0.157 4/50 (8%) 10.4% 1/16 (6%) 681 P=0.609 4/50 (8%) 10.4% 1/16 (6%) | |--
--|---|---|--| | Overall rate 1/2 Adjusted rate 2.4 First incidence (days) 72 Poly-3 test Pa Lung: Alveolar/bronchiolar Adenoma or Carcinoma Overall rate Adjusted rate 1/2 Cerminal rate 1/3 First incidence (days) 72 Poly-3 test Pa Mammary Gland: Fibroadenoma 4/4 Overall rate 4/5 Adjusted rate 9.5 Terminal rate 3/4 First incidence (days) 71 Poly-3 test Pa Mammary Gland: Fibroadenoma or Carcinoma 4/4 Overall rate 4/5 Adjusted rate 9.5 Terminal rate 3/4 First incidence (days) 71 Poly-3 test Pa Pancreatic Islets: Adenoma 4/4 Overall rate 4/7 Adjusted rate 1/7 Terminal rate 1/7 First incidence (days) 62 Poly-3 test Pa Pituitary Gland (Pars Distalis): Adenoma 4/4 | % 5 (4%) 2 (T) 60.024 | 0.0%
0/20 (0%)
P=0.503N
0/50 (0%)
0.0%
0/20 (0%)
P=0.503N
3/50 (6%)
7.4%
2/20 (10%)
708
P=0.507N
4/50 (8%)
9.9%
3/20 (15%)
708 | 0.0%
0/25 (0%)
P=0.501N
2/50 (4%)
4.9%
2/25 (8%)
722 (T)
P=0.498
6/50 (12%)
14.4%
3/25 (12%)
538
P=0.378
6/50 (12%)
14.4%
3/25 (12%) | 10.4%
3/16 (19%)
697
P=0.157
4/50 (8%)
10.4%
3/16 (19%)
697
P=0.157
4/50 (8%)
10.4%
1/16 (6%)
681
P=0.609
4/50 (8%)
10.4% | | Adjusted rate Terminal rate First incidence (days) Poly-3 test Lung: Alveolar/bronchiolar Adenoma or Carcinoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Terminal rate Preputial Gland: Adenoma Overall rate Adjusted rate | % 5 (4%) 2 (T) 60.024 | 0.0%
0/20 (0%)
P=0.503N
0/50 (0%)
0.0%
0/20 (0%)
P=0.503N
3/50 (6%)
7.4%
2/20 (10%)
708
P=0.507N
4/50 (8%)
9.9%
3/20 (15%)
708 | 0.0%
0/25 (0%)
P=0.501N
2/50 (4%)
4.9%
2/25 (8%)
722 (T)
P=0.498
6/50 (12%)
14.4%
3/25 (12%)
538
P=0.378
6/50 (12%)
14.4%
3/25 (12%) | 10.4%
3/16 (19%)
697
P=0.157
4/50 (8%)
10.4%
3/16 (19%)
697
P=0.157
4/50 (8%)
10.4%
1/16 (6%)
681
P=0.609
4/50 (8%)
10.4% | | Terminal rate First incidence (days) Poly-3 test Lung: Alveolar/bronchiolar Adenoma or Carcinoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate First incidence (days) Poly-3 test Pammary Gland: Fibroadenoma or Carcinoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate Terminal rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma | 5 (4%)
2 (T)
60.024
00 (2%)
%
5 (4%)
2 (T)
60.033
00 (8%)
%
5 (12%)
8
60.439 | 0/20 (0%) P=0.503N 0/50 (0%) 0.0% 0/20 (0%) P=0.503N 3/50 (6%) 7.4% 2/20 (10%) 708 P=0.507N 4/50 (8%) 9.9% 3/20 (15%) 708 | 0/25 (0%) P=0.501N 2/50 (4%) 4.9% 2/25 (8%) 722 (T) P=0.498 6/50 (12%) 14.4% 3/25 (12%) 538 P=0.378 6/50 (12%) 14.4% 3/25 (12%) | 3/16 (19%)
697
P=0.157
4/50 (8%)
10.4%
3/16 (19%)
697
P=0.157
4/50 (8%)
10.4%
1/16 (6%)
681
P=0.609
4/50 (8%)
10.4% | | First incidence (days) Poly-3 test Lung: Alveolar/bronchiolar Adenoma or Carcinoma Dverall rate Adjusted rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate Adjusted rate Ferminal rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate Adjusted rate Ferminal rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate First incidence (days) Poly-3 test Pittuitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pittuitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma | 2 (T)
60.024
00 (2%)
%
5 (4%)
2 (T)
60.033
00 (8%)
%
5 (12%)
8
60.439
00 (8%)
%
5 (12%)
8 | P=0.503N 0/50 (0%) 0.0% 0/20 (0%) P=0.503N 3/50 (6%) 7.4% 2/20 (10%) 708 P=0.507N 4/50 (8%) 9.9% 3/20 (15%) 708 | P=0.501N 2/50 (4%) 4.9% 2/25 (8%) 722 (T) P=0.498 6/50 (12%) 14.4% 3/25 (12%) 538 P=0.378 6/50 (12%) 14.4% 3/25 (12%) | 697
P=0.157
4/50 (8%)
10.4%
3/16 (19%)
697
P=0.157
4/50 (8%)
10.4%
1/16 (6%)
681
P=0.609 | | Poly-3 test Lung: Alveolar/bronchiolar Adenoma or Carcinoma Overall rate Adjusted rate Ferminal rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma Overall rate Adjusted rate Adjusted rate Preputial Gland: Adenoma | 0 (2%) % 5 (4%) 2 (T) 60.033 0 (8%) % 5 (12%) 8 60.439 | 0/50 (0%)
0.0%
0/20 (0%)
P=0.503N
3/50 (6%)
7.4%
2/20 (10%)
708
P=0.507N
4/50 (8%)
9.9%
3/20 (15%)
708 | 2/50 (4%)
4.9%
2/25 (8%)
722 (T)
P=0.498
6/50 (12%)
14.4%
3/25 (12%)
538
P=0.378
6/50 (12%)
14.4%
3/25 (12%) | 4/50
(8%)
10.4%
3/16 (19%)
697
P=0.157
4/50 (8%)
10.4%
1/16 (6%)
681
P=0.609
4/50 (8%)
10.4% | | Overall rate Adjusted rate Cerminal rate Adjusted rate Cerninal rate Cirst incidence (days) Coly-3 test Mammary Gland: Fibroadenoma Overall rate Adjusted rate Cerminal rate Cirst incidence (days) Coly-3 test Mammary Gland: Fibroadenoma Overall rate Adjusted rate Cerminal rate Cirst incidence (days) Coly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate Cerminal rate Cirst incidence (days) Coly-3 test Pamcreatic Islets: Adenoma Overall rate Adjusted rate Cerminal rate Cirst incidence (days) Coly-3 test Pamcreatic Islets: Adenoma Overall rate Adjusted rate Cerminal rate Cirst incidence (days) Coly-3 test Pittuitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate Cerminal rate Cirst incidence (days) Coly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Cerminal rate Cirst incidence (days) Coly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Cerminal rate Cirst incidence (days) Coly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Coly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Coly-3 test Preputial Gland: Adenoma | % 5 (4%) 2 (T) 60.033 (0) (8%) % 5 (12%) 3 (0) (8%) (% 5 (12%) 3 (5) (12%) 3 (5) (12%) 3 (6) (12%) 3 (| 0.0%
0/20 (0%)
P=0.503N
3/50 (6%)
7.4%
2/20 (10%)
708
P=0.507N
4/50 (8%)
9.9%
3/20 (15%)
708 | 4.9%
2/25 (8%)
722 (T)
P=0.498
6/50 (12%)
14.4%
3/25 (12%)
538
P=0.378
6/50 (12%)
14.4%
3/25 (12%) | 10.4%
3/16 (19%)
697
P=0.157
4/50 (8%)
10.4%
1/16 (6%)
681
P=0.609
4/50 (8%)
10.4% | | Adjusted rate Ferminal rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Preputial Gland (Pars Distalis): Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Preputial Gland: Adenoma | % 5 (4%) 2 (T) 60.033 (0) (8%) % 5 (12%) 3 (0) (8%) (% 5 (12%) 3 (5) (12%) 3 (5) (12%) 3 (6) (12%) 3 (| 0.0%
0/20 (0%)
P=0.503N
3/50 (6%)
7.4%
2/20 (10%)
708
P=0.507N
4/50 (8%)
9.9%
3/20 (15%)
708 | 4.9%
2/25 (8%)
722 (T)
P=0.498
6/50 (12%)
14.4%
3/25 (12%)
538
P=0.378
6/50 (12%)
14.4%
3/25 (12%) | 10.4%
3/16 (19%)
697
P=0.157
4/50 (8%)
10.4%
1/16 (6%)
681
P=0.609
4/50 (8%)
10.4% | | Ferminal rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma Presidence (days) Poly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma | 5 (4%)
2 (T)
60.033
0 (8%)
%
5 (12%)
3
60.439
0 (8%)
%
5 (12%)
3 | 0/20 (0%) P=0.503N 3/50 (6%) 7.4% 2/20 (10%) 708 P=0.507N 4/50 (8%) 9.9% 3/20 (15%) 708 | 2/25 (8%) 722 (T) P=0.498 6/50 (12%) 14.4% 3/25 (12%) 538 P=0.378 6/50 (12%) 14.4% 3/25 (12%) | 3/16 (19%)
697
P=0.157
4/50 (8%)
10.4%
1/16 (6%)
681
P=0.609
4/50 (8%)
10.4% | | Poly-3 test Parentinal rate Adjusted rate Parentinal Pare | 2 (T)
:0.033
0 (8%)
%
:5 (12%)
3
:0.439
0 (8%)
%
:5 (12%)
3 | P=0.503N 3/50 (6%) 7.4% 2/20 (10%) 708 P=0.507N 4/50 (8%) 9.9% 3/20 (15%) 708 | 722 (T) P=0.498 6/50 (12%) 14.4% 3/25 (12%) 538 P=0.378 6/50 (12%) 14.4% 3/25 (12%) | 697
P=0.157
4/50 (8%)
10.4%
1/16 (6%)
681
P=0.609
4/50 (8%)
10.4% | | Mammary Gland: Fibroadenoma Deverall rate Adjusted rate Perminal rate Poly-3 test Mammary Gland: Fibroadenoma or Carcinoma Deverall rate Adjusted rate Perminal Poly-3 test Pancreatic Islets: Adenoma Deverall rate Adjusted rate Perminal Permin | 0 (8%)
%
5 (12%)
8
0 (439)
0 (8%)
%
5 (12%) | 3/50 (6%)
7.4%
2/20 (10%)
708
P=0.507N
4/50 (8%)
9.9%
3/20 (15%)
708 | P=0.498 6/50 (12%) 14.4% 3/25 (12%) 538 P=0.378 6/50 (12%) 14.4% 3/25 (12%) | P=0.157 4/50 (8%) 10.4% 1/16 (6%) 681 P=0.609 4/50 (8%) 10.4% | | Mammary Gland: Fibroadenoma Overall rate Adjusted rate Perminal rate Adjusted rate Poly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate Adjusted rate Perminal rate Adjusted rate Perminal rate Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate Perminal rate Poly-3 test Pancreatic Islets: Adenoma Overall rate Poly-3 test Perminal rate Pirst incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate Perminal rate Pirst incidence (days) Poly-3 test Preputial Gland (Pars Distalis): Adenoma Overall rate Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma | 0 (8%) % 5 (12%) 8 60.439 0 (8%) % 5 (12%) 8 | 3/50 (6%)
7.4%
2/20 (10%)
708
P=0.507N
4/50 (8%)
9.9%
3/20 (15%)
708 | 6/50
(12%)
14.4%
3/25 (12%)
538
P=0.378
6/50 (12%)
14.4%
3/25 (12%) | 4/50 (8%)
10.4%
1/16 (6%)
681
P=0.609
4/50 (8%)
10.4% | | Overall rate Adjusted rate Perminal rate Cirst incidence (days) Coly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate Adjusted rate Cirst incidence (days) Coly-3 test Pancreatic Islets: Adenoma Overall rate Cirst incidence (days) Coly-3 test Pancreatic Islets: Adenoma Overall rate Cirst incidence (days) Coly-3 test Pist incidence (days) Coly-3 test Preputial Gland (Pars Distalis): Adenoma Overall rate Cirst incidence (days) Coly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma | % 5 (12%) 8 0.439 0 (8%) % 5 (12%) 8 | 7.4%
2/20 (10%)
708
P=0.507N
4/50 (8%)
9.9%
3/20 (15%)
708 | 14.4%
3/25 (12%)
538
P=0.378
6/50 (12%)
14.4%
3/25 (12%) | 10.4%
1/16 (6%)
681
P=0.609
4/50 (8%)
10.4% | | Adjusted rate Ferminal rate First incidence (days) Foly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate Adjusted rate First incidence (days) Foly-3 test Pancreatic Islets: Adenoma Overall rate Forminal Fo | % 5 (12%) 8 0.439 0 (8%) % 5 (12%) 8 | 7.4%
2/20 (10%)
708
P=0.507N
4/50 (8%)
9.9%
3/20 (15%)
708 | 14.4%
3/25 (12%)
538
P=0.378
6/50 (12%)
14.4%
3/25 (12%) | 10.4%
1/16 (6%)
681
P=0.609
4/50 (8%)
10.4% | | First incidence (days) | 5 (12%)
3
60.439
0 (8%)
%
5 (12%) | 2/20 (10%)
708
P=0.507N
4/50 (8%)
9.9%
3/20 (15%)
708 | 3/25 (12%)
538
P=0.378
6/50 (12%)
14.4%
3/25 (12%) | 1/16 (6%)
681
P=0.609
4/50 (8%)
10.4% | | First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma Overall rate Adjusted rate Town and To | 3
60.439
0 (8%)
%
5 (12%) | 708
P=0.507N
4/50 (8%)
9.9%
3/20 (15%)
708 | 538
P=0.378
6/50 (12%)
14.4%
3/25 (12%) | 681
P=0.609
4/50 (8%)
10.4% | | First incidence (days) Poly-3 test Mammary Gland: Fibroadenoma or Carcinoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma Overall rate Adjusted rate Preputial Gland: Adenoma | 3
60.439
0 (8%)
%
5 (12%) | P=0.507N 4/50 (8%) 9.9% 3/20 (15%) 708 | 538
P=0.378
6/50 (12%)
14.4%
3/25 (12%) | P=0.609 4/50 (8%) 10.4% | | Mammary Gland: Fibroadenoma or Carcinoma Overall rate 4/3 Adjusted rate 9.3 First incidence (days) 71 Poly-3 test P= Pancreatic Islets: Adenoma Overall rate 4/3 Adjusted rate 9.4 Adjusted rate 1/3 First incidence (days) 62 Poly-3 test P= Pituitary Gland (Pars Distalis): Adenoma Overall rate 16 Adjusted rate 16 Adjusted rate 16 Priminal rate 16 Priminal rate 16 Adjusted rate 16 Preminal rate 16 Adjusted rate 17 First incidence (days) 9/3 Poly-3 test P= Preputial Gland: Adenoma Overall rate 3/4 | 0 (8%)
%
5 (12%) | 4/50 (8%)
9.9%
3/20 (15%)
708 | 6/50 (12%)
14.4%
3/25 (12%) | 4/50 (8%)
10.4% | | Adjusted rate | %
(5 (12%)
3 | 9.9%
3/20 (15%)
708 | 14.4%
3/25 (12%) | 10.4% | | Overall rate 4/2 Adjusted rate 9.3 First incidence (days) 71 Poly-3 test P= Pancreatic Islets: Adenoma Overall rate Adjusted rate 9.4 Terminal rate 11/2 First incidence (days) 62 Poly-3 test P= Pituitary Gland (Pars Distalis): Adenoma Overall rate 16 Adjusted rate 36 First incidence (days) 43 Poly-3 test P= Preputial Gland: Adenoma Overall rate 3/2 Adjusted rate 3/2 Coverall rate 3/2 Adjusted rate 7.2 | %
(5 (12%)
3 | 9.9%
3/20 (15%)
708 | 14.4%
3/25 (12%) | 10.4% | | Adjusted rate Terminal rate 3// First incidence (days) Poly-3 test Pancreatic Islets: Adenoma Overall rate 4// Adjusted rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate Adjusted rate First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Overall rate 16 Adjusted rate 17 Terminal rate 19 Termin | %
(5 (12%)
3 | 9.9%
3/20 (15%)
708 | 3/25 (12%) | 10.4% | | Terminal rate 37. | 3 | 708 | | 1/16 (6%) | | Poly-3 test P- Pancreatic Islets: Adenoma Overall rate 4/2 Adjusted rate 9,4 First incidence (days) 62 Poly-3 test P- Pituitary Gland (Pars Distalis): Adenoma Overall rate 16 Adjusted rate 9/2 First incidence (days) 43 Poly-3 test P- Preputial Gland: Adenoma Overall rate 3/2 Poly-3 test P- Preputial Gland: Adenoma Overall rate 3/2 Poverall rate 3/2 Preputial Gland: Adenoma | | | 538 | | | Poly-3 test P- Pancreatic Islets: Adenoma Overall rate 4/3 Adjusted rate 9,4 First incidence (days) 62 Poly-3 test P- Pituitary Gland (Pars Distalis): Adenoma Overall rate 16 Adjusted rate 36 First incidence (days) 43 Poly-3 test P- Preputial Gland: Adenoma Overall rate 3/3 Overall rate 3/4 3/5 | 0.487 | P = 0.637 | 220 | 681 | | Overall rate 4/2 Adjusted rate 9.4 First incidence (days) 62 Poly-3 test P= Pituitary Gland (Pars Distalis): Adenoma Overall rate 16 Adjusted rate 36 Terminal rate 9/2 First incidence (days) 43 Poly-3 test P= Preputial Gland: Adenoma Overall rate 3/2 Adjusted rate 7.2 | | | P = 0.378 | P = 0.609 | | Adjusted rate 9.4 Terminal rate 1/2 First incidence (days) 62 Poly-3 test P= Pituitary Gland (Pars Distalis): Adenoma Overall rate 16 Adjusted rate 36 Terminal rate 9/2 First incidence (days) 43 Poly-3 test P= Preputial Gland: Adenoma Overall rate 3/2 Adjusted rate 7.2 | | | | | | Terminal rate | 0 (8%) | 2/48 (4%) | 1/50 (2%) | 0/49 (0%) | | First incidence (days) Poly-3 test Pituitary Gland (Pars Distalis): Adenoma Diverall rate Adjusted rate First incidence (days) Poly-3 test Preputial Gland: Adenoma Diverall rate Adjusted rate 3/2 3/3 3/4 3/5 3/5 3/6 3/7 3/7 3/7 3/7 3/7 3/7 3/7 | % | 5.1% | 2.4% | 0.0% | | Pelui-3 test P= | 5 (4%) | 2/20 (10%) | 1/25 (4%) | 0/16 (0%) | | Pituitary Gland (Pars Distalis): Adenoma Overall rate 16 Adjusted rate 36 Ferminal rate 9/. First incidence (days) 43 Poly-3 test P= Preputial Gland: Adenoma Overall rate 3/. Adjusted rate 7 | 5 | 722 (T) | 722 (T) | | | Overall rate 16 Adjusted rate 36 Terminal rate 97 First incidence (days) 43 Poly-3 test P= Preputial Gland: Adenoma Overall rate 37 Adjusted rate 7 | 0.033N | P = 0.366N | P = 0.184N | P = 0.075N | | Adjusted rate 36 Γerminal rate 9/π First incidence (days) 43 Poly-3 test P= Preputial Gland: Adenoma Overall rate 3/π Adjusted rate 7 | | | | | | Adjusted rate 36 Terminal rate 9% First incidence (days) 43 Poly-3 test P= Preputial Gland: Adenoma Overall rate 3% Adjusted rate 7% | (50 (32%) | 13/50 (26%) | 12/50 (24%) | 11/50 (22%) | | First incidence (days) Poly-3 test Preputial Gland: Adenoma Overall rate Adjusted rate 43 Perputial Gland: Adenoma 3/3 | 9% | 31.0% | 27.0% | 26.6% | | Poly-3 test P= Preputial Gland: Adenoma Overall rate 3/2 Adjusted rate 7.3 | 5 (36%) | 7/20 (35%) | 5/25 (20%) | 3/16 (19%) | | Preputial Gland: Adenoma Overall rate 3/: Adjusted rate 7.: | 1 | 628 | 269 | 428 | | Overall rate 3/Adjusted rate 7.3 | :0.177N | P = 0.365N | P = 0.221N | P = 0.215N | | Adjusted rate 7.3 | | | | | | 3 | 0 (6%) | 0/47 (0%) | 7/49 (14%) | 2/48 (4%) | | | % | 0.0% | 16.7% | 5.4% | | Terminal rate 2/2 | 5 (8%) | 0/19 (0%) | 4/25 (16%) | 2/16 (13%) | | First incidence (days) 60 | ~ (0 /v) | • | 529 | 722 (T) | | | . , | P = 0.134N | P = 0.158 | P = 0.556N | | Preputial Gland: Carcinoma | . , | | | | | • | 1 | | | | | | 0.427 | | 0/49 (0%) | 1/48 (2%) | | • | 4
:0.427
:0 (10%) | 2/47 (4%) | 0/49 (0%)
0.0% | 1/48 (2%)
2.7% | | First incidence (days) 38 | 4
-0.427
-0 (10%)
9% | 2/47 (4%)
5.3% | 0.0% | 2.7% | | Poly-3 test P= | 4
:0.427
0 (10%)
9%
5 (16%) | 2/47 (4%) | , , | | A-24 Pyridine, NTP TR 470 TABLE A3 Statistical Analysis of Primary Neoplasms in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--|-----------------|-----------------|-----------------|-----------------| | Preputial Gland: Adenoma or Carcinoma | | | | | | Overall rate | 8/50 (16%) | 2/47 (4%) | 7/49 (14%) | 3/48 (6%) | | Adjusted rate | 18.9% | 5.3% | 16.7% | 8.2% | | Terminal rate | 6/25 (24%) | 2/19 (11%) | 4/25 (16%) | 3/16 (19%) | | First incidence (days) | 388 | 722 (T) | 529 | 722 (T) | | Poly-3 test | P = 0.212N | P = 0.063N | P=0.511N | P=0.146N | | Skin: Squamous Cell Papilloma | | | | | | Overall rate | 4/50 (8%) | 1/50 (2%) | 1/50 (2%) | 0/50 (0%) | | Adjusted rate | 9.7% | 2.5% | 2.4% | 0.0% | | Terminal rate | 4/25 (16%) | 1/20 (5%) | 1/25 (4%) | 0/16 (0%) | | First incidence (days) | 722 (T) | 722 (T) | 722 (T) | | | Poly-3 test | P = 0.035N | P = 0.181N | P = 0.179N | P = 0.069N | | Skin: Keratoacanthoma | | | | | | Overall rate | 6/50 (12%) | 4/50 (8%) | 2/50 (4%) | 5/50 (10%) | | Adjusted rate | 14.5% | 9.8% | 4.9% | 12.9% | | Terminal rate | 5/25 (20%) | 2/20 (10%) | 1/25 (4%) | 1/16 (6%) | | First incidence (days) | 656 | 673 | 708 |
670 | | Poly-3 test | P = 0.474N | P = 0.378N | P = 0.134N | P=0.548N | | Skin: Squamous Cell Papilloma or Keratoaca | | | | | | Overall rate | 8/50 (16%) | 5/50 (10%) | 3/50 (6%) | 5/50 (10%) | | Adjusted rate | 19.3% | 12.3% | 7.3% | 12.9% | | Terminal rate | 7/25 (28%) | 3/20 (15%) | 2/25 (8%) | 1/16 (6%) | | First incidence (days) | 656 | 673 | 708 | 670
D=0.219N | | Poly-3 test | P = 0.250N | P = 0.282N | P = 0.099N | P=0.318N | | Skin: Squamous Cell Papilloma, Keratoacant | | | | TI50 (140) | | Overall rate | 8/50 (16%) | 6/50 (12%) | 3/50 (6%) | 7/50 (14%) | | Adjusted rate | 19.3% | 14.7% | 7.3% | 18.1% | | Terminal rate | 7/25 (28%) | 4/20 (20%) | 2/25 (8%) | 2/16 (13%) | | First incidence (days) Poly-3 test | 656
P=0.474N | 673
P=0.396N | 708
P=0.099N | 670
P=0.556N | | Skin (Subcutaneous Tissue): Fibroma | | | | | | Overall rate | 4/50 (8%) | 2/50 (4%) | 4/50 (8%) | 0/50 (0%) | | Adjusted rate | 9.6% | 4.8% | 9.6% | 0.0% | | Terminal rate | 2/25 (8%) | 0/20 (0%) | 2/25 (8%) | 0/16 (0%) | | First incidence (days) | 625 | 553 | 580 | | | Poly-3 test | P = 0.092N | P = 0.341N | P = 0.642 | P = 0.071N | | Testes: Adenoma | | | | | | Overall rate | 42/49 (86%) | 43/49 (88%) | 43/49 (88%) | 43/48 (90%) | | Adjusted rate | 93.0% | 90.2% | 93.2% | 95.6% | | Terminal rate | 23/25 (92%) | 18/20 (90%) | 24/25 (96%) | 16/16 (100%) | | First incidence (days) | 473 | 444 | 529 | 444 | | Poly-3 test | P = 0.275 | P = 0.450N | P = 0.662 | P=0.464 | | Thyroid Gland (C-cell): Adenoma | | | | | | Overall rate | 2/50 (4%) | 1/50 (2%) | 3/50 (6%) | 2/49 (4%) | | Adjusted rate | 4.9% | 2.5% | 7.3% | 5.2% | | Terminal rate | 2/25 (8%) | 1/20 (5%) | 3/25 (12%) | 2/16 (13%) | | First incidence (days) | 722 (T) | 722 (T) | 722 (T) | 722 (T) | | Poly-3 test | P = 0.466 | P = 0.505N | P = 0.497 | | TABLE A3 Statistical Analysis of Primary Neoplasms in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--|--------------|--------------|--------------|--------------| | Thyroid Gland (C-cell): Adenoma or Carcinoma | | | | | | Overall rate | 2/50 (4%) | 2/50 (4%) | 3/50 (6%) | 2/49 (4%) | | Adjusted rate | 4.9% | 4.9% | 7.3% | 5.2% | | Terminal rate | 2/25 (8%) | 1/20 (5%) | 3/25 (12%) | 2/16 (13%) | | First incidence (days) | 722 (T) | 666 | 722 (T) | 722 (T) | | Poly-3 test | P=0.531 | P=0.691 | P=0.497 | P=0.668 | | All Organs: Mononuclear Cell Leukemia | | | | | | Overall rate | 29/50 (58%) | 32/50 (64%) | 26/50 (52%) | 27/50 (54%) | | Adjusted rate | 62.7% | 67.8% | 57.4% | 59.7% | | Terminal rate | 13/25 (52%) | 11/20 (55%) | 12/25 (48%) | 7/16 (44%) | | First incidence (days) | 309 | 466 | 529 | 444 | | Poly-3 test | P = 0.317N | P = 0.378 | P = 0.381N | P = 0.468N | | All Organs: Benign Neoplasms | | | | | | Overall rate | 47/50 (94%) | 46/50 (92%) | 48/50 (96%) | 49/50 (98%) | | Adjusted rate | 99.2% | 93.4% | 98.0% | 100.0% | | Terminal rate | 25/25 (100%) | 19/20 (95%) | 25/25 (100%) | 16/16 (100%) | | First incidence (days) | 434 | 444 | 269 | 428 | | Poly-3 test | P = 0.228 | P = 0.136N | P = 0.712N | P=0.996 | | All Organs: Malignant Neoplasms | | | | | | Overall rate | 34/50 (68%) | 40/50 (80%) | 29/50 (58%) | 29/50 (58%) | | Adjusted rate | 71.8% | 81.5% | 63.1% | 63.9% | | Terminal rate | 16/25 (64%) | 14/20 (70%) | 14/25 (56%) | 8/16 (50%) | | First incidence (days) | 309 | 444 | 486 | 444 | | Poly-3 test | P = 0.091N | P = 0.182 | P = 0.243N | P=0.270N | | All Organs: Benign or Malignant Neoplasms | | | | | | Overall rate | 49/50 (98%) | 49/50 (98%) | 49/50 (98%) | 49/50 (98%) | | Adjusted rate | 99.7% | 98.3% | 98.6% | 100.0% | | Terminal rate | 25/25 (100%) | 20/20 (100%) | 25/25 (100%) | 16/16 (100%) | | First incidence (days) | 309 | 444 | 269 | 428 | | Poly-3 test | P = 0.580 | P = 0.656N | P = 0.760N | P = 1.000 | ⁽T)Terminal sacrifice Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, kidney, liver, lung, pancreatic islets, pituitary gland, preputial gland, testis, and thyroid gland; for other tissues, denominator is number of animals necropsied. b Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality C Observed incidence at terminal kill d Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in an exposure group is indicated by N. e Not applicable; no neoplasms in animal group A-26 Pyridine, NTP TR 470 TABLE A4 Historical Incidence of Renal Tubule Neoplasms in Untreated Male F344/N Rats^a | | | Incidence in Controls | | | |--------------------------------------|-------------------------------|-----------------------|-------------------------------|--| | | Adenoma | Carcinoma | Adenoma or
Carcinoma | | | Overall Historical Incidence | | | | | | Total
Standard deviation
Range | 1/327 (0.3%)
0.8%
0%-2% | 0/327 | 1/327 (0.3%)
0.8%
0%-2% | | ^a Data as of 1 August 1997 Table A5 Summary of the Incidence of Nonneoplastic Lesions in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine^a | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--|----------------------------|------------------------------------|------------------------------|----------------------------| | Disposition Summary | | | | | | Animals initially in study Early deaths | 50 | 50 | 50 | 50 | | Moribund Natural deaths | 11
14 | 13
17 | 15
10 | 10
24 | | Survivors Terminal sacrifice | 25 | 20 | 25 | 16 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Intestine large, colon
Hyperplasia, lymphoid
Inflammation, acute | (50) | (48) | (50)
1 (2%)
1 (2%) | (49) | | Inflammation, chronic
Parasite metazoan | 4 (8%) | 4 (8%) | 1 (2%)
3 (6%) | 2 (4%) | | Intestine large, rectum Edema | (50) | (48)
1 (2%) | (50) | (49) | | Parasite metazoan Intestine large, cecum Edema Hyperplasia, lymphoid | 4 (8%)
(49) | 2 (4%)
(47)
1 (2%)
1 (2%) | (50) | 1 (2%)
(49) | | Inflammation, acute Inflammation, chronic active | 1 (2%) | 1 (2%) | 1 (2%) | 1 (2%) | | Parasite metazoan
Ulcer | 1 (2%) | , , | 1 (2%) | 1 (2%) | | Intestine small, duodenum Ectopic pancreas | (50) | (47) | (50)
1 (2%) | (48) | | Intestine small, jejunum Congestion | (50) | (47)
1 (2%) | (50) | (47) | | Intestine small, ileum Fibrosis | (50)
1 (2%) | (47) | (50) | (47) | | Hyperplasia, lymphoid
Liver
Angiectasis | 6 (12%)
(50) | 9 (19%)
(49) | 3 (6%)
(50) | 4 (9%)
(50) | | Basophilic focus Clear cell focus | 12 (24%)
7 (14%) | 1 (2%)
5 (10%)
1 (2%) | 1 (2%)
7 (14%) | 1 (2%)
1 (2%)
4 (8%) | | Congestion Degeneration, cystic | 1 (2%)
4 (8%) | 12 (24%) | 11 (22%) | 3 (6%) | | Developmental malformation
Eosinophilic focus | 14 (28%) | 23 (47%) | 1 (2%)
1 (2%)
23 (46%) | 1 (2%)
13 (26%) | | Fibrosis Hematopoietic cell proliferation | 1 (2%)
2 (4%) | 1 (2%)
1 (2%) | 1 (2%) | 10 (20%) | | Hepatodiaphragmatic nodule Mitotic alteration Mixed cell focus | 3 (6%)
2 (4%) | 1 (2%)
1 (2%) | 3 (6%) | 2 (4%)
1 (2%) | | Necrosis Pigmentation | 2 (4%)
2 (4%)
4 (8%) | 1 (2%)
1 (2%)
11 (22%) | 1 (2%)
20 (40%) | 2 (4%)
25 (50%) | | Thrombosis Vacuolization cytoplasmic | 4 (8%) | 6 (12%) | 1 (2%)
13 (26%) | 17 (34%) | | Bile duct, hyperplasia
Centrilobular, cytomegaly | 46 (92%) | 43 (88%)
4 (8%) | 44 (88%)
8 (16%) | 49 (98%)
6 (12%) | | Centrilobular, degeneration
Centrilobular, necrosis | 1 (2%) | 3 (6%)
3 (6%) | 2 (4%) | 8 (16%)
5 (10%) | | Periportal, fibrosis | | | 2 (4%) | 29 (58%) | ^a Number of animals examined microscopically at the site and the number of animals with lesion A-28 Pyridine, NTP TR 470 $TABLE\ A5$ Summary of the Incidence of Nonneoplastic Lesions in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--|----------|-------------------|----------|----------| | Alimentary System (continued) | | | | | | Mesentery | (11) | (14) | (7) | (8) | | Cyst | 1 (9%) | , | · / | (-) | | Hemorrhage | - (> /*) | | 1 (14%) | | | Inflammation, acute | | 1 (7%) | (11) | | | Fat, necrosis | 10 (91%) | 13 (93%) | 6 (86%) | 8 (100%) | | Oral mucosa | (1) | - () | (2) | , | | Pharyngeal, hyperplasia | (1) | | 1 (50%) | | | Pancreas | (50) | (48) | (50) | (49) | | Atrophy | 18 (36%) | 15 (31%) | 17 (34%) | 12 (24%) | | Cytoplasmic alteration | 2 (4%) | (,-) | (,-) | (- : /) | | Hyperplasia | 2 (4%) | 4 (8%) | 2 (4%) | 3 (6%) | | Inflammation, chronic | 1 (2%) | 1 (0%) | 3 (6%) | 3 (070) | | Acinus, hyperplasia | 1 (270) | 1 (2%) | 3 (0%) | | | Artery, inflammation, acute | 1 (2%) | 1 (2/0) | | | | | | (50) | (50) | (50) | | Salivary glands | (50) | (50) | (50) | (50) | | Cellular alteration | | 1 (201) | | 1 (2%) | | Inflammation, chronic active | (50) | 1 (2%) | (50) | (40) | | Stomach, forestomach | (50) | (49) | (50) | (49) | | Hyperkeratosis | | | | 2 (4%) | | Inflammation, acute | . | 1 (2%) | | 1 (2%) | | Inflammation, chronic active | 2 (4%) | | | 8 (16%) | | Ulcer | 2 (4%) | 10 (20%) | 3 (6%) | 4 (8%) | | Epithelium, hyperplasia, squamous | 1 (2%) | 7 (14%) | 7 (14%) | 11 (22%) | | Stomach, glandular | (50) | (49) | (50) | (49) | | Erosion | 15 (30%) | 17 (35%) | 12 (24%) | 12 (24%) | | Inflammation, acute | | | | 1 (2%) | | Inflammation, chronic | 1 (2%) | 1 (2%) | | | | Inflammation, chronic active | • • | • | 1 (2%) | 1 (2%) | | Mineralization | | 2 (4%) | 2 (4%) | 8 (16%) | |
Necrosis | | ` ' | ` ' | 1 (2%) | | Ulcer | 2 (4%) | 5 (10%) | 1 (2%) | 1 (2%) | | Tooth | (2) | (1) | (1) | () | | Dysplasia | (-) | 1 (100%) | (1) | | | Inflammation, acute | 1 (50%) | 1 (10070) | | | | Inflammation, chronic active | 1 (50%) | | 1 (100%) | | | | | | | | | Cardiovascular System | (50) | (50) | (50) | (50) | | Heart | (50) | (50) | (50) | (50) | | Cardiomyopathy | 45 (90%) | 43 (86%) | 43 (86%) | 46 (92%) | | Mineralization | 1 (2%) | 6 (12%) | 3 (6%) | 2 (4%) | | Thrombosis Coronary artery, inflammation, chronic active | 2 (4%) | 6 (12%)
1 (2%) | 3 (6%) | 4 (8%) | | Endocrine System | | 1 (2%) | | | | Adrenal cortex | (50) | (49) | (50) | (50) | | Accessory adrenal cortical nodule | 1 (2%) | \(- / | ζ/ | 1 (2%) | | Congestion | - (-/0) | | 1 (2%) | 2 (270) | | Hyperplasia | 8 (16%) | 7 (14%) | 7 (14%) | 2 (4%) | | Hypertrophy | 1 (2%) | , (17/0) | , (17/0) | 2 (4%) | | Vacuolization cytoplasmic | 9 (18%) | 5 (10%) | 9 (18%) | 7 (14%) | | Adrenal medulla | (50) | (49) | (50) | (49) | | Adrenai medulia
Hyperplasia | 17 (34%) | | | | | | | 22 (45%) | 19 (38%) | 15 (31%) | | Bilateral, hyperplasia | 1 (2%) | 1 (2%) | | 1 (2%) | TABLE A5 | | 0 ррт | 100 ppm | 200 ppm | 400 ppm | |------------------------------|----------|----------|----------|----------| | Endocrine System (continued) | | | | | | Islets, pancreatic | (50) | (48) | (50) | (49) | | Hyperplasia | 5 (10%) | 2 (4%) | 1 (2%) | 1 (2%) | | Parathyroid gland | (50) | (50) | (50) | (48) | | Hyperplasia | | 1 (2%) | 3 (6%) | 3 (6%) | | Pituitary gland | (50) | (50) | (50) | (50) | | Pars distalis, angiectasis | | 2 (4%) | 2 (4%) | 2 (4%) | | Pars distalis, cyst | 2 (4%) | 8 (16%) | 3 (6%) | 1 (2%) | | Pars distalis, degeneration | | | | 1 (2%) | | Pars distalis, ectasia | | 1 (2%) | | ` ′ | | Pars distalis, hemorrhage | 1 (2%) | | | | | Pars distalis, hyperplasia | 22 (44%) | 16 (32%) | 18 (36%) | 12 (24%) | | Pars distalis, thrombosis | | 1 (2%) | | | | Thyroid gland | (50) | (50) | (50) | (49) | | Pigmentation | | 1 (2%) | | | | Ultimobranchial cyst | 1 (2%) | 1 (2%) | | 1 (2%) | | C-cell, hyperplasia | 7 (14%) | 5 (10%) | 3 (6%) | 3 (6%) | | Follicle, dilatation | 1 (2%) | 1 (2%) | 1 (2%) | 2 (4%) | | Follicular cell, hyperplasia | 1 (2%) | 5 (10%) | 1 (2%) | 2 (4%) | | General Body System
None | | | | | | Genital System | | | | | | Epididymis | (49) | (49) | (49) | (48) | | Fibrosis | | | 1 (2%) | | | Inflammation, chronic | | | 2 (4%) | | | Penis | (1) | | | | | Inflammation, chronic active | 1 (100%) | | | | | Preputial gland | (50) | (47) | (49) | (48) | | Atrophy | 1 (2%) | | | | | Hyperplasia | 4 (8%) | 3 (6%) | 5 (10%) | 4 (8%) | | Inflammation, acute | 2 (4%) | | | 2 (4%) | | Inflammation, chronic | 17 (34%) | 25 (53%) | 17 (35%) | 23 (48%) | | Genital System | | | | | |---|----------|----------|----------|----------| | Epididymis | (49) | (49) | (49) | (48) | | Fibrosis | | | 1 (2%) | | | Inflammation, chronic | | | 2 (4%) | | | Penis | (1) | | | | | Inflammation, chronic active | 1 (100%) | | | | | Preputial gland | (50) | (47) | (49) | (48) | | Atrophy | 1 (2%) | | | | | Hyperplasia | 4 (8%) | 3 (6%) | 5 (10%) | 4 (8%) | | Inflammation, acute | 2 (4%) | | | 2 (4%) | | Inflammation, chronic | 17 (34%) | 25 (53%) | 17 (35%) | 23 (48%) | | Inflammation, chronic active | 5 (10%) | 14 (30%) | 14 (29%) | 5 (10%) | | Duct, dilatation | | 2 (4%) | | 2 (4%) | | Prostate | (50) | (48) | (50) | (49) | | Hemorrhage, chronic | | 1 (2%) | | | | Hyperplasia, focal | 1 (2%) | 1 (2%) | 4 (8%) | 2 (4%) | | Inflammation, acute | 2 (4%) | 2 (4%) | | 1 (2%) | | Inflammation, chronic | 2 (4%) | 1 (2%) | 4 (8%) | 3 (6%) | | Inflammation, chronic active | 31 (62%) | 29 (60%) | 24 (48%) | 22 (45%) | | Seminal vesicle | (50) | (47) | (50) | (48) | | Dilatation | | | 1 (2%) | | | Fibrosis | | | | 1 (2%) | | Inflammation, acute | | 1 (2%) | 1 (2%) | | | Inflammation, chronic | 1 (2%) | | | 1 (2%) | | Inflammation, chronic active | 1 (2%) | 1 (2%) | 2 (4%) | 1 (2%) | | Mineralization | | | | 1 (2%) | | Testes | (49) | (49) | (49) | (48) | | Atrophy | 2 (4%) | | | | | Necrosis | 1 (2%) | | | | | Thrombosis | | | 1 (2%) | | | Bilateral, interstitial cell, hyperplasia | 3 (6%) | 2 (4%) | 3 (6%) | 1 (2%) | | Interstitial cell, hyperplasia | 9 (18%) | 6 (12%) | 6 (12%) | 4 (8%) | | | | | | | A-30 Pyridine, NTP TR 470 TABLE A5 Summary of the Incidence of Nonneoplastic Lesions in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|----------|-----------------|----------|-----------------| | Hematopoietic System | | | | | | Bone marrow | (50) | (50) | (50) | (50) | | Depletion cellular | 2 (4%) | 4 (8%) | 3 (6%) | 1 (2%) | | Fibrosis | 2 (170) | 1 (0%) | 1 (2%) | 1 (2%) | | Hemorrhage | | 1 (2%) | - (=/-/ | - (= /*/ | | Lymph node | (20) | (25) | (20) | (23) | | Iliac, hyperplasia, lymphoid | 1 (5%) | 1 (4%) | (==) | (==) | | Iliac, infiltration cellular, plasma cell | 1 (5%) | 1 (.70) | | | | Mediastinal, congestion | - (-,-, | 5 (20%) | | 4 (17%) | | Mediastinal, ectasia | | (==,,, | 1 (5%) | (=-,0) | | Mediastinal, hemorrhage | 1 (5%) | 1 (4%) | 2 (10%) | | | Mediastinal, hyperplasia, lymphoid | 1 (070) | 1 (.,v) | 2 (1070) | 1 (4%) | | Mediastinal, pigmentation | | | 1 (5%) | - (.,., | | Pancreatic, congestion | | | 1 (5%) | 2 (9%) | | Pancreatic, edema | | | - (-,-, | 1 (4%) | | Pancreatic, hyperplasia, lymphoid | | | 1 (5%) | 1 (170) | | Pancreatic, inflammation, chronic active | | | 1 (070) | 1 (4%) | | Pancreatic, necrosis | | | 1 (5%) | 1 (170) | | Pancreatic, pigmentation | | | 1 (5%) | | | Renal, congestion | 1 (5%) | | 1 (5%) | 3 (13%) | | Renal, edema | 1 (070) | | 1 (5%) | 5 (1570) | | Renal, fibrosis | | 1 (4%) | 1 (370) | | | Renal, hyperplasia, lymphoid | | 1 (1,0) | 2 (10%) | | | Renal, pigmentation | | | 1 (5%) | 4 (17%) | | Lymph node, mandibular | (50) | (50) | (50) | (50) | | Congestion | (50) | 1 (2%) | 1 (2%) | (30) | | Ectasia | 4 (8%) | 3 (6%) | 2 (4%) | 3 (6%) | | Hyperplasia, lymphoid | + (070) | 3 (0%) | 1 (2%) | 3 (0%) | | Inflammation, chronic active | | 1 (2%) | 1 (270) | | | Lymph node, mesenteric | (50) | (47) | (50) | (48) | | Congestion | (50) | 2 (4%) | (30) | 1 (2%) | | Ectasia | 2 (4%) | 3 (6%) | 2 (4%) | 1 (2%) | | Fibrosis | 2 (470) | 3 (0%) | 2 (4%) | 1 (270) | | Hemorrhage | | 1 (2%) | 2 (470) | 1 (2%) | | Inflammation, acute | 1 (2%) | 1 (2%) | | 1 (270) | | Necrosis | 1 (270) | 3 (6%) | | | | Spleen | (49) | (48) | (50) | (49) | | Atrophy | (49) | (46) | 1 (2%) | (49) | | Congestion | | 1 (2%) | 1 (270) | 1 (2%) | | Fibrosis | 14 (29%) | 1 (2%) 11 (23%) | 9 (18%) | 1 (2%) 12 (24%) | | Hematopoietic cell proliferation | 14 (29%) | 1 (2%) | 9 (10/0) | 12 (24%) 1 (2%) | | Hyperplasia, focal | 1 (270) | 1 (270) | 1 (2%) | 1 (2%) | | Necrosis | 4 (8%) | 2 (49/) | 1 (2%) | | | Pigmentation | 4 (0%) | 2 (4%) | 1 (2%) | 2 (4%) | | Thrombosis | | 1 (2%) | | 2 (4/0) | | Thrombosis Thymus | (50) | (49) | (48) | (50) | | Cyst | 1 (2%) | (47) | (40) | (30) | | Ectopic parathyroid gland | 1 (2%) | | | 1 (2%) | | 1 1 2 0 | | 1 (201) | | 1 (2%) | | Fibrosis
Hamorrhage | | 1 (2%) | | 1 (201) | | Hemorrhage | | 1 (2%) | | 1 (2%) | TABLE A5 Summary of the Incidence of Nonneoplastic Lesions in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|----------|----------|------------------|------------------| | Integumentary System | | | | | | Mammary gland | (49) | (48) | (50) | (49) | | Concretion | (- / | 1 (2%) | (/ | (-) | | Galactocele | | , , | 1 (2%) | | | Hyperplasia | 1 (2%) | 3 (6%) | 2 (4%) | 3 (6%) | | Duct, dilatation | 14 (29%) | 16 (33%) | 12 (24%) | 15 (31%) | | Skin | (50) | (50) | (50) | (50) | | Cyst epithelial inclusion
Hyperkeratosis | | | 2 (4%) | | | Hyperplasia, squamous | | 1 (2%) | 1 (2%)
1 (2%) | | | Inflammation, acute | | 1 (2%) | 1 (270) | | | Necrosis | | 1 (270) | 1 (2%) | | | Epidermis, degeneration | | | (1) | 1 (2%) | | Subcutaneous tissue, inflammation, chronic | | | | · · · / | | active | | | 1 (2%) | | | Musculoskeletal System | | | | | | Bone | (50) | (50) | (50) | (50) | | Fibrous osteodystrophy | 2 (4%) | 1 (2%) | 4 (8%) | 6 (12%) | | Hyperostosis | , , | 1 (2%) | ` ' | ` / | | Osteomalacia | | , , | | 1 (2%) | | Osteopetrosis | 1 (2%) | | 2 (4%) | | | Nervous System | | | | | | Brain | (50) | (50) | (48) | (50) | | Hemorrhage | (00) | (50) | 1 (2%) | (50) | | Hydrocephalus | 1 (2%) | | (1) | | | Inflammation, acute | | | | 1 (2%) | | Respiratory System | | | | | | Lung | (50) | (50) | (50) | (50) | | Congestion | , | 1 (2%) | , , | 2 (4%) | | Hemorrhage | | | 2 (4%) | 2 (4%) | | Hyperplasia, lymphoid | 1 (2%) | 1 (2%) | | | | Infiltration cellular, histiocyte | 6 (12%) | 4 (8%) | 9 (18%) | 9 (18%) | | Inflammation, chronic | 8 (16%) | 10 (20%) | 12 (24%) | 9 (18%) | | Metaplasia, osseous
Alveolar epithelium, hyperplasia | | 3 (6%) | | 1 (2%)
3 (6%) | | Nose | (50) | (50) | (49) | (50) | | Cyst | (50) | 1 (2%) | 1 (2%) | (50) | | Cyst epithelial inclusion | | - (270) | - (270) | 1 (2%) | | Inflammation, chronic | | | 1 (2%) | (= /-/ | | Inflammation, chronic active | 26 (52%) | 18 (36%) | 21 (43%) | 25 (50%) | | Polyp inflammatory | | | | 1 (2%) | | Nasolacrimal duct, cyst | | | 1 (2%) | 1 (2%) | | Nasolacrimal duct, inflammation, acute | 1 (2%) | | | 1 (2%) | | Squamous epithelium, nasolacrimal duct, | | 1 (20) | | | | hyperplasia | | 1 (2%) | | | | Special Senses System | | | | | | Eye | | (1) | | | | Atrophy | | 1 (100%) | | | A-32 Pyridine, NTP TR 470 TABLE A5 Summary of the Incidence of Nonneoplastic Lesions in Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ррт | 100 ppm | 200 ppm | 400 ppm | |--------------------------------------|----------|----------|----------|-----------| | Urinary
System | | | | | | Kidney | (50) | (48) | (50) | (49) | | Atrophy | | | 1 (2%) | | | Cyst | 3 (6%) | 3 (6%) | 13 (26%) | 10 (20%) | | Developmental malformation | 2 (4%) | | | | | Hydronephrosis | 3 (6%) | 1 (2%) | | 2 (4%) | | Inflammation, acute | | | | 1 (2%) | | Nephropathy | 47 (94%) | 47 (98%) | 49 (98%) | 49 (100%) | | Pigmentation | | | | 1 (2%) | | Artery, inflammation, acute | 1 (2%) | | | , , | | Artery, inflammation, chronic active | 1 (2%) | | | | | Capsule, hemorrhage, chronic | ` , | 1 (2%) | | | | Pelvis, inflammation, acute | | | | 1 (2%) | | Renal tubule, hyperplasia | 1 (2%) | | 4 (8%) | 7 (14%) | | Urinary bladder | (50) | (47) | (50) | (49) | | Hemorrhage | | 1 (2%) | 1 (2%) | 1 (2%) | | Inflammation, chronic | 4 (8%) | | 1 (2%) | 1 (2%) | # APPENDIX B SUMMARY OF LESIONS IN FEMALE F344/N RATS IN THE 2-YEAR DRINKING WATER STUDY OF PYRIDINE | TABLE B1 | Summary of the Incidence of Neoplasms in Female F344/N Rats | | |----------|---|------| | | in the 2-Year Drinking Water Study of Pyridine | B-2 | | TABLE B2 | Individual Animal Tumor Pathology of Female F344/N Rats | | | | in the 2-Year Drinking Water Study of Pyridine | B-6 | | TABLE B3 | Statistical Analysis of Primary Neoplasms in Female F344/N Rats | | | | in the 2-Year Drinking Water Study of Pyridine | B-24 | | TABLE B4 | Historical Incidence of Leukemias in Untreated Female F344/N Rats | B-27 | | TABLE B5 | Summary of the Incidence of Nonneoplastic Lesions in Female F344/N Rats | | | | in the 2-Year Drinking Water Study of Pyridine | B-28 | B-2 Pyridine, NTP TR 470 TABLE B1 Summary of the Incidence of Neoplasms in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine^a | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|-------------------|---------|-------------------|-------------------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | 50 | 30 | 30 | 30 | | Moribund | 3 | 8 | 7 | 2 | | Natural deaths | 15 | 5 | 14 | 22 | | Survivors | | | | | | Terminal sacrifice | 32 | 37 | 29 | 26 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Esophagus | (50) | (50) | (50) | (50) | | Schwannoma malignant, metastatic, uterus | (- -/ | 1 (2%) | (- */ | (- */ | | Intestine large, colon | (50) | (50) | (50) | (50) | | Fibrous histiocytoma, metastatic, mesentery | 1 (2%) | ` ' | * / | ` / | | Intestine large, cecum | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, kidney | | 1 (2%) | | | | Fibrous histiocytoma, metastatic, mesentery | 1 (2%) | | | | | Intestine small, duodenum | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, pancreas | | 1 (2%) | | | | Carcinoma, metastatic, uterus | | 1 (2%) | | | | Fibrous histiocytoma, metastatic, mesentery | 1 (2%) | | | | | Intestine small, jejunum | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, pancreas | | 1 (2%) | | | | Fibrous histiocytoma, metastatic, mesentery | 1 (2%) | (10) | (50) | (50) | | Intestine small, ileum | (50) | (49) | (50) | (50) | | Fibrous histiocytoma, metastatic, mesentery | 1 (2%) | (50) | (50) | (50) | | Liver | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, kidney | | 1 (2%) | | | | Carcinoma, metastatic, pancreas | | 1 (2%) | | | | Carcinoma, metastatic, uterus | 1 (2%) | 1 (2%) | | | | Fibrous histiocytoma, metastatic, mesentery | | | 1 (2%) | | | Hepatocellular adenoma
Mesentery | 1 (2%)
(9) | (11) | 1 (2%)
(7) | (12) | | | (9) | (11) | (1) | (12) | | Carcinoma, metastatic, uterus
Fibrous histiocytoma | 1 (11%) | 1 (9%) | | | | Schwannoma malignant, metastatic, uterus | 1 (11/0) | 1 (9%) | | | | Oral mucosa | (2) | (1) | | (2) | | Pharyngeal, squamous cell carcinoma | 2 (100%) | (*) | | (2) | | Pharyngeal, squamous cell papilloma | = (15070) | | | 1 (50%) | | Pancreas | (49) | (50) | (50) | (50) | | Carcinoma | (: = / | 2 (4%) | (- */ | (- */ | | Carcinoma, metastatic, uterus | | 1 (2%) | | | | Fibrous histiocytoma, metastatic, mesentery | 1 (2%) | · · · / | | | | Acinus, adenoma | · · · / | 1 (2%) | | 1 (2%) | | Salivary glands | (50) | (50) | (50) | (50) | | Stomach, forestomach | (50) | (50) | (50) | (50) | | Stomach, glandular | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, uterus | | 1 (2%) | | | | Fibrous histiocytoma, metastatic, mesentery | 1 (2%) | | | | | Tongue
Squamous cell papilloma | | | (1) | (2)
1 (50%) | | Cardiovascular System | (49) | (50) | (50) | (50) | | Carcinoma, metastatic, kidney | () | 1 (2%) | (50) | (50) | TABLE B1 Summary of the Incidence of Neoplasms in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--|--------------------------|--|----------------|--------------------------------------| | Endocrine System | | | | | | Adrenal cortex | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, kidney | (50) | 1 (2%) | (20) | (00) | | Adrenal medulla | (50) | (50) | (50) | (49) | | Pheochromocytoma benign | 2 (4%) | (0.0) | 1 (2%) | () | | Bilateral, pheochromocytoma benign | 1 (2%) | | - (-/*) | | | slets, pancreatic | (49) | (50) | (50) | (50) | | Adenoma | 1 (2%) | (0.0) | 1 (2%) | (0.0) | | Fibrous histiocytoma, metastatic, mesentery | 1 (2%) | | (1) | | | Parathyroid gland | (48) | (50) | (48) | (50) | | Pituitary gland | (49) | (50) | (50) | (50) | | Pars distalis, adenoma | 17 (35%) | 12 (24%) | 18 (36%) | 15 (30%) | | Pars distalis, adenoma, multiple | 1 (2%) | (, | - (/ | () | | Γhyroid gland | (50) | (50) | (50) | (50) | | Bilateral, C-cell, adenoma | \ -/ | 1 (2%) | ζ/ | (/ | | C-cell, adenoma | 3 (6%) | 2 (4%) | 2 (4%) | | | General Body System None | | | | | | Genital System | | | | | | Clitoral gland | (47) | (48) | (50) | (49) | | Adenoma | 2 (4%) | 3 (6%) | | 1 (2%) | | Carcinoma | | 1 (2%) | 1 (2%) | 2 (4%) | | Bilateral, adenoma | | | 1 (2%) | | | Ovary | (50) | (50) | (50) | (50) | | | | | | | | Carcinoma, metastatic, kidney | | 1 (2%) | | | | Carcinoma, metastatic, pancreas | | 1 (2%)
1 (2%) | | | | Carcinoma, metastatic, pancreas
Fibrous histiocytoma, metastatic, mesentery | 1 (2%) | | | | | Carcinoma, metastatic, pancreas
Fibrous histiocytoma, metastatic, mesentery
Granulosa-theca tumor malignant | | 1 (2%) | 1 (2%) | | | Carcinoma, metastatic, pancreas
Fibrous histiocytoma, metastatic, mesentery
Granulosa-theca tumor malignant
Uterus | 1 (2%)
(50) | 1 (2%) | 1 (2%)
(50) | (50) | | Carcinoma, metastatic, pancreas
Fibrous histiocytoma, metastatic, mesentery
Granulosa-theca tumor malignant
Uterus
Carcinoma | | (50)
1 (2%) | | (50) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma, metastatic, pancreas | (50) | (50)
1 (2%)
1 (2%)
1 (2%) | (50) | | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma, metastatic, pancreas Polyp stromal | | (50)
1 (2%) | | 7 (14%) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple | (50) | (50)
1 (2%)
1 (2%)
1 (2%) | (50) | , , | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple Sarcoma stromal | (50) | (50)
1 (2%)
1 (2%)
1 (2%)
7 (14%) | (50) | 7 (14%) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple Sarcoma stromal Schwannoma malignant, metastatic, uterus | (50) | (50)
1 (2%)
1 (2%)
1 (2%) | (50) | 7 (14%)
1 (2%) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Jterus Carcinoma Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple Sarcoma stromal Schwannoma malignant, metastatic, uterus Vagina | (50) | (50)
1 (2%)
1 (2%)
1 (2%)
7 (14%) | (50) | 7 (14%)
1 (2%) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple Sarcoma stromal Schwannoma malignant, metastatic, uterus | (50) | (50)
1 (2%)
1 (2%)
1 (2%)
7 (14%) | (50) | 7 (14%)
1 (2%) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple Sarcoma stromal Schwannoma malignant, metastatic, uterus Vagina Lipoma | (50) | (50)
1 (2%)
1 (2%)
1 (2%)
7 (14%) | (50) | 7 (14%)
1 (2%) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple Sarcoma stromal Schwannoma malignant, metastatic, uterus Vagina Lipoma Hematopoietic System | (50)
4 (8%)
1 (2%) | 1 (2%) (50) 1 (2%) 1 (2%) 7
(14%) | 9 (18%) | 7 (14%)
1 (2%)
(1)
1 (100%) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple Sarcoma stromal Schwannoma malignant, metastatic, uterus Vagina Lipoma Hematopoietic System Bone marrow | (50) | (50)
1 (2%)
1 (2%)
7 (14%)
1 (2%) | (50) | 7 (14%)
1 (2%) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple Sarcoma stromal Schwannoma malignant, metastatic, uterus Vagina Lipoma Hematopoietic System Bone marrow Carcinoma, metastatic, kidney | (50)
4 (8%)
1 (2%) | (50)
1 (2%)
1 (2%)
1 (2%)
7 (14%)
1 (2%) | 9 (18%) | 7 (14%)
1 (2%)
(1)
1 (100%) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple Sarcoma stromal Schwannoma malignant, metastatic, uterus Vagina Lipoma Hematopoietic System Bone marrow Carcinoma, metastatic, kidney Lymph node | (50)
4 (8%)
1 (2%) | (50)
1 (2%)
1 (2%)
1 (2%)
7 (14%)
1 (2%)
(50)
1 (2%)
(9) | 9 (18%) | 7 (14%)
1 (2%)
(1)
1 (100%) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple Sarcoma stromal Schwannoma malignant, metastatic, uterus Vagina Lipoma Hematopoietic System Bone marrow Carcinoma, metastatic, kidney Lymph node Mediastinal, carcinoma, metastatic, kidney | (50)
4 (8%)
1 (2%) | (50)
(1 (2%)
1 (2%)
7 (14%)
1 (2%)
(50)
1 (2%)
(9)
1 (11%) | 9 (18%) | 7 (14%)
1 (2%)
(1)
1 (100%) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple Sarcoma stromal Schwannoma malignant, metastatic, uterus Vagina Lipoma Hematopoietic System Bone marrow Carcinoma, metastatic, kidney Lymph node Mediastinal, carcinoma, metastatic, kidney Mediastinal, carcinoma, metastatic, pancreas | (50)
4 (8%)
1 (2%) | (50)
1 (2%)
1 (2%)
1 (2%)
7 (14%)
1 (2%)
(50)
1 (2%)
(9) | 9 (18%) | 7 (14%)
1 (2%)
(1)
1 (100%) | | Carcinoma, metastatic, pancreas Fibrous histiocytoma, metastatic, mesentery Granulosa-theca tumor malignant Uterus Carcinoma Carcinoma, metastatic, pancreas Polyp stromal Polyp stromal, multiple Sarcoma stromal Schwannoma malignant, metastatic, uterus Vagina Lipoma Hematopoietic System Bone marrow Carcinoma, metastatic, kidney Lymph node Mediastinal, carcinoma, metastatic, kidney | (50)
4 (8%)
1 (2%) | (50)
(1 (2%)
1 (2%)
7 (14%)
1 (2%)
(50)
1 (2%)
(9)
1 (11%) | 9 (18%) | 7 (14%)
1 (2%)
(1)
1 (100%) | B-4 Pyridine, NTP TR 470 TABLE B1 Summary of the Incidence of Neoplasms in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|---------------------------|--------------------|--------------------|--------------------| | Hematopoietic System (continued) | | | | | | Lymph node, mandibular | (49) | (50) | (50) | (50) | | Carcinoma, metastatic, kidney | | 1 (2%) | | | | Lymph node, mesenteric | (49) | (50) | (50) | (50) | | Carcinoma, metastatic, pancreas | | 1 (2%) | | | | Carcinoma, metastatic, uterus
Fibrous histiocytoma, metastatic, mesentery | 1 (2%) | 1 (2%) | | | | Spleen | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, kidney | (30) | 1 (2%) | (30) | (30) | | Carcinoma, metastatic, pancreas | | 1 (2%) | | | | Carcinoma, metastatic, uterus | | 1 (2%) | | | | Thymus | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, kidney | (/ | 1 (2%) | () | | | Carcinoma, metastatic, pancreas | | 1 (2%) | | | | * | | | | | | Integumentary System | (50) | (50) | (50) | (50) | | Mammary gland | (50) | (50) | (50) | (50) | | Adenoma | 2 (4%) | 1 (2%) | 1 (2%) | 1 (201) | | Carcinoma | 1 (2%)
19 (38%) | 2 (4%)
15 (30%) | 1 (2%)
14 (28%) | 1 (2%)
18 (36%) | | Fibroadenoma multiple | 8 (16%) | 10 (20%) | 6 (12%) | 2 (4%) | | Fibroadenoma, multiple
Sarcoma | 1 (2%) | 10 (20%) | 0 (12%) | 2 (4%) | | Skin | (50) | (50) | (50) | (50) | | Basal cell adenoma | (30) | 1 (2%) | (30) | (30) | | Keratoacanthoma | | 1 (270) | | 1 (2%) | | Trichoepithelioma | | | | 1 (2%) | | Musculoskeletal System Skeletal muscle Carcinoma, metastatic, uterus Abdominal, fibrous histiocytoma, metastatic, mesentery Abdominal, lipoma | (2)
1 (50%)
1 (50%) | (1)
1 (100%) | | | | Nervous System | | | | | | Brain | (50) | (50) | (50) | (50) | | Astrocytoma malignant | 2 (4%) | (30) | (30) | (30) | | Respiratory System | | | | | | T . | (50) | (50) | (50) | (50) | | Alveolar/bronchiolar adenoma | 1 (2%) | 1 (2%) | 1 (2%) | 2 (4%) | | Carcinoma, metastatic, clitoral gland | 1 (2/0) | 1 (2/0) | 1 (2/0) | 1 (2%) | | Carcinoma, metastatic, chtorai giand
Carcinoma, metastatic, kidney | | 1 (2%) | | 1 (2/0) | | Carcinoma, metastatic, mammary gland | | 1 (270) | 1 (2%) | | | | | 2 (4%) | - (270) | | | | | | | | | Carcinoma, metastatic, pancreas | | | | | | Carcinoma, metastatic, pancreas
Carcinoma, metastatic, uterus | (50) | 1 (2%) | (50) | (50) | | Carcinoma, metastatic, pancreas | (50) | 1 (2%)
(50) | (50) | (50) | | Carcinoma, metastatic, pancreas
Carcinoma, metastatic, uterus
Nose | (50) | 1 (2%) | (50) | (50) | TABLE B1 Summary of the Incidence of Neoplasms in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|----------|----------|----------|----------| | Special Senses System | | | | | | Zymbal s gland | | (1) | | (1) | | Carcinoma | | 1 (100%) | | 1 (100%) | | Urinary System | | | | | | Kidney | (50) | (50) | (50) | (50) | | Carcinoma, metastatic, pancreas | | 1 (2%) | | | | Transitional epithelium, carcinoma | | 1 (2%) | | | | Urinary bladder | (50) | (50) | (50) | (50) | | Systemic Lesions | | | | | | Multiple organs ^b | (50) | (50) | (50) | (50) | | Leukemia mononuclear | 12 (24%) | 16 (32%) | 22 (44%) | 23 (46%) | | Lymphoma malignant | 1 (2%) | . , | , , | 1 (2%) | | Neoplasm Summary | | | | | | Total animals with primary neoplasms ^c | 45 | 42 | 45 | 44 | | Total primary neoplasms | 84 | 78 | 80 | 80 | | Total animals with benign neoplasms | 39 | 34 | 35 | 35 | | Total benign neoplasms | 63 | 54 | 55 | 52 | | Total animals with malignant neoplasms | 21 | 22 | 23 | 28 | | Total malignant neoplasms | 21 | 24 | 25 | 28 | | Total animals with metastatic neoplasms | 1 | 5 | 1 | 1 | | Total metastatic neoplasms | 13 | 36 | 1 | 1 | Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms B-6 Pyridine, NTP TR 470 TABLE B2 Individual Animal Tumor Pathology of Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine: 0 ppm | | 3 | 4 | | 5 | | | | | | | | | | | | 7 ′ | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |---|--------|----|---|--------|---|---|----|--------|----|----|----|----|--------|--------|-----|----------|------------|-----|------------|-----|----------|----------|-----|----| | Number of Days on Study | 9 | 9 | 0 | 8 | 9 | 2 | 3 | 4 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 1 | 1 2 | 2 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | | - | 9 | 3 | 3 | 8 | 6 | 2 | 6 | 9 | 1 | 7 | 1 | 3 | 1 | 7 | 6 | 7 | 7 2 | 2 9 | 9 |) 9 | 9 | 9 | 9 | 9 | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2. | 2 | 2 | 2 | 2 | 2. | 2. | 2. | 2. 1 | | , , | , , | , , | 2 | 2 | 2. | | Carcass ID Number | 2 | 3 | 5 | | | 2 | | | | | | | | 2 | | 4 : | | | 1 1 | | | | 2 | | | Carcass ID Number | 3 | 7 | | | Alimentary System | Esophagus | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - 4 | ⊢ + | - + | - + | - + | + | + | | Intestine large, colon | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - 4 | + + | - + | - + | - + | + | + | | Fibrous histiocytoma, metastatic, mesentery | | · | | | · | · | | • | • | • | • | | • | • | • | | | | | | | • | | | | Intestine large, rectum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - 4 | + + | - + | - 4 | - + | + | + | | Intestine large, cecum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - + | -
- | - + | - + | - + | + | + | | Fibrous histiocytoma, metastatic, mesentery | | | | | • | • | • | • | • | • | • | • | • | • | • | | | | | | | | | • | | Intestine small, duodenum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - 4 | + 4 | - 4 | - 4 | - + | + | + | | Fibrous histiocytoma, metastatic, mesentery | | | | | • | • | | • | • | • | | • | | • | • | | | | | | | | | • | | Intestine small, jejunum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - 4 | + + | - + | - 4 | - + | + | + | | Fibrous histiocytoma, metastatic, mesentery | | | | | • | • | | • | • | • | | • | | • | • | | | | | | | | | • | | Intestine small, ileum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - 4 | + 4 | - 4 | - 4 | - + | + | + | | Fibrous histiocytoma, metastatic, mesentery | | | | | | | | | • | | | | | | | | | | | | | · | | | | Liver | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - 4 | + + | - + | - +
 - + | + | + | | Fibrous histiocytoma, metastatic, mesentery | | | | | | | | | • | | | | | | | | | | | | | · | | | | Hepatocellular adenoma | Mesentery | | | | | | | | | | | + | | | + | | | | | _ | F 4 | - | | | | | Fibrous histiocytoma | Oral mucosa | + | | | | | | | | | | | | | | | | | | 4 | - | | | | | | Pharyngeal, squamous cell carcinoma | X | | | | | | | | | | | | | | | | | | 2 | | | | | | | Pancreas | + | + | + | + | + | + | Α | + | + | + | + | + | + | + | + | + - | + - | | - 1
- 1 | | - 4 | - + | + | + | | Fibrous histiocytoma, metastatic, mesentery | | | | | • | • | | • | • | • | • | • | • | • | • | | | | | | | | | • | | Salivary glands | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - 4 | + + | - + | - + | - + | + | + | | Stomach, forestomach | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ·
+ - | + - | - + | -
 | - + | - + | - + | + | + | | Stomach, glandular | + | + | + | + | + | + | + | + | + | | | | | | | | + - | | | | - + | - + | | + | | Fibrous histiocytoma, metastatic, mesentery | · | • | • | | • | • | | | | | | | • | | | | | | | | | | • | • | | Cardiovascular System | Heart | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - + | + + | - + | - + | + | + | + | | Endocrine System | Adrenal cortex | | _ | _ | _ | + | + | + | + | + | + | + | + | + | + | + | + - | + - | | | 1 | 1 | | | + | | Adrenal medulla | -
- | | | Τ. | + | + | + | + | + | + | + | + | + | | | | + - | | г ¬ | - | T
L _ |
 | | + | | Pheochromocytoma benign | + | т | _ | т | ~ | ~ | Τ' | Τ' | Τ' | Τ' | Τ* | Τ' | Τ' | т | г ' | г. | - | 7 | · 7 | 7 | 7 | + | _ | F | | Bilateral, pheochromocytoma benign | | | | | | | | | | X | | | | | | | | | | | | | | | | (slets, pancreatic | _1 | | | | _ | _ | Α | _ | | | + | _ | _ | _ | _ | _ | _ | | L .1 | | | | | + | | Adenoma | + | т | _ | т | ~ | ~ | Л | Τ' | Τ' | Τ* | Τ- | т. | т. | Т | Г | ۲. | r - | 7 | · 7 | 7 | 7 | + | т | F | | Fibrous histiocytoma, metastatic, mesentery | .1 | | 5 | _ | _ | _ | _ | _ | + | + | + | + | + | _ ı | л | _ | _ | _ 1. | л · | | | | + | | Parathyroid gland
Pituitary gland | + | + | + | + | + | + | + | T | T | | - | | | | | | + -
+ - | | + N
+ + | | | | · M | | | | + | + | + | +
X | | + | | +
V | | + | + | | +
X | + | | | | | | - + | - + | - +
X | | | | Pars distalis, adenoma multiple | | | | Λ | Λ | | | X | Λ | | | | Λ | | | Λ. | X X | ` | | | τ. | | | X | | Pars distalis, adenoma, multiple | Χ | | , | | | Thyroid gland | + | + | + | + | + | + | + | + | + | + | + | + | | +
X | | + -
X | + - | | + + | - + | - + | - + | + | + | | C-cell, adenoma | | | | | | | | | | | | | | X. | | | | | | | | | | | # **General Body System** None +: Tissue examined microscopically A: Autolysis precludes examination M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined TABLE B2 Individual Animal Tumor Pathology of Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine: 0 ppm | | 7 | | |---|---|----------|----|----|----------|----------|----------|----------|----------|----------|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|---|---|----------|----------|---|----------| | James Charles | 7 | | | | 7 | 7 | | 7 | 7 | | 7 | | | | | | | 7 | 2 | 7 | 7 | 7 | | | | | | Number of Days on Study | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | | | | | 3 | 3 | 3 | 3 | 3 | 3 | | 3 | | | | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 2 | Total | | Carcass ID Number | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 5 | | | | | | | 4 | 4 | 5 | 5 | 5 | 6 | | 6 | Tissues/ | | carcass 1D Number | | - | 0 | 1 | 2 | 4 | 5 | 6 | / | 8 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 5 | / | 8 | 6 | / | 8 | 3 | 4 | 3 | Tumors | | Alimentary System | Esophagus | + | 50 | | Intestine large, colon | + | 50 | | Fibrous histiocytoma, metastatic, mesentery | | | | X | 1 | | Intestine large, rectum | + | 50 | | Intestine large, rectum | | <u>.</u> | + | + | <u>.</u> | <u>.</u> | <u>.</u> | <u>.</u> | <u>.</u> | <u>.</u> | i | Ţ | <u>.</u> | <u>.</u> | i | <u>.</u> | <u>.</u> | Ţ | i | <u>.</u> | Ţ | Ţ | <u>.</u> | <u>.</u> | + | 50 | | Fibrous histiocytoma, metastatic, mesentery | ' | , | ' | X | | ' | ' | | | ' | | ' | ' | ' | | ' | ' | ' | ' | ' | ' | | ' | ' | | 1 | 50 | | Intestine small, duodenum | + | + | + | + | + | + | _ | т | _ | _ | _ | т | т | т | т | т | т | т | т | _ | _ | + | + | + | _ | | | Fibrous histiocytoma, metastatic, mesentery | | | | X | 1 | | Intestine small, jejunum | + | 50 | | Fibrous histiocytoma, metastatic, mesentery | | | | X | 1 | | Intestine small, ileum | + | 50 | | Fibrous histiocytoma, metastatic, mesentery | | | | X | 1 | | Liver | + | 50 | | Fibrous histiocytoma, metastatic, mesentery | | | | X | 1 | | Hepatocellular adenoma | X | | | | | | 1 | | Mesentery | | | | + | | | | | | | | + | + | | | + | | | | + | | | | | | 9 | | Fibrous histiocytoma | | | | X | 1 | | Oral mucosa | 2 | | Pharyngeal, squamous cell carcinoma | 2 | | Pancreas | _ | _ | + | + | _ | 49 | | Fibrous histiocytoma, metastatic, mesentery | ' | | ' | X | | ' | ' | | | ' | | ' | ' | | | ' | ' | ' | ' | ' | ' | | ' | ' | | 1 | | Salivary glands | | | | Λ. | 50 | | | + | | | Stomach, forestomach | + | 50 | | Stomach, glandular | + | 50 | | Fibrous histiocytoma, metastatic, mesentery | | | | X | 1 | | Cardiovascular System | Heart | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Endocrine System | Adrenal cortex | + | 50 | | Adrenal medulla | 7 | T. | T. | | - L | _ | + | _ | + | _ | _ | <u>'</u> | <u>+</u> | _ | <u>,</u> | <u>.</u> | <u>'</u> | <u>.</u> | <u>.</u> | + | + | + | + | + | + | 50 | | | + | + | + | + | + | + | _ | т | _ | _ | _ | т | т | т | т | т | т | т | т | _ | _ | | + | + | | | | Pheochromocytoma benign | X | | | X | 2 | | Bilateral, pheochromocytoma benign | 1 | | slets, pancreatic | + | 49 | | Adenoma | X | | | | 1 | | Fibrous histiocytoma, metastatic, mesentery | | | | X | 1 | | Parathyroid gland | + | 48 | | Pituitary gland | + | 49 | | Pars distalis, adenoma | X | | | | | | | | | | | | | | X | | | X | X | X | X | | | X | | 17 | | Pars distalis, adenoma, multiple | 1 | | | | | | | | | | | | | | | | | | | _ | _ | | + | + | + | + | | + | 50 | | Γhyroid gland | + | + | + | + | + | + | + | + | | | | | | | | | | | | | | | | | | | # **General Body System** None B-8 Pyridine, NTP TR 470 | Individual Animal Tumor Pathology of | Fema | le l | F 3 4 | 4/1 | N R | Rats | s in | th | e 2 | -Y | ear | . D | rin | kir | ıg V | Wa | ter | St | ud | y o | f F | yr | idi | ne: | 0 ppm | |---|------|------------|--------------|--------|--------|------|--------|----|--------|--------|--------|-----|--------|--------|--------|--------|--------|-----|--------|--------|-----|--------|-----|-----|--------| | | | 4 | | 5 | | | | | | | | | | | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | Number of Days on Study | 9 | 9 | 0 | | 9
6 | 2 | 3
6 | 4 | 6
1 | | | 7 | 8 |
8 | 9 | 1
7 | 1 | 2 | 9 | 9 | 9 | 9 | 2 | 2 | 2 | _ | | | _ | | _ | | | Carcass ID Number | 2 2 | 2 | 2
5 | 2 | 2 | 2 | 2 | 2 | | | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 2 2 | | Carcass ID Number | 3 | 3 | | 5
0 | | | | 2 | | 6
1 | | | 4
0 | | 4
6 | 4
9 | 5
5 | 1 8 | 1
6 | 1
7 | 2 | 2
4 | | | | | C | Genital System
Clitoral gland | + | + | + | + | + | + | + | + | + | + | + | М | + | М | M | + | + | + | + | + | + | + | + | + | + | | Adenoma | | Ċ | | Ċ | | X | | | | • | | .,, | Ċ | .,, | .,, | | | • | | | | | | | X | | Ovary Fibrous histiocytoma, metastatic, mesentery | + | | Uterus | + | | Polyp stromal | | 3 7 | Sarcoma stromal | | X | Hematopoietic System | Bone marrow | + | | Lymph node Mediastinal, fibrous histiocytoma, | | + | | | | | + | | | + | + | | | + | | | | | | | | | | | | | metastatic, mesentery | Lymph node, mandibular | + | + | | M | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | | Lymph node, mesenteric
Fibrous histiocytoma, metastatic, mesentery | + | + | IVI | + | т | | Spleen | + | | Γhymus | + | | Integumentary System | Mammary gland | + | | Adenoma
Carcinoma | | | | | | | | | | | | | | | | X | | | | | | | | | | | Fibroadenoma | | | | | | | X | | X | | X | X | | | | | | X | | | X | | | | X | | Fibroadenoma, multiple | | | | | X | | | | | | | | | X | X | X | | | | | | X | X | | | | Sarcoma
Skin | + | + | + | + | + | + | + | + | + | + | + | + | + | + | X
+ | + | + | + | + | + | + | + | + | + | + | | | • | | | | | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | • | | Musculoskeletal System | Bone
Skeletal muscle | + | | Abdominal, fibrous histiocytoma, | metastatic, mesentery | Abdominal, lipoma | Nervous System | Brain | + | + | + | + | | + | | Astrocytoma malignant | | | | | X | Respiratory System | Lung | + | | Alveolar/bronchiolar adenoma
Nose | + | | Ггасћеа | + | | Special Senses System | Harderian gland | - | U rinary System
Kidney | .1 | _ | | | | | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | | _ | | Urinary bladder | + | Systemic Lesions Multiple organs | .1 | _ | | | + | + | _ | + | _ | + | | + | _ | _ | + | _ | _ | _ | _ | + | + | | | + | _ | | Leukemia mononuclear | + | т | т | Т | т | _ | +
X | _ | _ | | +
X | _ | _ | +
X | 7 | _ | + | _ | +
X | _ | _ | _ | X | | +
X | | Lymphoma malignant | 7 | | |--|-------------|-------------|-------------|------------------|-------------|-------------|-------------|-------------|-------------|--------|-------------|--------|-------------|--------|--------|-------------|--------|-------------|-------------|--------|--------|--------|--------|-------------|--------|-----------------------------| | Number of Days on Study | 2
9 | 2 | 2
9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2
9 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | Carcass ID Number | 2
3
0 | 2
3
1 | 2
3
2 | 2
3
4 | 2
3
5 | 2
3
6 | 2
3
7 | 2
3
8 | 2
5
1 | 5 | 2
5
3 | 5 | 2
4
1 | 4 | 4 | 2
4
4 | 4 | 2
4
7 | 2
4
8 | 5 | 5 | 5 | 6 | 2
6
4 | 6 | Total
Tissues/
Tumors | | Genital System
Clitoral gland | + | 47 | | Adenoma Ovary Fibrous histiagutama, matastatia, masantaru | + | 50
1 | | Fibrous histiocytoma, metastatic, mesentery
Jterus
Polyp stromal
Sarcoma stromal | + | + | + | X
+ | +
X | + | +
X | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | +
X | 1
50
4
1 | | Hematopoietic System Sone marrow Lymph node Mediastinal, fibrous histiocytoma, | + | 50
7 | | metastatic, mesentery ymph node, mandibular ymph node, mesenteric Fibrous histiocytoma, metastatic, mesentery | ++ | + | + | X
+
+
X | + | + | + | + | + | +
+ | +
+ | + | + | + | + | + | +
+ | + | + | + | + | + | + | + | +
+ | 1
49
49
1 | | Spleen
Chymus | ++ | + | + | + | + | + | ++ | + | + | ++ | + | + | ++ | + | + | + | ++ | + | + | + | ++ | + | + | + | ++ | 50
50 | | ntegumentary System
Mammary gland
Adenoma
Carcinoma | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | 50
2
1 | | Fibroadenoma
Fibroadenoma, multiple
Sarcoma
kin | X
+ | + | X
+ | + | + | X
+ | + | + | + | + | X
+ | X
+ | X
+ | + | X | X
+ | X
+ | X
+ | + | X
+ | X
+ | X
+ | X
+ | + | + | 19
8
1
50 | | Musculoskeletal System | • | • | | | | • | • | _ | • | • | • | • | • | | _ | • | • | • | | _ | _ | | • | • | • | | | Bone
Skeletal muscle
Abdominal, fibrous histiocytoma, | + | 50
2 | | metastatic, mesentery
Abdominal, lipoma | | | | X | | | | X | | | | | | | | | | | | | | | | | | 1
1 | | Nervous System
Brain
Astrocytoma malignant | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50
2 | | Respiratory System Lung Alveolar/bronchiolar adenoma | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Nose
Frachea | + | 50
50 | | Special Senses System
Iarderian gland | | | | | | + | 1 | | J rinary System
Gidney
Jrinary bladder | ++ | ++ | + | ++ | ++ | ++ | + | ++ | ++ | ++ | ++ | ++ | ++ | ++ | + | ++ | ++ | ++ | + | + | + | ++ | + | ++ | ++ | 50
50 | | Systemic Lesions Multiple organs Leukemia mononuclear Lymphoma malignant | + | + | + | + | +
X | + | +
X | + | + | + | +
X | + | + | +
X | + | +
X | + | +
X | + | + | + | + | + | + | + | 50
12
1 | TABLE B2 Individual Animal Tumor Pathology of Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine: 100 ppm | Individual Animal Tumor Pathology of |--|--------|----|-----|----|--------|--------|--------|--------|--------|-----|-----|----|--------|-----|-----|--------|-----|--------|---|----------|----------|----------|--------|----|----| | | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | Number of Days on Study | 8 | 3 | 4 | 7 | 1 | 4 | 5 | 6 | 6 | 8 | 9 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | 8 | 3 | 6 | 0 | 1 | 2 | 0 | 6 | 6 | 2 | 5 | 7 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | 2 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 2. | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2. | | Carcass ID Number | 8 | 7 | 8 | 0 | | 1 | 7 | 9 | 1 | | | 7 | | | | | | 7 | 7 | 7 | 7 | 8 | 8 | 8 | | | Curcuss ID I (united) | 0 | 7 | 4 | | 8 | | | 9 | | | | | | | | 9 | | 2 | 3 | 6 | 9 | 1 | | 3 | | | Alimentary System | Esophagus | + | | Schwannoma malignant, metastatic, uterus | | | | X | Intestine large, colon | + | + |
+ | | Intestine large, rectum | + | | Intestine large, cecum | + | | Carcinoma, metastatic, kidney | | | | • | | | X | • | | | | | | • | | | • | | • | | | | | | | | Intestine small, duodenum | + | | Carcinoma, metastatic, pancreas | ' | | ' | | X | | | | | | | | ' | • | | | • | | • | ' | ' | | ' | | | | Carcinoma, metastatic, uterus | X | | | | 11 | Intestine small, jejunum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | _ | _ | _ | _ | _ | _ | + | | Carcinoma, metastatic, pancreas | 7 | Т | Т | г | Υ | - | - | 1 | - | 1. | 1. | 1. | 1. | 1. | 1. | 1. | 1. | 1. | ٢ | ۲ | Г | г | Т | г | | | | 1 | J. | Ji. | J. | Λ | _ | _ | _ | _ | _ | _ | _ | _ | т | _ | _ | т | _ | J | 5 | _ | J | | J. | _ | | Intestine small, ileum
Liver | + | + | + | + | , | + | T . | _ | + | T . | T . | _ | T . | T . | T . | T . | T . | T . | + | + | + | + | + | + | + | | | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Carcinoma, metastatic, kidney | | | | | 37 | | Λ | Carcinoma, metastatic, pancreas | ** | | | | X | Carcinoma, metastatic, uterus | X | Mesentery | + | | | + | | + | | | + | | + | | | | | | | + | | | | | + | | | | Carcinoma, metastatic, uterus | X | Schwannoma malignant, metastatic, uterus | | | | X | Oral mucosa | | | + | Pancreas | + | | Carcinoma | | | X | | X | Carcinoma, metastatic, uterus | X | Acinus, adenoma | Salivary glands | + | | Stomach, forestomach | + | | Stomach, glandular | + | | Carcinoma, metastatic, uterus | X | Cardiovascular System | Heart | + | | Carcinoma, metastatic, kidney | • | | | • | | | X | | | | | | | | | | | | | | | - | | • | | | Endocrine System | Adrenal cortex | + | | Carcinoma, metastatic, kidney | , | | | | • | • | X | • | • | • | • | • | • | • | | • | • | • | • | • | | | | | | | Adrenal medulla | + | | Islets, pancreatic | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | <u>'</u> | <u>'</u> | <u> </u> | | | + | | Parathyroid gland | ر
1 | T | _L | _T | | т
Т | T | T- | T | + | + | ± | T. | T. | ±. | T. | T. | ±. | | | <u>т</u> | _L | | | + | | Paramyroid giand
Pituitary gland | | T | T | T | т
Т | T | + | т
Т | т
Т | + | + | + | + | + | + | + | T | т
Т | + | + | | T | T | + | | | • • | + | + | + | + | + | +
X | _ | +
X | +
X | _ | т | | +
X | т | т | +
X | т | т | + | +
X | + | + | +
v | + | + | | Pars distalis, adenoma | , | | | | , | | | | | | | | | | | | | | , | | | | X | | | | Thyroid gland | + | | Bilateral, C-cell, adenoma | | | | | | | | | | | 37 | | | | | | | | | | | | | | | | C-cell, adenoma | | | | | | | | | | | X | | | | | | | | | | | | | | | None TABLE B2 Individual Animal Tumor Pathology of Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine: 100 ppm | | 7 | | |--|-----|----|----|----|----|----------|--------|--------|---|---|--------|--------|----|---|----------|----------|-----|----------|---|---|----|---------|----|---|---|---------| | Number of Days on Study | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2 | _ | _ | _ | _ | _ | _ | _ | _ | | | Compage ID Number | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | | 3 | 3 | 3 | | | | | 2 | 2 | 2 | 2 | 2 | 2 | | 3 | Tota | | Carcass ID Number | 9 | 9 | 9 | | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 7 | 7 | 8 | 8 | 8 | 9 | | 0 | Tissues | | | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 3 | 4 | 1 | 5 | 6 | 7 | 9 | 0 | 5 | 3 | Tumors | | Alimentary System | Esophagus | + | 50 | | Schwannoma malignant, metastatic, uterus | 1 | | Intestine large, colon | + | 50 | | Intestine large, rectum | + | 50 | | Intestine large, cecum | + | 50 | | Carcinoma, metastatic, kidney | • | | · | | · | | • | | • | • | | | • | | | • | • | | | • | • | | • | | | 1 | | Intestine small, duodenum | + | 50 | | Carcinoma, metastatic, pancreas | | | | | | ' | | | | | | | | | | | | | | | | | | | ' | 1 | | Carcinoma, metastatic, uterus | 1 | | Intestine small, jejunum | | .1 | .1 | J. | J. | ر | _ | _ | _ | _ | | | _ | _ | + | + | _ | _ | _ | ر | | 5 | J. | | + | 50 | | . 3 3 | + | + | + | + | + | + | _ | т | + | _ | _ | _ | т | _ | т | т | _ | _ | _ | + | + | + | + | + | т | | | Carcinoma, metastatic, pancreas | | | | | | , | | | , | | | | | | | | | | | , | | | | | | 1
49 | | Intestine small, ileum | + | | | Liver | + | 50 | | Carcinoma, metastatic, kidney | 1 | | Carcinoma, metastatic, pancreas | 1 | | Carcinoma, metastatic, uterus | 1 | | Mesentery | | | | | | | | | | | + | | | | | | | | + | | + | | | + | | 11 | | Carcinoma, metastatic, uterus | 1 | | Schwannoma malignant, metastatic, uterus | 1 | | Oral mucosa | 1 | | Pancreas | + | 50 | | Carcinoma | 2 | | Carcinoma, metastatic, uterus | 1 | | Acinus, adenoma | | | | X | 1 | | Salivary glands | + | 50 | | Stomach, forestomach | · + | + | + | + | + | + | + | + | + | + | + | + | + | + | <u>.</u> | <u>.</u> | + | <u>.</u> | + | + | + | + | + | + | + | 50 | | Stomach, glandular | · + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | <u>.</u> | + | + | + | + | + | + | + | 50 | | Carcinoma, metastatic, uterus | | | | | | ' | | | | | | | | | | | ' | | | ' | | | | | | 1 | | ~ · · | Cardiovascular System | Heart | + | 50 | | Carcinoma, metastatic, kidney | 1 | | Endocrine System | Adrenal cortex | + | 50 | | Carcinoma, metastatic, kidney | | | | | | ' | • | | • | • | | • | • | • | • | • | • | • | • | • | | | | | • | 1 | | Adrenal medulla | _ | + | 50 | | Islets, pancreatic | T | T | T. | | | <u>т</u> | т
Т | ر
ب | | + | ر
ب | т
Т | T- | + | + | + | + | + | | + | _L | T
_L | T | + | + | 50 | | | + | | | | | Τ, | _ | _ | | + | _ | _ | _ | + | | | T . | + | + | + | | | | + | + | 50 | | Parathyroid gland | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + | + | | | | + | + | + | | + | | | Pituitary gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | 50 | |
Pars distalis, adenoma | X | | | | | | | | | | | | | | | | X | | | X | | | X | | | 12 | | Thyroid gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + | + | + | + | + | + | + | + | + | 50 | | Bilateral, C-cell, adenoma | | | | | | | | | | | | | | | | X | | | | | | | | | | 1 | | C-cell, adenoma | X | | | 2 | None B-12 Pyridine, NTP TR 470 | | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 ′ | 7 7 | 7 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |--|--------|---|---|--------------|--------------|---|----|---|----|----|----|-----------|----|------------|----------|------------|------|---|----|---|---|----|---|----| | Number of Days on Study | 8 | 3 | 4 | 7 | 1 | 4 | 5 | 6 | 6 | 8 | 9 | 1 | 2 | 2 | 2 | 2 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | 8 | 3 | 6 | 0 | 1 | 2 | 0 | 6 | 6 | 2 | 5 | 7 | 8 | 9 | 9 | 9 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | 2 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | 2 2 | 2 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Carcass ID Number | 8 | 7 | | 0 | | | | | | | | | | | 6 | | 7 7 | | | | 8 | 8 | 8 | 8 | | | 0 | | | | | | | | | | | | | | 8 | 9 (| | | | | | | | | | Genital System | Clitoral gland | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | | Adenoma | · | | · | | Ċ | | | • | • | • | • | | | X | • | | | | | · | X | · | | • | | Carcinoma | | | | | | | | | | | | | X | 11 | | | | | | | | | | | | Ovary | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | <u>.</u> | L _ | | _ | _ | _ | _ | _ | _ | _ | | Carcinoma, metastatic, kidney | ' | ' | | | ' | ' | X | ' | ' | ' | ' | ' | ' | ' | | | ' ' | | | ' | | ' | | ' | | · · · · · · · · · · · · · · · · · · · | | | | | \mathbf{v} | | Λ | | | | | | | | | | | | | | | | | | | Carcinoma, metastatic, pancreas
Uterus | .1 | _ | _ | _ | X
+ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | L | L .1 | ر | _ | _ | _ | _ | _ | _ | | Carcinoma | +
X | + | + | + | + | т | _ | т | т | _ | т | _ | т | т | т - | г - | - + | + | + | + | + | + | + | T | | Carcinoma, metastatic, pancreas | Λ | | | | X | Λ | | | | | | | | | | X | | | X | | | v | X | | | | Polyp stromal | | | | \mathbf{v} | | | | | | | | | | | Λ | | | Λ | | | Λ | Λ | | | | Schwannoma malignant, metastatic, uterus | | | | X | Hematopoietic System | Bone marrow | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | | Carcinoma, metastatic, kidney | | | | | | | X | | | | | | | | | | | | | | | | | | | Lymph node | | | | + | + | | + | | | | + | + | | | | | + | | | | | | | | | Mediastinal, carcinoma, metastatic, kidney | | | | | | | X | | | | | | | | | | | | | | | | | | | Mediastinal, carcinoma, metastatic, pancreas | | | | | X | Lymph node, mandibular | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | | Carcinoma, metastatic, kidney | | | | | | | X | | | | | | | | | | | | | | | | | | | Lymph node, mesenteric | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | | Carcinoma, metastatic, pancreas | | | | | X | Carcinoma, metastatic, uterus | X | Spleen | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | | Carcinoma, metastatic, kidney | | | | | | | X | | | | | | | | | | | | | | | | | | | Carcinoma, metastatic, pancreas | | | | | X | Carcinoma, metastatic, uterus | X | Thymus | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | | Carcinoma, metastatic, kidney | | | | | | | X | | | | | | | | | | | | | | | | | | | Carcinoma, metastatic, pancreas | | | | | X | Integumentary System | Mammary gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | | Adenoma | 1 | | | | ' | | | | | | | | X | | | | . ' | | | | | | | | | Carcinoma | | | | | | | X | | | | | | | | | | | | | | | | | | | Fibroadenoma | | | | | | | 21 | X | X | x | X | x | X | X | | 7 | K | | | | | | Y | X | | Fibroadenoma, multiple | | | | | | | | 1 | /1 | 1 | 11 | /1 | 1 | / 1 | | 1 | • | Y | X | Y | Y | Y | | 23 | | Skin | | _ | _ | _ | + | + | + | + | + | + | + | + | + | + | + - | ⊢ - | | | | | | | | + | | Basal cell adenoma | + | т | 7 | Т | ۲ | r | ı | ۲ | i. | 1- | 1. | 15 | 1. | 1 | ' ' | | X | | Τ' | т | т | т. | т | 1 | | Musculoskeletal System | Bone | ر | + | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | L | ر ا | | _ | | | _ | | + | | Skeletal muscle | + | т | _ | т | 7 | 7 | 7 | 7 | Τ- | Τ- | Τ' | Τ' | Τ' | т | г. | | . + | т | _ | т | т | т | т | T' | | | +
X | Carcinoma, metastatic, uterus | Λ | Nervous System | Brain | 7 | | | | | | | | | | | | | _ | - | _ | | _ | _ | _ | _ | _ | _ | _ | | |--|---|---|---|---|---|---|---|---|---|---|---|---|----|---|-----|------------|------------|---|---|---|---|---|---|---|---------| | N. 1 AD G: 1 | , | / | 7 | | | Number of Days on Study | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | - : | 2 2 | - | 3 | 3 | 3 | 3 | 3 | | | | | | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 : | 3 3 | 3 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | Total | | Carcass ID Number | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | | | 0 | | | | | | . 7 | | 8 | 8 | 8 | 9 | 9 | 0 | Tissues | | | 1 | 2 | 3 | 4 | 6 | 7 | 8 | | | | | | | 9 | | | | | | | | | | | Tumors | | Genital System | Clitoral gland | + | + | + | + | + | + | + | + | М | + | + | + | + | + | + - | + - | ⊢ + | + | + | + | + | + | + | + | 48 | | Adenoma | • | | | | | X | | | | | | | | - | | | | | | | | | | - | 3 | | Carcinoma | 1 | | Ovary | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - + | + | + | + | + | + | + | + | 50 | | Carcinoma, metastatic, kidney | 1 | | Carcinoma, metastatic, pancreas | 1 | | Uterus | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | 50 | | Carcinoma | • | - | | · | | 1 | | Carcinoma, metastatic, pancreas | 1 | | Polyp stromal | X | | | | | | | | | | | | | | 2 | X | | | | | | | | X | 7 | | Schwannoma malignant, metastatic, uterus | 1 | | Hematopoietic System | Bone marrow | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | Δ. | <u> </u> | | | _ | _ | | | | _ | 50 | | Carcinoma, metastatic, kidney | | _ | т | т | _ | т | т | т | т | _ | т | _ | т | т | т : | т - | | | | т | | | | т | 1 | | Lymph node | | | | | | | | | | | | | + | | | | | | + | | | + | _ | | 9 | | Mediastinal, carcinoma, metastatic, kidney | | | | | | | | | | | | | Τ. | | | | | | т | | | Т | | | 1 | | Mediastinal, carcinoma, metastatic, pancreas | 1 | | Lymph node, mandibular | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | Ψ. | | | | _ | _ | _ | _ | | _ | 50 | | Carcinoma, metastatic, kidney | | | т | т | т | т | | т | Т | т | т | т | Т | т | т : | _ | | | т | Т | | | | | 1 | | Lymph node, mesenteric | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ш. | | - + | + | + | _ | _ | | | | 50 | | | | _ | т | т | _ | т | т | т | т | т | т | т | т | т | т : | _ | | | т | т | | | | т | 1 | | Carcinoma, metastatic, pancreas
Carcinoma, metastatic, uterus | 1 | 50 | | Spleen | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - + | + | + | + | + | | + | + | | | Carcinoma, metastatic, kidney | 1 | | Carcinoma, metastatic, pancreas | 1 | | Carcinoma, metastatic, uterus | 1 | | Thymus | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | - + | + | + | + | + | + | + | + | 50 | | Carcinoma, metastatic, kidney | 1 | | Carcinoma, metastatic, pancreas | 1 | | Integumentary System | Mammary gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + | + | + | + | + | + | + | + | 50 | | Adenoma | 1 | | Carcinoma | X | | | | | 2 | | Fibroadenoma | | | | X | | | | | | | | | | | | | X | | | X | | X | X | | 15 | | Fibroadenoma, multiple | | | | | | X | X | | | | | | X | | X | | | | X | | | | | | 10 | | Skin | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + | +
 + | + | + | + | + | + | 50 | | Basal cell adenoma | 1 | | Musculoskeletal System | Bone | | + | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | Δ. | <u>.</u> - | | | _ | _ | | | | _ | 50 | | | + | + | + | + | + | + | т | т | т | _ | т | _ | т | т | т. | т | - + | + | + | + | + | + | + | + | | | Skeletal muscle Carcinoma, metastatic, uterus | 1
1 | | Caremonia, inclasiane, uterus | Nervous System | B-14 Pyridine, NTP TR 470 TABLE B2 Multiple organs Leukemia mononuclear | | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | |------------------------------------|--| | Number of Days on Study | 8 | 3 | 4 | 7 | 1 | 4 | 5 | 6 | 6 | 8 | 9 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 8 | 3 | 6 | 0 | 1 | 2 | 0 | 6 | 6 | 2 | 5 | 7 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | | 2 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | Carcass ID Number | 8 | 7 | 8 | 0 | 8 | 1 | 7 | 9 | 1 | 0 | 6 | 7 | 1 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | | | | 0 | 7 | 4 | 0 | 8 | 2 | 8 | 9 | 5 | 1 | 7 | 4 | 1 | 6 | 8 | 9 | 0 | 2 | 3 | 6 | 9 | 1 | 2 | 3 | 5 | | | Respiratory System | Lung | + | | | Alveolar/bronchiolar adenoma | Carcinoma, metastatic, kidney | | | | | | | X | Carcinoma, metastatic, pancreas | | | X | | X | Carcinoma, metastatic, uterus | X | Nose | + | | | Pleura | | | | | | | + | Carcinoma, metastatic, kidney | | | | | | | X | Trachea | + | | | Special Senses System | Zymbal s gland | | + | Carcinoma | | X | Urinary System | Kidney | + | | | Carcinoma, metastatic, pancreas | | | | | X | • | | | | | • | • | | | | | • | | | | | • | • | | | | | Transitional epithelium, carcinoma | | | | | | | X | Urinary bladder | + | | TABLE B2 | | 7 | | |---------------------------------------|----------|---|----------| | Number of Days on Study | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | rainoer of Days on Study | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | Total | | Carcass ID Number | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 7 | 7 | 8 | 8 | 8 | 9 | 9 | 0 | Tissues/ | | | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 3 | 4 | 1 | 5 | 6 | 7 | 9 | 0 | 5 | 3 | Tumors | | Respiratory System | Lung | + | 50 | | Alveolar/bronchiolar adenoma | | | | | | | | | X | | | | | | | | | | | | | | | | | 1 | | Carcinoma, metastatic, kidney | 1 | | Carcinoma, metastatic, pancreas | 2 | | Carcinoma, metastatic, uterus | 1 | | Nose
Pleura | + | 50 | | Carcinoma, metastatic, kidney | 1
1 | | Trachea | _ | + | 50 | | | ' | | | - | - | | • | • | • | • | • | - | | - | _ | | | • | | • | - | - | | <u> </u> | | | | Special Senses System Zymbal s gland | 1 | | Carcinoma | 1
1 | | Urinary System | Kidney | + | 50 | | Carcinoma, metastatic, pancreas | 1 | | Transitional epithelium, carcinoma | 1 | | Urinary bladder | + | 50 | | Systemic Lesions | Multiple organs | + | 50 | | Leukemia mononuclear | | X | | | X | | X | | | | | X | | | | | | | | X | | | | | X | 16 | B-16 Pyridine, NTP TR 470 | | | | | - | - | _ | - | _ | _ | _ | _ | _ | _ | _ | - | _ | | _ | _ | _ | _ | _ | _ | _ | |---|---|-----|----------|---|----|---|---|---|---|---|---|--------|---|--------|-----|----------|----------|---|---|--------|----|----|---|---| | | 4 | | | | | | | 6 | | | | | | | 7 | | | | | 7 | 7 | 7 | | 7 | | Number of Days on Study | 9 | | | - | 7 | 8 | 8 | 0 | | | | | | | 0 0 | 0 (| | | 1 | 2 | 2 | 2 | | 2 | | | 6 | 1 | 9 | 1 | 3 | 0 | 6 | 5 | 4 | 5 | 1 | / | 8 | 9 | υ. | 3 1 | ′ / | 1 | 8 | 1 | 9 | 9 | 9 | 9 | | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | Carcass ID Number | 3 | 4 | 2 | 5 | 1 | 5 | 6 | 5 | 5 | 3 | 5 | 3 | 4 | 5 | 6 | 2 1 | 4 | 5 | 4 | 1 | 1 | 2 | 2 | 2 | | | 9 | 8 | 7 | 3 | 7 | 9 | 3 | 1 | 4 | 4 | 6 | 7 | 6 | 7 | 2 | 0 8 | 3 5 | 0 | 0 | 6 | 9 | 1 | 2 | 3 | | Alimentary System | Esophagus | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | | Intestine large, colon | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | | Intestine large, rectum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Intestine large, cecum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Intestine small, duodenum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Intestine small, jejunum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Intestine small, ileum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Liver | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Hepatocellular adenoma | Mesentery | + | | + | | | + | | | | | | | + | | | | | | | | | | | | | Pancreas | + | + | + | + | + | + | + | + | | | | | | | | + + | + | + | + | + | + | + | + | + | | Salivary glands | + | + | + | + | + | + | + | + | + | • | | + | + | • | | + + | + | | + | + | + | + | + | + | | Stomach, forestomach | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + + | + | + | + | + | + | + | + | + | | Stomach, glandular
Fongue | + | + | - + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | | oligue | Cardiovascular System | Ieart | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Endocrine System | Adrenal cortex | + | + | - + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | | Adrenal medulla | | . + | ·
- + | + | + | + | + | + | + | + | + | + | + | + | + . | + + | - + | + | + | + | + | + | + | + | | Pheochromocytoma benign | | | ' | ' | ' | | ' | | ' | ' | | | • | | | | | | | | | ' | | | | slets, pancreatic | + | + | - + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | | Adenoma | X | | | | Parathyroid gland | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + - | + - | + + | + | + | + | + | | + | + | | Pituitary gland | + | + | . + | + | + | + | + | + | | | | | | | | + + | + | + | + | + | + | | | + | | Pars distalis, adenoma | | | | | | | | | · | | X | | | X | | X | | | - | | X | - | | X | | Γhyroid gland | + | + | + | + | + | + | + | + | + | | | | | | | + + | + + | + | + | | + | + | | + | | C-cell, adenoma | | | | | | | | | | | | | | | | 2 | ζ. | | | | | | | | | General Body System | | |
| None | Genital System | Clitoral gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + + | | + | + | + | + | + | + | | Carcinoma | | | | | | | | | | | | | | | | | X | | | | | | | | | Bilateral, adenoma | | | | | , | | | | , | , | | | | | | | , | | | | | , | , | | | Ovary Granulosa-theca tumor malignant | + | + | + | + | + | + | + | + | + | + | + | + | + | +
v | + - | + + | - + | + | + | + | + | + | + | + | | Granulosa-tneca tumor malignant Jterus | | | | | .1 | J | _ | _ | _ | _ | _ | _ | | X | _ | _ | | | | | .1 | J. | | _ | | Polyp stromal | + | + | - + | + | + | + | + | + | + | + | | +
X | + | + | + - | + +
} | - +
7 | + | + | +
X | + | + | + | Τ | | 1 oryp suomai | | | | | | | | | | | | /1 | | | | 1 | ` | | | Л | | | | | | Hematopoietic System | Bone marrow | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Lymph node | + | | + | + | + | + | | + | + | | | | + | + | | | | + | + | | | | | | | Lymph node, mandibular | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Lymph node, mesenteric | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Spleen | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Γhymus | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | | | 7 | | |----------------------------------|---|----|-----|---|---|---|---|--------|---|---|---|---|--------|--------|---|---|---|--------|---|---|---|---|--------|---|---|----------| | Number of Days on Study | 2 | 2 | | 2 | 2 | 2 | 2 | | 2 | 2 | 2 | 2 | | • | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | number of Days on Study | 9 | 9 | _ | | 9 | 9 | 9 | 2
9 | 9 | 9 | 9 | 9 | 2
9 | 2
9 | | 9 | | 2
9 | 9 | 9 | 9 | 9 | 2
9 | 9 | | | | | 3 | Total | | Carcass ID Number | 2 | 2 | | | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | | 4 | | 4 | | 5 | | 6 | 6 | 6 | | Tissues/ | | curcuss ID I (unifor | 4 | | | 8 | | | | | | | | | | | | | 7 | | | | | | | 4 | | Tumors | | Alimentary System | Esophagus | + | 50 | | Intestine large, colon | + | 50 | | Intestine large, rectum | + | 50 | | Intestine large, cecum | + | 50 | | Intestine small, duodenum | + | 50 | | ntestine small, jejunum | + | 50 | | ntestine small, ileum | + | 50 | | Liver | + | 50 | | Hepatocellular adenoma | X | 1 | | Mesentery | | | | | | + | | | | | + | | | | | | | | | | | + | | | | 7 | | Pancreas | + | 50 | | Salivary glands | + | 50 | | Stomach, forestomach | + | 50 | | Stomach, glandular | + | 50 | | Tongue | + | | | 1 | | Cardiovascular System | Heart | + | 50 | | Endocrine System | Adrenal cortex | + | 50 | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | + | + | | | | + | | | | | + | + | + | | 50 | | Pheochromocytoma benign | | | | | | | | | | | | | | | | X | | | | | | | | | | 1 | | slets, pancreatic | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | 50 | | Adenoma | 1 | | Parathyroid gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | 48 | | Pituitary gland | + | + | | + | + | + | + | + | + | + | | | + | | | | + | | + | + | + | + | + | + | + | 50 | | Pars distalis, adenoma | X | | | | | X | | | | | | | X | | | | X | | | | | X | | | X | 18 | | Γhyroid gland | + | | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | | | | | + | | + | + | 50 | | C-cell, adenoma | | | | | | | | | | | | | | | X | | | | | | | | | | | 2 | | General Body System | Genital System Clitoral gland | + | 4 | - + | 50 | | Carcinoma | | | | | | • | • | • | • | • | • | • | • | • | • | • | | • | • | | • | • | • | | - | 1 | | Bilateral, adenoma | X | | 1 | | Ovary | + | + | - + | 50 | | Granulosa-theca tumor malignant | | | | | | • | • | • | • | • | • | • | • | • | • | • | | • | • | | • | • | • | | - | 1 | | Uterus | + | 4 | - + | 50 | | Polyp stromal | ' | | ' | X | | X | | • | X | • | • | • | | • | | • | X | • | • | X | | • | Ċ | | • | 9 | | •• | | | | | | _ | | | _ | | | | | | | | | | | _ | _ | | | | | | | Hematopoietic System Sone marrow | 1 | _1 | | | | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | _ | | | _ | 50 | | | + | | | Lymph node | | | , | | | | | , | | | | | | + | | + | | + | | , | , | , | | | | 15 | | Lymph node, mandibular | + | 50 | | Lymph node, mesenteric | + | 50 | | Spleen | + | 50
50 | | Thymus | + | + | - + | - | + | + | + | + | - | - | - | | - | | - | - | - | - | - | - | - | - | | - | + | 50 | B-18 Pyridine, NTP TR 470 | | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | |--------------------------------------|---|---|---|---|---|---|---|---|---|---|-----|-----|------------|-----|---|---|---|---|---|---|---|---|---|---| | Number of Days on Study | 9 | 2 | 4 | 6 | 7 | 8 | 8 | 0 | 2 | 6 | 7 | 8 9 | 9 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | | | 6 | 1 | 9 | 1 | | 0 | 6 | 5 | 4 | 5 | 1 | 7 8 | 9 | 0 | 3 | 7 | 7 | 1 | 8 | 1 | 9 | 9 | 9 | 9 | | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | Carcass ID Number | 3 | 4 | 2 | 5 | 1 | 5 | | 5 | 5 | - | | 3 4 | 5 | 6 | 2 | 1 | 4 | 5 | 4 | 1 | 1 | 2 | 2 | _ | | | 9 | 8 | 7 | 3 | 7 | 9 | 3 | 1 | 4 | 4 | 6 | 7 6 | 5 7 | 2 | 0 | 8 | 5 | 0 | 0 | 6 | 9 | 1 | 2 | 3 | | Integumentary System | Mammary gland | + | + | + | + | + | + | + | + | + | + | + | + + | - + | + | + | + | + | + | + | + | + | + | + | + | | Adenoma
Carcinoma | | | | | | | | | | | | | Х | | | X | | | | | | | | | | Fibroadenoma | | | | | | X | | | | | X | | Λ | | | | | X | | | X | | X | | | Fibroadenoma, multiple | | | | | | | | | | | _ | 3 | | | | X | | | | | | | | X | | Skin | + | + | + | + | + | + | + | + | + | + | + | + + | - + | + | + | + | + | + | + | + | + | + | + | + | | Musculoskeletal System | Bone | + | + | + | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | | Nervous System | Brain | + | + | + | + | + | + | + | + | + | + | + | + + | + | + | + | + | + | + | + | + | + | + | + | + | | Respiratory System | Lung | + | + | + | + | + | + | + | + | + | + | + . | + + | - + | + | | + | + | + | + | + | + | + | + | + | | Alveolar/bronchiolar adenoma | | | | | | | | | | | | | | X | | | | | | | | | | | | Carcinoma, metastatic, mammary gland | | | | | | | | | | | | | X | | | | | | | | | | | | | Nose
Trachea | + | + | + | + | + | + | + | + | + | + | + : | + + | - +
- + | . + | + | + | + | + | + | + | + | + | + | + | | | | | T | т | Ŧ | Т | _ | Т | T | Т | т : | T 7 | | - | | Т | Т | Т | Т | | T | T | Т | Т | | Special Senses System | Eye | Urinary System | | | | | | | | | | | | | |
 | | | | | | | | | | | Kidney | + | + | + | + | + | + | + | + | + | + | + | + + | - + | + | + | + | + | + | + | + | + | + | + | + | | Urinary bladder | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | | Systemic Lesions | Multiple organs | + | + | + | + | + | + | + | + | + | | + - | + + | | | + | | | | + | + | + | | + | | | Leukemia mononuclear | X | X | X | | X | X | X | X | | X | | 3 | X | | X | | | X | X | X | | | X | X | | TABLE B2
Individual Animal Tumor Pathology o | f Fema | le | F3 | 44/ | /N l | Rat | s ir | th | e 2 | 2-Y | eai | · D | rin | kir | ıg ' | Wa | itei | · S1 | tud | y (| of I | yr | idi | ne: | 20 | 00 ppm | |---|-------------|-----|------------|------------|-------------------|-----------------------------| | Number of Days on Study | 7
2
9 | 2 | 2 2 | 2 2 | 7 7 2 2 9 | 7
2
9 | | Carcass ID Number | 3
2
4 | - 2 | 2 2 | 2 | 2 2 | 3 | 3
3
1 | 3
3
2 | 3
3
3 | 3
3
5 | 3
3
6 | 3
3
8 | 3
4
1 | 3
4
2 | 3
4
3 | 3
4
4 | 3
4
7 | 3
4
9 | 3
5
2 | 3
5
5 | 3
5
8 | 3
6
0 | 3
6
1 | 3
6
4 | 3
6
5 | Total
Tissues/
Tumors | | Integumentary System Mammary gland Adenoma Carcinoma | + | | + + | - + | - + | 50
1
1 | | Fibroadenoma
Fibroadenoma, multiple
Skin | + | | Χ Σ | | - + | + | X
+ | + | X
+ | + | X
+ | + | + | X
+ | + | X
+ | X
+ | X
+ | X
+ | X
+ | + | + | + | + | X
+ | 14
6
50 | | Musculoskeletal System
Bone | + | | + + | - + | - + | 50 | | Nervous System
Brain | + | | + - | - + | - + | 50 | | Respiratory System Lung Alveolar/bronchiolar adenoma Carcinoma, metastatic, mammary gland Nose Frachea | + | | + +
+ + | - +
- + | - +
- +
- + | ++++++ | + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + + | + + + | + + + | + + + | + + + + | + + + | + + + + | + + + | + + + | + + + | + + + | + + + + | 50
1
1
50
50 | | Special Senses System
Eye | | | | | | | | | | | + | | | | | | | | | | | | | | | 1 | | Urinary System
Kidney
Urinary bladder | + | | + +
+ + | - + | - + | + + | + | + | ++ | ++ | + | ++ | ++ | ++ | ++ | ++ | ++ | + | ++ | + | ++ | + | + | + | ++ | 50
50 | | Systemic Lesions Multiple organs Leukemia mononuclear | + | | + + | - +
3 | | | +
X | + | + | + | + | +
X | + | +
X | + | + | + | +
X | + | + | + | + | + | + | + | 50
22 | B-20 Pyridine, NTP TR 470 | | 2 | 1 | - | _ | - | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | . / | | - | 6 | - | 7 7 | 7 | | |--|-----|--------|----------|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|------|-------|------------|---|-----|------------|-----|---|--| | Number of Days on Study | | 5 | | 5 | Number of Days on Study | 8 | 3
7 | 0 | | 8 | 8 | | 0 | | | | | | | | 3 4 | - | | | | | | | | | | | 0 | / | 3 | 1 | 3 | 4 | 9 | 3 | 5 | 8 | 6 | 5 | 8 | 4 | 6 | 9 : | 1 9 | 2 | 3 | 7 | | 2 5 |) 1 | 9 | | | | 3 | | 3 | 3 | 4 | 4 | 3 | 3 | 4 | | | 3 | 3 | | | | 4 3 | 3 | | | | | 3 | 3 | | | Carcass ID Number | 9 | 7 | 7 | 6 | 0 | 1 | 7 | 9 | 0 | 8 | 6 | 9 | | | | 9 (| | | | | | | | 6 | | | | 4 | 4 | 2 | 7 | 4 | 3 | 8 | 6 | 1 | 2 | 8 | 8 | 9 | 3 | 4 | 3 9 | 7 | 1 | . 9 | 2 | 5 | 5 1 | 0 | 6 | | | Alimentary System | Esophagus | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - 4 | + + | + + | + | | | Intestine large, colon | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - + | + + | + + | + | | | Intestine large, rectum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - 4 | + + | + + | + | | | Intestine large, cecum | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ·
+ - | ·
+ - | | - 4 | - + | . 4 | - 4 | - 4 | + + | | | | Intestine small, duodenum | | | · | ÷ | · | ÷ | <u>.</u> | <u>.</u> | ÷ | <u>.</u> | Ţ | Ţ | ÷ | <u>.</u> | i. | ·
- | | | | | | | | + | | | Intestine small, jejunum | · . | ·
- | <u>.</u> | Ţ | <u>'</u> | <u>.</u> | <u>'</u> | <u>'</u> | <u>.</u> | <u>'</u> | <u>'</u> | <u>'</u> | <u>.</u> | <u>'</u> | | | | '
 | | ا
ــــــــــــــــــــــــــــــــــــ | |
L . | | + | | | Intestine small, jejunum
Intestine small, ileum | + | | | | + | + | + | т
Т | Τ, | T | T | エ | T
_ | + | + - | + -
+ - |
 | - + | - +
- + | · + | | . 7
L . | - + | | | | | + | + | + | + | | T , | • | T . | | + | + | + | • | | | | r 1 | | | | | | | - | | | Liver | + | + | + | + | + | + | + | + | + | + | + | + | • | + | + - | + - | - 1 | - + | - + | - + | - + | | + + | | | | Mesentery | + | | | | | + | | | | | | | + | | | - | + - | ۲ | | | | - | + + | - | | | Oral mucosa | Pharyngeal, squamous cell papilloma | Pancreas | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - + | + + | + | + | | | Acinus, adenoma | Salivary glands | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - + | + + | + | + | | | Stomach, forestomach | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - + | + + | + + | | | | Stomach, glandular | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - + | + + | + + | + | | | Tongue | | | | | | | | + | | | | | | | | | | | | | | | | | | | Squamous cell papilloma | | | | | | | | X | | | | | | | | | | | | | | | | | | | Cardiovascular System | Heart | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - 4 | ⊢ ⊣ | - + | + | | | | • | _ | | | | _ | _ | _ | | _ | | _ | _ | _ | _ | | | | _ | | _ | | | | | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - + | + + | + + | + | | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | + | - + | + + | + + | + | | | Islets, pancreatic | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - + | + + | + + | + | | | Parathyroid gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - + | + + | + | + | | | Pituitary gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - + | + + | + + | + | | | Pars distalis, adenoma | | | | | | | | | | | | | | X | | | Σ | X | X | X | (| | | X | | | Thyroid gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | + | + | - + | + + | + + | + | | | General Body System None | Genital System | , | , | Clitoral gland | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | - + | - + | - + | + + | + + | + | | | Adenoma | Carcinoma | Ovary | + | + | + | | + | + | + | + | + | + | + | + | | | + - | + - | + + | - + | - + | - + | - + | + + | + | + | | | Uterus | + | + | | | + | + | + | + | + | + | + | + | | | + - | + - | + + | - + | - + | - + | - + | + + | + + | + | | | Polyp stromal | | | X | | | | | | | | | | | X | | | | | | | | | | | | | Polyp stromal, multiple | 3 | ζ. | | | | Vagina | | | | | | | | | | | | + | | | | | | | | | | | | | | | Lipoma | | | | | | | | | | | | X | | | | | | | | | | | | | | | | _ | _ | ~ | ~ | ~ | ~ | ~ | ~ | - | ~ | | | | - | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | ~ | | |-------------------------------------|---|-----|-------|-----|---|---|----|----|---|--------|-----|-----|-----|-----|---|---|---|---|---|---|---|---|---|---|----------| | N 1 4D G 1 | | 7 | | | 7 | | | | | | 7 7 | | | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | | Number of Days on Study | 2 | | | | 2 | 2 | 2 | | | | 2 2 | _ | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | | | | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 9 |) 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | | | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | Total | | Carcass ID Number | 7 | 7 | 7 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 8 | 8 | 8 | 9 | 9 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 | Tissues/ | | | 0 | 1 | 3 | 6 | 7 | 9 | 0 | 3 | 4 | 5 | 6 7 | 8 | 9 | 2 | 5 | 0 | 6 | 7 | 8 | 0 | 1 | 2 | 5 | 5 | Tumors | | Alimentary System | Esophagus | + | . + | + | + | + | + | + | + | + | + | + + | - + | - + | + | + | + | + | + | + | + | + | + | +
 + | 50 | | Intestine large, colon | | | . + | + | + | + | + | + | + | ·
+ | + + | - + | - + | | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine large, rectum | | | . + | + | + | + | + | + | + | + | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine large, cecum | | | . + | + | + | + | + | + | | + | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine small, duodenum | | | . + | + | + | + | + | + | | | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine small, jejunum | | . + | . + | + | + | + | + | + | | • | + + | - + | - + | | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine small, ileum | | . + | . + | | + | + | + | + | | + | + + | - + | - + | . + | + | + | + | + | + | + | + | + | + | + | 50 | | Liver | | . + | + | + | + | + | + | + | | | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Mesentery | + | | ' | | + | ' | ' | ' | ' | ' | | | | | | ' | ' | + | ' | ' | ' | ' | ' | , | 12 | | Oral mucosa | ' | | | | | | + | | | | | ' ' | | | | | | ' | | | | | | | 2 | | Pharyngeal, squamous cell papilloma | | | | | | | | | | | | X | | | | | | | | | | | | | 1 | | Pancreas | _ | | | | _ | _ | _ | _ | _ | _ | | - + | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 50 | | Acinus, adenoma | 7 | Т. | | | т | т | Τ. | т | Т | т . | т т | | | | | | т | т | X | т | т | т | _ | т | 1 | | Salivary glands | | | | | | | | | | | | | | | | | | + | + | | | | | + | 50 | | Stomach, forestomach | 7 | . + | · + | + | + | + | + | + | + | + | + - | - + | - + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Stomach, glandular | 7 | | · · | | | | Τ. | Τ. | _ | + | | | | + | | | | + | | | | _ | + | + | 50 | | | 7 | . + | | + | + | + | + | + | + | + | + - | - + | - + | + | + | + | + | + | + | + | + | + | + | + | 2 | | Tongue | | | | | | | | | | | | | | | | | | | + | | | | | | 1 | | Squamous cell papilloma | 1 | | Cardiovascular System | Heart | + | + | + | + | + | + | + | + | + | + | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + | + | + | + | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + + | _ | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Islets, pancreatic | + | . + | + | + | + | + | + | + | + | + | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Parathyroid gland | + | . + | + | + | + | + | + | + | | + | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Pituitary gland | + | . + | + | + | + | + | + | + | | | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Pars distalis, adenoma | | | · | | X | | | X | | | | X | | | X | • | | X | Ċ | | X | • | • | • | 15 | | Thyroid gland | + | + | + | + | + | + | | | | + | + + | | | + | | + | + | + | + | + | | + | + | + | 50 | | General Body System None | Conital System | Genital System
Clitoral gland | _ | | . 1.4 | [+ | _ | _ | + | + | + | + | | 1 | | | _ | _ | + | + | + | + | _ | _ | _ | + | 49 | | Adenoma | 7 | т | 141 | . T | 7 | т | т | Т | г | Г | i 7 | Т | -T | Т | 7 | 7 | т | т | X | т | т | _ | 7 | т | 1 | | | | | | | | | | | | v | | | | | | | | v | Λ | | | | | | 2 | | Carcinoma | | | | | | , | | | | X | | | | | | | | X | , | , | , | , | | | | | Ovary | + | + | + | + | + | + | + | | | | + + | | | + | + | + | + | | + | + | + | + | + | + | 50 | | Uterus | + | + | + | + | + | + | + | + | | | + + | - + | | | | + | + | + | + | + | + | + | + | + | 50 | | Polyp stromal | | | | | | | | | | X | X | | X | | X | | X | | | | | | | | 7 | | Polyp stromal, multiple | 1 | | Vagina | 1 | | Lipoma | 1 | B-22 Pyridine, NTP TR 470 | | ^ | | _ | - | - | _ | - | - | , | | - | - | - | _ | - | | | | , | - | - | ~ | 7 | |---------------------------------------|---|-----|-----|---|---|---|-----|----------|---------|-----|---|---|----------|---|----------|----------|-----|------------|-----|-----|---|---|---| | N I CD GL | | | | | | | | | | | | | | | | 6 6 | | | | | | 7 | | | Number of Days on Study | 8 | | | | 8 | | | | 0 0 | | 2 | | | | | 4 4 | | | | | | | 2 | | | 0 | 7 | 3 | 1 | 3 | 4 | 9 | 3 | 5 8 | 6 | 5 | 8 | 4 | 6 | 9 | 1 9 |) 2 | 2 3 | 7 | 2 | 5 | 1 | 9 | | | 3 | | | | | | | 3 4 | | | | | | | | 4 3 | | | 4 | | 3 | 3 | 3 | | Carcass ID Number | 9 | 7 | 7 | 6 | 0 | 1 | 7 | 9 (| 0 8 | 6 | 9 | 9 | 0 | 1 | 9 | 0 9 |) 9 | 6 | 0 | 0 | 8 | 9 | 6 | | | 4 | 4 | 2 | 7 | 4 | 3 | 8 | 6 | 1 2 | | | 9 | 3 | 4 | 3 | 9 | 7] | l 9 | 2 | 5 | 1 | 0 | 6 | | Hematopoietic System | Bone marrow | _ | | | _ | _ | _ | _ | | | | _ | _ | _ | _ | _ | | | | | | _ | _ | + | | Lymph node | + | . ' | ' | + | + | ' | | + . |
+ + | . ' | | + | + | + | + | | | + + | | . ' | + | + | 1 | | Lymph node, mandibular | | + | | Ţ | Ţ | _ | _ | <u>.</u> |
+ + | + | + | Ţ | <u>.</u> | + | <u>.</u> | + - | |
L . | | + | | + | + | | Lymph node, mesenteric | | T . | _ T | | | T | T . | T - | T T | · + | | | T | + | T | T - | 7 | г т
1 1 | T . | · T | | | T | | | | · · | | | | | _ | T - | | | | | | | + | | 7 | r +
+ + | | · · | | + | + | | Spleen | + | · + | + | + | + | + | + | + - | + + | | + | + | + | | | + - | | | | + | + | | | | Thymus | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | - + | + + | + | + | + | + | + | | Integumentary System | Mammary gland | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | - + | + + | + | + | + | + | + | | Carcinoma | Fibroadenoma | | | | | | | X | 2 | X | | | | | | | | 3 | ζ | | X | | | | | Fibroadenoma, multiple | | | | | | | | • | | | X | | | | | | - | | | | | | | | Skin | + | + | + | + | + | + | + | + - | + + | - + | | + | + | + | + | + - | - 4 | + + | + | + | + | + | + | | Keratoacanthoma | | | | | ' | | | • | . ' | | | | • | | | | | | | | | ' | | | Trichoepithelioma | Trenocpinienoma | Musculoskeletal System | Bone | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | - + | + + | + | + | + | + | + | | Nervous System | Brain | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | - + | + + | + | + | + | + | + | | D • 4 G 4 | Respiratory System | Lung | + | + | + | + | + | + | + | + - | + + | + | | + | + | + | + | + - | - + | + + | + | + | + | + | + | | Alveolar/bronchiolar adenoma | | | | | | | | | | | X | | | | | | | | | | | | | | Carcinoma, metastatic, clitoral gland | Nose | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | - + | + + | + | + | + | + | + | | Trachea | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | - + | + + | + | + | + | + | + | | Special Senses System | Eye | Zymbal s gland | Carcinoma | Urinary System | Kidney | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | - 4 | + + | + | + | + | + | + | | Urinary bladder | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | - + | + + | + | + | + | + | + | Systemic Lesions Multiple organs | | ار | | _ | _ | _ | _ | _ | | | | _ | _ | _ | _ | _ | _ | L .1 | | | _ | _ | _ | | | + | | + | | | | | | | | | | | | | + -
v | | + +
, | | + | | | 7 | | Leukemia mononuclear | X | | | X | X | | Λ | X | A X | | X | X | Å | Λ | Λ | Λ | Σ | | X | X | X | X | | | Lymphoma malignant | - | - | - | - | ~ | ~ | - | 7 | | ~ | ~ | - | - | - | | | - | ~ | ~ | - | ~ | ~ | - | | |---------------------------------------|----|---|---|---|---|---|---|-----|-------|-----|---|---|---|-----|-----|-----|---|---|---|---|---|---|---|------------| | V 1 05 C 1 | | 7 | | | 7 | 7 | | | 7 7 | | 7 | 7 | | | 7 7 | | 7 | 7 | 7 | 7 | 7 | | 7 | | | Number of Days on Study | 2 | _ | _ | 2 | 2 | 2 | 2 | | 2 2 | | 2 | 2 | 2 | | 2 2 | - | 2 | 2 | 2 | 2 | 2 | 2 | 3 | | | | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | | | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | Total | | Carcass ID Number | 7 | 7 | 7 | 7 | 7 | 7 | 8 | 8 | 8 8 | 8 | 8 | 8 | 8 | 9 | 9 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 | Tissues/ | | | 0 | 1 | 3 | 6 | 7 | 9 | | | 4 5 | | | | | | | 6 | | | 0 | 1 | 2 | 5 | 5 | Tumors | | Hematopoietic System | Bone marrow | + | + | | | | | | | + + | + | | | | + - | | | + | + | + | | | + | + | 50 | | Lymph node | + | | | | _ | _ | _ | т . |
+ | | | _ | т | т : | г т | | + | т | + | т | т | т | т | 19 | | * 1 | + | | | | | | | | | | | | | | | - + | + | + | + | + | | + | + | 50 | | Lymph node, mandibular | | + | + | + | + | + | + | + - | + + | . + | + | + | + | + - | | - + | + | + | + | + | + | + | | 50 | | Lymph node, mesenteric | + | + | + | + | + | + | + | + - | + +
| + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | | | Spleen | + | + | + | + | + | + | + | + - | + + | | + | + | | | + + | - + | + | + | + | + | + | + | + | 50 | | Thymus | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | 50 | | ntegumentary System | Mammary gland | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | 50 | | Carcinoma | | | | | | | | X | | | | | | | | | | | | | | | | 1 | | Fibroadenoma | X | | X | X | X | | X | 3 | X | X | X | | X | 2 | K | | | X | X | X | | X | | 18 | | Fibroadenoma, multiple | | | | | | | | | | | | | | | Х | | | | | | | | | 2 | | Skin | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + - | | | + | + | + | + | + | + | + | 50 | | Keratoacanthoma | X | 1 | | Trichoepithelioma | | | | | | | | | | | X | | | | | | | | | | | | | 1 | | Musculoskeletal System | Bone | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | 50 | Nervous System | 5 0 | | Brain | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | 50 | | Respiratory System | Lung | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | 50 | | Alveolar/bronchiolar adenoma | X | | | 2 | | Carcinoma, metastatic, clitoral gland | | | | | | | | | Х | | | | | | | | | | | | | | | 1 | | Nose | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | 50 | | rachea | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | 50 | | Special Senses System | Eye | | | | | | + | + | | | | | | | | | | | | | | | | | 2 | | Zymbal s gland | + | | 1 | | Carcinoma | X | | 1 | Λ | | 1 | | Jrinary System | Kidney | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | 50 | | Urinary bladder | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | 50 | | Systemic Lesions | Multiple organs | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | 50 | | Leukemia mononuclear | X | | | X | | ٠ | | | | X | | | | | | | | | X | | | | • | 23 | | | 21 | B-24 Pyridine, NTP TR 470 TABLE B3 Statistical Analysis of Primary Neoplasms in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ррт | 100 ppm | 200 ppm | 400 ppm | |---|-----------------------|----------------------|----------------------|-----------------------| | Adrenal Medulla: Benign Pheochromocytoma | | | | | | Overall rate ^a | 3/50 (6%) | 0/50 (0%) | 1/50 (2%) | 0/49 (0%) | | Adjusted rate ^b | 6.7% | 0.0% | 2.3% | 0.0% | | Terminal rate ^c | 2/32 (6%) | 0/37 (0%) | 1/29 (3%) | 0/25 (0%) | | First incidence (days) | 667 | | 729 (T) | D 0 140N | | Poly-3 test ^d | P = 0.094N | P = 0.114N | P = 0.311N | P = 0.140N | | Clitoral Gland: Adenoma | | | | | | Overall rate | 2/47 (4%) | 3/48 (6%) | 1/50 (2%) | 1/49 (2%) | | Adjusted rate | 4.7% | 6.8% | 2.3% | 2.5% | | Terminal rate | 1/32 (3%) | 3/36 (8%) | 1/29 (3%) | 1/25 (4%) | | First incidence (days) | 622 | 729 (T) | 729 (T) | 729 (T) | | Poly-3 test | P = 0.295N | P = 0.521 | P = 0.487N | P = 0.522N | | Clitoral Gland: Adenoma or Carcinoma | | | | | | Overall rate | 2/47 (4%) | 4/48 (8%) | 2/50 (4%) | 3/49 (6%) | | Adjusted rate | 4.7% | 9.0% | 4.6% | 7.6% | | Terminal rate | 1/32 (3%) | 3/36 (8%) | 1/29 (3%) | 3/25 (12%) | | First incidence (days) | 622
P=0.483 | 728
P=0.359 | 707
P=0.680N | 729 (T) | | Poly-3 test | P=0.463 | P=0.339 | P=0.060IN | P=0.472 | | Mammary Gland: Fibroadenoma | | | | | | Overall rate | 27/50 (54%) | 25/50 (50%) | 20/50 (40%) | 20/50 (40%) | | Adjusted rate | 58.5% | 53.7% | 44.6% | 47.3% | | Terminal rate | 18/32 (56%) | 19/37 (51%) | 15/29 (52%) | 15/26 (58%) | | First incidence (days) | 596 | 666
D 0 200N | 580 | 589 | | Poly-3 test | P = 0.139N | P = 0.398N | P = 0.126N | P=0.193N | | Mammary Gland: Fibroadenoma or Adenoma | | | | | | Overall rate | 27/50 (54%) | 25/50 (50%) | 20/50 (40%) | 20/50 (40%) | | Adjusted rate Terminal rate | 58.5 %
18/32 (56%) | 53.7%
19/37 (51%) | 44.6%
15/29 (52%) | 47.3 %
15/26 (58%) | | First incidence (days) | 596 | 666 | 580 | 589 | | Poly-3 test | P=0.139N | P=0.398N | P=0.126N | P=0.193N | | | | | | | | Mammary Gland: Adenoma or Carcinoma | 2/50 (6%) | 2/50 (6/1) | 0/50 (40) | 1.150.72.61 | | Overall rate Adjusted rate | 3/50 (6%)
6.8% | 3/50 (6%)
6.5% | 2/50 (4%)
4.5% | 1/50 (2%)
2.5% | | Terminal rate | 2/32 (6%) | 1/37 (3%) | 0/29 (0%) | 1/26 (4%) | | First incidence (days) | 717 | 650 | 699 | 729 (T) | | Poly-3 test | P = 0.223N | P = 0.646N | P = 0.503N | P=0.337N | | Mammary Gland: Fibroadenoma, Adenoma, or Carc | inoma | | | | | Overall rate | 27/50 (54%) | 26/50 (52%) | 21/50 (42%) | 21/50 (42%) | | Adjusted rate | 58.5% | 55.5% | 46.7% | 49.6% | | Terminal rate | 18/32 (56%) | 19/37 (51%) | 15/29 (52%) | 16/26 (62%) | | First incidence (days) | 596 | 650 | 580 | 589 | | Poly-3 test | P = 0.191N | P = 0.468N | P = 0.174N | P = 0.262N | | Pancreas: Adenoma or Carcinoma | | | | | | Overall rate | 0/49 (0%) | 3/50 (6%) | 0/50 (0%) | 1/50 (2%) | | Adjusted rate | 0.0% | 6.4% | 0.0% | 2.5% | | Terminal rate | 0/32 (0%) | 1/37 (3%) | 0/29 (0%) | 1/26 (4%) | | First incidence (days) | P=0.609 | 546
P=0.131 | | 729 (T)
P=0.486 | | Poly-3 test | 1 -0.009 | r -0.131 | | 1 -0.400 | TABLE B3 Statistical Analysis of Primary Neoplasms in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--|-----------------|----------------|------------------|-----------------| | Pituitary Gland (Pars Distalis): Adenoma | | | | | | Overall rate | 18/49 (37%) | 12/50 (24%) | 18/50 (36%) | 15/50 (30%) | | Adjusted rate | 39.9% | 25.8% | 40.4% | 35.8% | | Terminal rate | 10/31 (32%) | 8/37 (22%) | 13/29 (45%) | 10/26 (39%) | | First incidence (days) | 588 | 642 | 671 | 634 | | Poly-3 test | P = 0.509 | P = 0.110N | P = 0.565 | P = 0.431N | | Thyroid Gland (C-cell): Adenoma | | | | | | Overall rate | 3/50 (6%) | 3/50 (6%) | 2/50 (4%) | 0/50 (0%) | | Adjusted rate | 6.7% | 6.5% | 4.6% | 0.0% | | Terminal rate | 1/32 (3%) | 2/37 (5%) | 1/29 (3%) | 0/26 (0%) | | First incidence (days) | 687 | 695 | 707 | | | Poly-3 test | P = 0.087N | P = 0.649N | P = 0.506N | P = 0.135N | | Uterus: Stromal Polyp | | | | | | Overall rate | 4/50 (8%) | 7/50 (14%) | 9/50 (18%) | 8/50 (16%) | | Adjusted rate | 9.0% | 15.3% | 20.4% | 19.1% | | Terminal rate | 4/32 (13%) | 7/37 (19%) | 6/29 (21%) | 5/26 (19%) | | First incidence (days) | 729 (T) | 729 (T) | 687 | 503 | | Poly-3 test | P = 0.125 | P = 0.278 | P = 0.111 | P=0.147 | | Uterus: Stromal Polyp or Stromal Sarcoma | | | | | | Overall rate | 5/50 (10%) | 7/50 (14%) | 9/50 (18%) | 8/50 (16%) | | Adjusted rate | 11.1% | 15.3% | 20.4% | 19.1% | | Terminal rate | 4/32 (13%) | 7/37 (19%) | 6/29 (21%) | 5/26 (19%) | | First incidence (days) | 493 | 729 (T) | 687 | 503 | | Poly-3 test | P = 0.177 | P = 0.390 | P = 0.180 | P=0.227 | | All Organs: Mononuclear Cell Leukemia | | | | | | Overall rate | 12/50 (24%) | 16/50 (32%) | 22/50 (44%) | 23/50 (46%) | | Adjusted rate | 26.5% | 34.3% | 45.4% | 48.7% | | Terminal rate | 8/32 (25%) | 12/37 (32%) | 8/29 (28%) | 5/26 (19%) | | First incidence (days) | 636 | 546 | 496 | 380 | | Poly-3 test | P = 0.013 | P = 0.279 | P = 0.043 | P = 0.020 | | All Organs: Benign Neoplasms | | | | | | Overall rate | 39/50 (78%) | 34/50 (68%) | 35/50 (70%) | 35/50 (70%) | | Adjusted rate | 81.6% | 72.5% | 77.1% | 78.6% | | Terminal rate | 24/32 (75%) | 27/37 (73%) | 25/29 (86%) | 23/26 (89%) | | First incidence (days) | 588 | 642 | 580
D. 0.205M | 503
D 0 450N | | Poly-3 test | P = 0.511N | P = 0.203N | P = 0.385N | P = 0.459N | | All Organs: Malignant Neoplasms | | | | | | Overall rate | 21/50 (42%) | 23/50 (46%) | 23/50 (46%) | 28/50 (56%) | | Adjusted rate | 44.3% | 46.7% | 47.4% | 59.3% | | Terminal rate | 13/32 (41%) | 13/37 (35%) | 8/29 (28%) | 10/26 (39%) | | First incidence (days) | 399
D. 0.077 | 488
D 0 496 | 496
D 0 450 | 380
B 0 100 | | Poly-3 test | P = 0.077 | P = 0.486 | P = 0.459 | P = 0.100 | B-26 Pyridine, NTP TR 470 TABLE B3 Statistical Analysis of Primary Neoplasms in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|-------------|-------------|-------------|-------------| | All Organs: Benign or Malignant Neoplasms | | | | | | Overall rate | 45/50 (90%) | 43/50 (86%) | 45/50 (90%) | 44/50 (88%) | | Adjusted rate | 91.2% | 86.0% | 91.7% | 91.0% | | Terminal rate | 28/32 (88%) | 30/37 (81%) | 26/29 (90%) | 23/26 (89%) | | First incidence (days) | 399 | 488 | 496 | 380 | | Poly-3 test | P = 0.452 | P = 0.307N | P = 0.613 | P = 0.627N | | | | | | | ### (T)Terminal sacrifice Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, clitoral gland, pancreas, pituitary gland, thyroid gland, and
uterus; for other tissues, denominator is number of animals necropsied. Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality C Observed incidence at terminal kill d Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in an exposure group is indicated by N. e Not applicable; no neoplasms in animal group TABLE B4 Historical Incidence of Leukemias in Untreated Female F344/N Rats^a # **Incidence in Controls** # **Overall Historical Incidence** Total 102/330 (30.9%) Standard deviation 10.0% Range 16%-44% ^a Data as of 1 August 1997; includes data for lymphocytic, monocytic, mononuclear cell, and undifferentiated leukemias B-28 Pyridine, NTP TR 470 TABLE B5 Summary of the Incidence of Nonneoplastic Lesions in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine^a | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--|----------|----------|------------------|------------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | 30 | 30 | 30 | 30 | | Moribund | 3 | 8 | 7 | 2 | | Natural deaths | 15 | 5 | 14 | 22 | | Survivors | 10 | 3 | 1. | 22 | | Terminal sacrifice | 32 | 37 | 29 | 26 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Intestine large, colon | (50) | (50) | (50) | (50) | | Hyperplasia, lymphoid | (50) | (50) | 1 (2%) | (00) | | Parasite metazoan | 3 (6%) | 3 (6%) | 3 (6%) | 1 (2%) | | Intestine large, rectum | (50) | (50) | (50) | (50) | | Parasite metazoan | 1 (2%) | 2 (4%) | 1 (2%) | 2 (4%) | | Intestine large, cecum | (50) | (50) | (50) | (50) | | Inflammation, chronic | (/ | (/ | () | 1 (2%) | | Inflammation, chronic active | | | 1 (2%) | ` / | | Parasite metazoan | | | 1 (2%) | | | Ulcer | | 1 (2%) | | | | Intestine small, duodenum | (50) | (50) | (50) | (50) | | Ectopic pancreas | 1 (2%) | | | | | Inflammation, chronic active | | | 1 (2%) | | | Intestine small, ileum | (50) | (49) | (50) | (50) | | Hyperplasia, lymphoid | 3 (6%) | 2 (4%) | 2 (4%) | 5 (10%) | | Inflammation, chronic active | | | | 1 (2%) | | Liver | (50) | (50) | (50) | (50) | | Angiectasis | 2 (4%) | 2 (4%) | 3 (6%) | 2 (4%) | | Basophilic focus | 38 (76%) | 28 (56%) | 11 (22%) | | | Clear cell focus | 4 (8%) | 9 (18%) | 11 (22%) | 16 (32%) | | Congestion | 4 (8%) | 1 (2%) | 3 (6%) | 2 (4%) | | Developmental malformation | 1 (2%) | 2 (4%) | 1 (2%) | | | Eosinophilic focus | 19 (38%) | 24 (48%) | 22 (44%) | 15 (30%) | | Fibrosis | 1 (2%) | 1 (2%) | | | | Hematopoietic cell proliferation | | 1 (2%) | 1 (2%) | 2 (4%) | | Hemorrhage | 0 (10%) | 1 (2%) | 1 (2%) | 2 /2 2/3 | | Hepatodiaphragmatic nodule | 9 (18%) | 8 (16%) | 3 (6%) | 3 (6%) | | Inflammation, chronic active | 9 (18%) | 1 (2%) | 2 (4%) | 4 (8%) | | Mitotic alteration | 1 (2%) | A (0.01) | 1 (0.01) | 1 (2%) | | Mixed cell focus | 2 (4%) | 4 (8%) | 1 (2%) | 5 (10%) | | Necrosis | 6 (12%) | 1 (2%) | 1 (2%) | 17 (0.40/) | | Pigmentation | 6 (12%) | 2 (4%) | 6 (12%) | 17 (34%) | | Tension lipidosis | 3 (6%) | 1 (2%) | 0 (197) | 19 (26%) | | Vacuolization cytoplasmic | 10 (20%) | 7 (14%) | 9 (18%) | 18 (36%) | | Bile duct, hyperplasia | 20 (40%) | 29 (58%) | 34 (68%) | 29 (58%) | | Capsule, inflammation, chronic | | 1 (2%) | 4 (97) | 2 (4%) | | Centrilobular, cytomegaly Centrilobular, degeneration | 1 (20) | 1 (2%) | 4 (8%)
2 (4%) | 20 (40%) | | Centrilobular, degeneration
Centrilobular, necrosis | 1 (2%) | 2 (4%) | ` / | 7 (14%) | | Centinobular, necrosis | 1 (2%) | 2 (4%) | 1 (2%) | | ^a Number of animals examined microscopically at the site and the number of animals with lesion TABLE B5 Summary of the Incidence of Nonneoplastic Lesions in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ррт | 100 ppm | 200 ppm | 400 ppm | |-----------------------------------|----------|----------|----------------------|----------| | Alimentary System (continued) | | | | | | Mesentery | (9) | (11) | (7) | (12) | | Ectopic spleen | (3) | (11) | 1 (14%) | (12) | | Inflammation | | | 1 (1170) | 1 (8%) | | Fat, necrosis | 8 (89%) | 9 (82%) | 6 (86%) | 11 (92%) | | Oral mucosa | (2) | (1) | 0 (00%) | (2) | | Pharyngeal, hyperplasia | (2) | (1) | | 1 (50%) | | Pharyngeal, inflammation, acute | | 1 (100%) | | 1 (30%) | | Pancreas | (49) | (50) | (50) | (50) | | Atrophy | 22 (45%) | 14 (28%) | 13 (26%) | 14 (28%) | | | | 14 (28%) | 13 (20%) | 14 (28%) | | Cytoplasmic alteration | 1 (2%) | 2 (40%) | 2 (4%) | 2 (69) | | Ectopic liver | | 2 (4%) | 2 (4%) | 3 (6%) | | Hyperplasia | | 3 (6%) | 2 (4%) | 2 (48) | | Inflammation, chronic | (50) | (50) | 1 (2%) | 2 (4%) | | Salivary glands | (50) | (50) | (50) | (50) | | Atrophy | | 2 (4%) | 3 (6%) | 1 (2%) | | Cytoplasmic alteration | | 1 (2%) | | 1 (2%) | | Inflammation, chronic | | 2 (4%) | | | | Stomach, forestomach | (50) | (50) | (50) | (50) | | Fibrosis | | | 1 (2%) | | | Hyperkeratosis | 1 (2%) | | | | | Inflammation, acute | 1 (2%) | | 1 (2%) | | | Inflammation, chronic | | | 1 (2%) | 1 (2%) | | Inflammation, chronic active | 2 (4%) | 1 (2%) | 2 (4%) | 1 (2%) | | Ulcer | 3 (6%) | 3 (6%) | 4 (8%) | 4 (8%) | | Epithelium, hyperplasia, squamous | 2 (4%) | 2 (4%) | 2 (4%) | 1 (2%) | | Stomach, glandular | (50) | (50) | (50) | (50) | | Erosion | 6 (12%) | 9 (18%) | 9 (18%) | 7 (14%) | | Inflammation, chronic | ` , | ` , | , , | 1 (2%) | | Inflammation, chronic active | 1 (2%) | | | (1) | | Mineralization | - (=,,, | | 2 (4%) | | | Ulcer | 1 (2%) | 1 (2%) | 3 (6%) | | | Tongue | 1 (270) | 1 (270) | (1) | (2) | | Epithelium, hyperplasia | | | 1 (100%) | 1 (50%) | | Epitienam, hyperplasia | | | 1 (10070) | 1 (50%) | | Cardiovascular System | | | | | | Heart | (49) | (50) | (50) | (50) | | Cardiomyopathy | 42 (86%) | 43 (86%) | 43 (86%) | 36 (72%) | | Inflammation, chronic active | 1 (2%) | | | | | Mineralization | 1 (2%) | | | | | Thrombosis | | | 2 (4%) | 1 (2%) | | Endocrine System | | | | | | Adrenal cortex | (50) | (50) | (50) | (50) | | Accessory adrenal cortical nodule | 1 (2%) | , | ` ' | ` ' | | Atrophy | - (270) | | 1 (2%) | | | Congestion | | 1 (2%) | - (- /v) | 1 (2%) | | Cyst | | 1 (2%) | | 1 (2%) | | Hematopoietic cell proliferation | 1 (2%) | 2 (270) | | 1 (270) | | Hemorrhage | 1 (2%) | | | | | Hyperplasia | 11 (22%) | 12 (24%) | 9 (18%) | 6 (12%) | | Vacuolization cytoplasmic | 6 (12%) | ` , | 6 (12%) | 3 (6%) | | v acuonzation cytopiasinic | 0 (12%) | 8 (16%) | 0 (12%) | 3 (0%) | B-30 Pyridine, NTP TR 470 TABLE B5 | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--------------------------------|----------|---------------|----------|----------| | Endocrine System (continued) | | | | | | Adrenal medulla | (50) | (50) | (50) | (49) | | Hyperplasia | 5 (10%) | 7 (14%) | 8 (16%) | 2 (4%) | | Necrosis | | 1 (2%) | | | | Islets, pancreatic | (49) | (50) | (50) | (50) | | Hyperplasia | | | 1 (2%) | 1 (2%) | | Parathyroid gland | (48) | (50) | (48) | (50) | | Hyperplasia | 1 (2%) | | | | | Pituitary gland | (49) | (50) | (50) | (50) | | Pigmentation | | | 1 (2%) | | | Pars distalis, angiectasis | 11 (22%) | 9 (18%) | 12 (24%) | 4 (8%) | | Pars distalis, cyst | 16 (33%) | 18 (36%) | 20 (40%) | 8 (16%) | | Pars distalis, ectasia | • | 1 (2%) | | , , | | Pars distalis, hemorrhage | 1 (2%) | | | | | Pars distalis, hyperplasia | 22 (45%) | 29 (58%) | 21 (42%) | 18 (36%) | | Pars intermedia, hyperplasia | 1 (2%) | | | | | Thyroid gland | (50) | (50) | (50) | (50) | | Ultimobranchial cyst | | 3 (6%) | | 1 (2%) | | C-cell, hyperplasia | 16 (32%) | 17 (34%) | 13 (26%) | 10 (20%) | | Follicular cell, hyperplasia | 1 (2%) | | | | | General Body System None | | | | | | Genital System | | | | | | Clitoral gland | (47) | (48) | (50) | (49) | | Hyperplasia | 1 (2%) | 2 (4%) | 1 (2%) | 2 (4%) | | Inflammation, acute | 1 (2%) | 2 (4%) | | | | Inflammation, chronic | 3 (6%) | 1 (2%) | 5 (10%) | 2 (4%) | | Inflammation, chronic active | 1 (2%) | 1 (2%) | 2 (4%) | 1 (2%) | | Vacuolization cytoplasmic | | | | 1 (2%) | | Bilateral, inflammation, acute | | | 1 (2%) | | | Duct, ectasia | 3 (6%) | 5 (10%) | 4 (8%) | 2 (4%) | | Ovary | (50) | (50) | (50) | (50) | | Congestion | 1 (2%) | | | | | Cyst | 3 (6%) | 7 (14%) | 4 (8%) | 2 (4%) | | Hyperplasia | | 1 (2%) | | | | Inflammation, chronic | 1 (2%) | | | 1 (2%) | | Pigmentation | | | 1 (2%) | | | Bilateral, cyst | | 1 (2%) | | 2 (4%) | | | (50) | (50) | (50) | | TABLE B5 Summary of the Incidence of Nonneoplastic Lesions in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |------------------------------------|----------|---------|----------|----------| | Hematopoietic System | | | | | | Bone marrow | (50) | (50) | (50) | (50) | | Depletion cellular | 1 (2%) | (0.0) | 2 (4%) | 2 (4%) | | Fibrosis | 1 (2%) | 1 (2%) | 2 (.70) | = (.,v) | | Hyperplasia | 3 (6%) | 4 (8%) | | 1 (2%) | | Hyperplasia, reticulum cell | 3 (0,0) | 1 (2%) | | 1 (270) | | Necrosis | | 1 (270) | 1 (2%) | | | Erythroid cell, hyperplasia | | | 1 (2%) | | | Myeloid cell, hyperplasia | | 1 (2%) | 1 (270) | | | Lymph node | (7) | (9) | (15) | (19) | | Iliac, congestion | 2 (29%) | (9) | (13) | (19) | | | 2 (29%) | | | 2 (110) | | Iliac, ectasia | 2 (42%) | 1 (110) | 4 (27.6) | 2 (11%) | | Mediastinal, congestion | 3 (43%) | 1 (11%) | 4 (27%) | 1 (5%) | | Mediastinal, hyperplasia, lymphoid | 1 (110) | | 1 (7%) | 1 (501) | | Mediastinal, pigmentation | 1 (14%) | | | 1 (5%) | | Pancreatic, congestion | | | 1 (7%) | | | Pancreatic, pigmentation | | 1 (11%) | | | | Renal, congestion | 1 (14%) | 1 (11%) | 1 (7%) | | | Renal, ectasia | | 1 (11%) | | 1 (5%) | | Renal, hyperplasia, lymphoid | | | | 1
(5%) | | Lymph node, mandibular | (49) | (50) | (50) | (50) | | Atrophy | 1 (2%) | | | | | Congestion | | 1 (2%) | 1 (2%) | | | Ectasia | 3 (6%) | 4 (8%) | 9 (18%) | 2 (4%) | | Edema | | | | 1 (2%) | | Hyperplasia, lymphoid | 1 (2%) | 1 (2%) | | 1 (2%) | | Hyperplasia, plasma cell | 1 (2%) | ` ' | | ` ' | | Infiltration cellular, plasma cell | (1-7 | 1 (2%) | | | | Necrosis | | 1 (270) | 1 (2%) | | | Lymph node, mesenteric | (49) | (50) | (50) | (50) | | Congestion | 2 (4%) | (50) | 3 (6%) | (30) | | Ectasia | 2 (1,70) | | 4 (8%) | | | Hemorrhage | 1 (2%) | | 4 (6%) | | | Hyperplasia, lymphoid | 1 (270) | 2 (4%) | | 2 (4%) | | | | 2 (470) | | | | Inflammation, acute | | | | 1 (2%) | | Inflammation, chronic | (50) | (50) | (50) | 1 (2%) | | Spleen | (50) | (50) | (50) | (50) | | Atrophy | 1 (25) | | 2 (16) | 1 (2%) | | Congestion | 1 (2%) | . (50) | 2 (4%) | 4 (0.01) | | Fibrosis | 2 (4%) | 3 (6%) | 3 (6%) | 4 (8%) | | Hematopoietic cell proliferation | 2 (4%) | 4 (8%) | | 2 (4%) | | Hemorrhage | | 2 (4%) | | | | Metaplasia, osseous | | 1 (2%) | | | | Necrosis | | 1 (2%) | 2 (4%) | 1 (2%) | | Pigmentation | | | | 1 (2%) | | Capsule, inflammation, chronic | | | | 1 (2%) | | Γhymus | (50) | (50) | (50) | (50) | | Congestion | | | 1 (2%) | | | Cyst | | | 1 (2%) | | | Ectopic parathyroid gland | 2 (4%) | 1 (2%) | 1 (2%) | 2 (4%) | | Fibrosis | ` ' | 1 (2%) | ` , | ` ' | | Inflammation, acute | 1 (2%) | V/ | | | | Inflammation, chronic | - (= /0) | | | 1 (2%) | B-32 Pyridine, NTP TR 470 TABLE B5 Summary of the Incidence of Nonneoplastic Lesions in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--|-----------------|------------------|----------------------|-----------------| | Integumentary System | | | | | | Mammary gland | (50) | (50) | (50) | (50) | | Galactocele | 3 (6%) | 5 (10%) | 1 (2%) | (50) | | Hyperplasia | 5 (10%) | 2 (4%) | 6 (12%) | 5 (10%) | | Inflammation, chronic active | 5 (10,0) | = (:/0) | 1 (2%) | 0 (1070) | | Duct, dilatation | 13 (26%) | 9 (18%) | 13 (26%) | 13 (26%) | | Skin | (50) | (50) | (50) | (50) | | Hyperkeratosis | (/ | () | 2 (4%) | (/ | | Hyperplasia, squamous | 2 (4%) | 1 (2%) | 1 (2%) | 1 (2%) | | Inflammation, acute | 1 (2%) | , , | ` ' | 1 (2%) | | Inflammation, chronic | 1 (2%) | | | ` , | | Inflammation, chronic active | 2 (4%) | 1 (2%) | | 1 (2%) | | Subcutaneous tissue, fibrosis | | 1 (2%) | | | | | | | | | | Musculoskeletal System | (50) | (50) | (50) | (50) | | Bone | (50)
9 (18%) | (50)
12 (24%) | (50)
10 (20%) | (50)
5 (10%) | | Osteopetrosis | 9 (18%) | 12 (24%) | 10 (20%) | 3 (10%) | | Nervous System | | | | | | Brain | (50) | (50) | (50) | (50) | | Hemorrhage | 1 (2%) | 1 (2%) | (30) | 2 (4%) | | Hemorriage | 1 (2%) | 1 (270) | | 2 (470) | | Respiratory System | | | | | | Lung | (50) | (50) | (50) | (50) | | Congestion | 1 (2%) | (30) | (30) | (30) | | Hemorrhage | 1 (270) | | | 1 (2%) | | Infiltration cellular, histiocyte | 13 (26%) | 10 (20%) | 9 (18%) | 11 (22%) | | Inflammation, chronic | 9 (18%) | 8 (16%) | 6 (12%) | 8 (16%) | | Bronchiole, alveolus, hyperplasia | > (10,0) | 0 (20/0) | 1 (2%) | 0 (2070) | | Nose | (50) | (50) | (50) | (50) | | Congestion | (= =) | () | 1 (2%) | (= =) | | Cyst | 1 (2%) | 1 (2%) | (/ | | | Hemorrhage | - (-/// | - (- /v) | | 1 (2%) | | Inflammation, chronic | 2 (4%) | | 3 (6%) | (= /*/ | | Inflammation, chronic active | 15 (30%) | 15 (30%) | 16 (32%) | 19 (38%) | | Nasolacrimal duct, cyst | (,-) | 2 (4%) | (,-, | () | | Nasolacrimal duct, inflammation, chronic | | - (· / v) | | | | active | 1 (2%) | | 1 (2%) | | | Respiratory epithelium, hyperplasia | - (-/// | | - (- /~/ | 1 (2%) | | * A | | | | (= /-/ | | Special Senses System | | | | | | Eye | | | (1) | (2) | | Hemorrhage | | | 1 (100%) | 2 (100%) | | | | | ` / | ` '/ | | Harderian gland | (1) | | | | TABLE B5 Summary of the Incidence of Nonneoplastic Lesions in Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |-------------------------------|----------|----------|----------|----------| | Urinary System | | | | | | Kidney | (50) | (50) | (50) | (50) | | Accumulation, hyaline droplet | | | | 1 (2%) | | Congestion | 2 (4%) | | 1 (2%) | | | Cyst | | | 1 (2%) | | | Hydronephrosis | | 2 (4%) | | | | Inflammation, acute | | | | 1 (2%) | | Mineralization | 3 (6%) | | 4 (8%) | 6 (12%) | | Nephropathy | 41 (82%) | 42 (84%) | 35 (70%) | 37 (74%) | | Pigmentation | ` , | ` , | 2 (4%) | 1 (2%) | | Renal tubule, hyperplasia | | | () | 1 (2%) | | Urinary bladder | (50) | (50) | (50) | (50) | | Hemorrhage | (==) | 1 (2%) | (= =) | () | | Inflammation, chronic | | 3 (6%) | 1 (2%) | 2 (4%) | B-34 Pyridine, NTP TR 470 ## APPENDIX C SUMMARY OF LESIONS IN MALE WISTAR RATS IN THE 2-YEAR DRINKING WATER STUDY OF PYRIDINE | TABLE C1 | Summary of the Incidence of Neoplasms in Male Wistar Rats | | |----------|---|------| | | in the 2-Year Drinking Water Study of Pyridine | C-2 | | TABLE C2 | Individual Animal Tumor Pathology of Male Wistar Rats | | | | in the 2-Year Drinking Water Study of Pyridine | C-6 | | TABLE C3 | Statistical Analysis of Primary Neoplasms in Male Wistar Rats | | | | in the 2-Year Drinking Water Study of Pyridine | C-28 | | TABLE C4 | Summary of the Incidence of Nonneoplastic Lesions in Male Wistar Rats | | | | in the 2-Year Drinking Water Study of Pyridine | C-32 | C-2 Pyridine, NTP TR 470 TABLE C1 Summary of the Incidence of Neoplasms in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine^a | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |------------------------------------|---------|---------|----------|---------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | 30 | 30 | 30 | 30 | | Moribund | 2 | 9 | 9 | 10 | | Natural deaths | 26 | 27 | 30 | 33 | | Survivors | | | 20 | | | Terminal sacrifice | 22 | 14 | 11 | 7 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Intestine large, cecum | (32) | (37) | (29) | (27) | | Carcinoma | 1 (3%) | (=-) | (=- / | () | | Intestine small, duodenum | (39) | (44) | (42) | (42) | | Carcinoma | () | 1 (2%) | ` ' | · / | | Intestine small, jejunum | (37) | (36) | (34) | (35) | | Carcinoma | 1 (3%) | 2 (6%) | ζ- / | ζ / | | Intestine small, ileum | (28) | (32) | (28) | (31) | | Liver | (50) | (50) | (50) | (50) | | Cholangiocarcinoma | 1 (2%) | (/ | () | 2 (4%) | | Hepatocellular adenoma | 2 (4%) | | 1 (2%) | ` , | | Histiocytic sarcoma | (, | | (1) | 1 (2%) | | Oral mucosa | (5) | (1) | (1) | (11) | | Squamous cell carcinoma | 1 (20%) | (-) | (-) | | | Pancreas | (46) | (50) | (50) | (49) | | Carcinoma | , | 1 (2%) | . , | ` ' | | Acinus, adenoma | 6 (13%) | 7 (14%) | 8 (16%) | 7 (14%) | | Acinus, adenoma, multiple | 8 (17%) | 4 (8%) | 4 (8%) | (17) | | Acinus, carcinoma | 2 (4%) | (= 1-) | 2 (4%) | | | Acinus, carcinoma, multiple | 2 (4%) | | 1 (2%) | | | Stomach, forestomach | (49) | (50) | (50) | (49) | | Fibrosarcoma | (-) | () | 1 (2%) | | | Squamous cell papilloma | | | - (= 11) | 1 (2%) | | Stomach, glandular | (49) | (50) | (48) | (48) | | Fibrosarcoma, metastatic, stomach, | () | (20) | (.0) | (10) | | forestomach | | | 1 (2%) | | | Fongue | | | (1) | | | Squamous cell carcinoma | | | 1 (100%) | | | Cardiovascular System | | | | | | Heart | (50) | (50) | (50) | (50) | | Endocardium, schwannoma benign | 2 (4%) | 2 (4%) | (50) | 1 (2%) | | Zinastarani, sommaniona somgii | - (.,,) | 2 () | | 1 (270) | | Endocrine System | (50) | (50) | (50) | (50) | | Adrenal cortex | (50) | (50) | (50) | (50) | | Adenoma | | 1 (2%) | | | | Carcinoma | | .==. | | 1 (2%) | | Adrenal medulla | (50) | (50) | (50) | (50) | | Pheochromocytoma malignant | 1 (2%) | 1 (2%) | 1 (2%) | 1 (2%) | | Pheochromocytoma benign | 5 (10%) | 4 (8%) | 1 (2%) | | TABLE C1 Summary of the Incidence of Neoplasms in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ррт | 100 ppm | 200 ppm | 400 ppm | |---------------------------------------|----------|----------|-------------|----------| | Endocrine System (continued) | | | | | | Islets, pancreatic | (47) | (50) | (49) | (49) | | Adenoma | 8 (17%) | , | 3 (6%) | . , | | Carcinoma | ` , | 1 (2%) | , , | 1 (2%) | | Parathyroid gland | (48) | (47) | (48) | (47) | | Adenoma | 1 (2%) | | | | | Pituitary gland | (49) | (49) | (50) | (50) | | Pars distalis, adenoma | 15 (31%) | 16 (33%) | 12 (24%) | 13 (26%) | | Pars distalis, adenoma, multiple | 1 (2%) | 1 (2%) | , , | · · · | | Pars intermedia, adenoma | 1 (2%) | | | 1 (2%) | | Thyroid gland | (49) | (50) | (48) | (49) | | Bilateral, follicular cell, adenoma | ` , | , | 1 (2%) | . , | | C-cell, adenoma | 4 (8%) | 2 (4%) | · · · · · · | 3 (6%) | | Follicular cell, adenoma | (***) | (-,-) | 4 (8%) | - (~,~) | | Follicular cell, carcinoma | 3 (6%) | 3 (6%) | 1 (2%) | | | | 2 (070) | 2 (070) | 1 (270) | | | General Body System | | | | | | Tissue NOS | | (1) | | | | Hemangiosarcoma | | 1 (100%) | | | | Genital System | | | | | | Epididymis | (50) | (49) | (49) | (50) | | Preputial gland | (50) | (48) | (50) | (50) | | Adenoma | 1 (2%) | () | 1 (2%) | 1 (2%) | | Prostate | (50) | (49) | (50) | (50) | | Adenoma | 3 (6%) | 1 (2%) | 1 (2%) | (30) | | Schwannoma malignant | 2 (070) | 2 (270) | 2 (270) | 1 (2%) | | Seminal vesicle | (49) | (49) | (50) | (49) | | Testes | (50) | (49) | (49) | (50) | | Bilateral, interstitial cell, adenoma | 3 (6%) | 1 (2%) | 1 (2%) | 5 (10%) | | Interstitial cell, adenoma | 2 (4%) | 5 (10%) | 3 (6%) | 7 (14%) | | interstitial cen, adenoma | 2 (470) | 3 (10%) | 3 (0%) | 7 (1470) | | Hematopoietic System | | | | | | Bone marrow | (50) | (50) | (50) | (50) | | Histiocytic sarcoma | | | | 1 (2%) | | Lymph node | (31) | (44) | (38) | (32) | | Iliac, hemangiosarcoma | | 1 (2%) | | | |
Pancreatic, histiocytic sarcoma | | | | 1 (3%) | | Lymph node, mandibular | (48) | (49) | (47) | (48) | | Histiocytic sarcoma | | | | 1 (2%) | | Lymph node, mesenteric | (46) | (50) | (50) | (50) | | Hemangioma | | | | 1 (2%) | | Hemangiosarcoma | | 1 (2%) | 1 (2%) | | | Histiocytic sarcoma | | | | 1 (2%) | | Spleen | (49) | (50) | (49) | (49) | | Hemangiosarcoma | | 1 (2%) | | | | Thymus | (48) | (49) | (49) | (50) | | Thymoma benign | 1 (2%) | | 2 (4%) | | | Thymoma malignant | 1 (2%) | | · · · / | | C-4 Pyridine, NTP TR 470 TABLE C1 Summary of the Incidence of Neoplasms in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|-----------|---------|----------------|----------| | Integumentary System | | | | | | Mammary gland Carcinoma | (48) | (46) | (44)
1 (2%) | (46) | | Fibroadenoma | 1 (2%) | 1 (2%) | 1 (270) | 1 (2%) | | Skin | (50) | (50) | (50) | (50) | | Basal cell adenoma | , | 1 (2%) | , | , , | | Basal cell carcinoma | | | | 1 (2%) | | Carcinoma, metastatic, Zymbal s gland | | | 1 (2%) | | | Fibroma | | | 2 (4%) | | | Keratoacanthoma | 7 (14%) | 3 (6%) | 2 (4%) | 1 (2%) | | Squamous cell carcinoma | | 1 (2%) | | | | Squamous cell papilloma | 2 (4%) | 1 (2%) | 1 (2%) | | | Sebaceous gland, adenoma | 5 (100) | 6 (120) | 1 (2%) | 1 (2.0) | | Subcutaneous tissue, fibroma | 5 (10%) | 6 (12%) | | 1 (2%) | | Subcutaneous tissue, fibroma, multiple | | | 1 (25) | 1 (2%) | | Subcutaneous tissue, fibrosarcoma
Subcutaneous tissue, sarcoma | 1 (20/) | | 1 (2%) | 1 (2%) | | Subcutaneous tissue, sarconia | 1 (2%) | | | | | Musculoskeletal System | | | | | | Bone | (50) | (50) | (50) | (50) | | Cranium, osteoma | 1 (2%) | | | | | Joint, sarcoma | | | | 1 (2%) | | Skeletal muscle | (1) | | (2) | | | Fibroma | | | 1 (50%) | | | Lipoma | 1 (100%) | | 1 (50%) | | | Nervous System | | | | | | Brain | (50) | (49) | (50) | (50) | | Astrocytoma malignant | 1 (2%) | 1 (2%) | 1 (2%) | | | Hemangioma | 1 (2%) | , , | , | | | Respiratory System | | | | | | Lung | (50) | (50) | (50) | (50) | | Alveolar/bronchiolar carcinoma | (30) | (50) | 1 (2%) | (30) | | Carcinoma, metastatic, Zymbal s gland | | | 1 (2%) | 1 (2%) | | Fibrosarcoma, metastatic, skin | | | - (=/v/ | 1 (2%) | | Histiocytic sarcoma | | | | 1 (2%) | | Nose | (50) | (50) | (50) | (50) | | Chondroma | ` ' | ` ' | ` / | 1 (2%) | | Squamous cell carcinoma, metastatic, oral | | | | | | mucosa | 1 (2%) | | | | | Special Senses System | | | | | | Zymbal s gland | (1) | | (2) | (3) | | Carcinoma | 1 (100%) | | 2 (100%) | 3 (100%) | | | 1 (10070) | | _ (10070) | 2 (100%) | TABLE C1 Summary of the Incidence of Neoplasms in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|--------|------------------|--------------------------|--------------------------| | Urinary System | | | | | | Kidney | (50) | (50) | (50) | (50) | | Alveolar/bronchiolar carcinoma, metastatic, | | | | | | lung | | | 1 (2%) | | | Histiocytic sarcoma | | | | 1 (2%) | | Lipoma | 1 (2%) | | | | | Renal tubule, adenoma | 1 (2%) | 4 (8%) | 1 (2%) | 2 (4%) | | Renal tubule, adenoma, multiple | 1 (2%) | 1 (2%) | | | | Renal tubule, carcinoma | | | | 1 (2%) | | Multiple organs ^b Histiocytic sarcoma Leukemia mononuclear Lymphoma malignant Mesothelioma malignant | 1 (2%) | 1 (2%)
2 (4%) | (50)
2 (4%)
1 (2%) | (50)
1 (2%)
1 (2%) | | Neoplasm Summary | | | | | | Total animals with primary neoplasms ^c | 43 | 38 | 32 | 39 | | Total primary neoplasms | 101 | 79 | 68 | 62 | | Total animals with benign neoplasms | 40 | 37 | 29 | 33 | | Total benign neoplasms | 84 | 61 | 51 | 47 | | Total animals with malignant neoplasms | 17 | 14 | 12 | 13 | | Total malignant neoplasms | 17 | 18 | 17 | 15 | | Total animals with metastatic neoplasms | 1 | | 3 | 2 | | Total metastatic neoplasms | 1 | | 4 | 2 | Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms C-6 Pyridine, NTP TR 470 TABLE C2 Individual Animal Tumor Pathology of Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine: 0 ppm | | 2 | | 5 | 5 | 5 | 5 | | 5 | | | | | | 6 | | | | | | | | 6 | 6 | 6 | | |----------------------------------|---|---|---|---|---|---|---|---|----|---|---|---|---|---|-----|---|----------|---|---|---|---|---|---|---|---| | Number of Days on Study | 8 | 6 | | | | 7 | 7 | 8 | | | | | 1 | | | | | | 5 | | | 7 | 8 | 9 | | | | 3 | 8 | 6 | 7 | 9 | 2 | 6 | 7 | 9 | 2 | 8 | 1 | 6 | 8 | 4 | 9 | 4 | 4 | 4 | 0 | 4 | 6 | 1 | 5 | 1 | | | 0 | | Carcass ID Number | 3 | 1 | 5 | 0 | 4 | 4 | 3 | 4 | 0 | 3 | 2 | 1 | 2 | 3 | 4 | 3 | 2 | 4 | 0 | 2 | 4 | 0 | 3 | 3 | 2 | | | 6 | 3 | 0 | 3 | 7 | 1 | 1 | | | | | | | | 6 | 0 | | | | | 4 | 7 | 9 | 5 | | | Alimentary System | Esophagus | + | | Intestine large, colon | A | + | Α | Α | Α | + | + | Α | + | + | + | Α | Α | + | + | Α | A | Α | Α | + | + | + | + | Α | + | | Intestine large, rectum | A | + | + | Α | + | + | + | Α | + | + | + | Α | Α | + | + | + | + | + | + | + | + | + | + | + | + | | Intestine large, cecum | A | + | Α | Α | Α | Α | + | Α | + | Α | + | Α | Α | + | Α | Α | Α | Α | Α | + | + | + | + | Α | + | | Carcinoma | Intestine small, duodenum | A | + | | Α | | | | | | | | | | | | | | | | | | + | + | Α | | | Intestine small, jejunum | A | + | + | Α | Α | + | + | + | + | + | + | Α | Α | Α | + | Α | A | A | + | + | + | + | + | Α | + | | Carcinoma | Intestine small, ileum | A | + | + | Α | Α | | + | Liver | + | | Cholangiocarcinoma | Hepatocellular adenoma | | | | | | | | | | | | | | | | | | | X | | | | | | | | Mesentery | | + | | | | | | | | | | + | | | | | | | | | | | | + | + | | Oral mucosa | | | | | | | | | + | | | | | | | | | | + | | | | | | + | | Squamous cell carcinoma | | | | | | | | | X | | | | | | | | | | | | | , | | | | | Pancreas | + | + | + | + | + | + | + | + | + | + | + | Α | + | + | + | + | A | + | + | + | + | + | + | | + | | Acinus, adenoma | | | | | | | | | 37 | | | | | | | | | | | | | | | | | | Acinus, adenoma, multiple | | | | | | | | | X | | | | | | | | | | | | | | | | | | Acinus, carcinoma | Acinus, carcinoma, multiple | Salivary glands | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | M | + | + | + | + | | Stomach, forestomach | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + | + | + | + | + | + | | Stomach, glandular
Tooth | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | т | | Tootii | Cardiovascular System | Blood vessel | | + | | + | + | | + | | | | | + | | + | | | | | | | | | | + | | | Heart | + | | Endocardium, schwannoma benign | Endocrine System | Adrenal cortex | + | | Adrenal medulla | + | | Pheochromocytoma malignant | | | | | | | | X | | | | | | | | | | | | | | | | | | | Pheochromocytoma benign | Islets, pancreatic | + | + | + | + | + | + | + | + | + | + | + | Α | + | + | | + | A | + | + | + | + | + | + | + | + | | Adenoma | | | | | | | | | | | | | | | X | | | | | | X | _ | | | | | Parathyroid gland | + | M | + | + | + | | Adenoma | Pituitary gland | + | + | + | + | + | + | + | + | + | + | + | + | | + | + : | M | | + | + | + | + | | | + | + | | Pars distalis, adenoma | | X | | | X | | | | | | | | X | | | | | X | | | X | X | X | | | | Pars distalis, adenoma, multiple | Pars intermedia, adenoma | Γhyroid gland | + | | C-cell, adenoma | X | | Follicular cell, carcinoma | X | | | | | ^{+:} Tissue examined microscopically A: Autolysis precludes examination M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined TABLE C2 Individual Animal Tumor Pathology of Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine: 0 ppm | | 01 1/1010 | | | | | | - | _ | | | | | | 0 | | | | | | | <i>J</i> - | | | _ | I. I. | | |--|-------------|-----|-------------|-------------|-------------|-------------|----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------
-------------|-------------|-------------|-------------|--------|-------------|-----------------------------| | Number of Days on Study | 7
0
5 | 0 | 7
1
7 | 7
2
2 | 7
2
2 | 7
2
2 | 2 | 7
2
2 2 | 7
2
2 | | | Carcass ID Number | 0
2
5 | 2 | 0
1
9 | 0
0
2 | 0
0
4 | 0
0
6 | | | 1 | 1 | 0
1
2 | 1 | 0
1
6 | 1 | 1 | 0
2
0 | 0
2
2 | 0
2
9 | 0
3
3 | 0
3
4 | 0
3
7 | 0
4
0 | 0
4
2 | | 0
4
9 | Total
Tissues/
Tumors | | Alimentary System | Esophagus | + | 50 | | Intestine large, colon | Α | . A | Α | + | 35 | | Intestine large, rectum | Α | . A | Α | + | 42 | | Intestine large, cecum
Carcinoma | A | M | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | 32
1 | | Intestine small, duodenum | + | · A | Α | + | 39 | | Intestine small, jejunum
Carcinoma | A | . A | A | + | + | + | | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 37
1 | | Intestine small, ileum | A | . A | Α | + | 28 | | Liver | + | 50 | | Cholangiocarcinoma | | | | | | | | | | | | | | | | X | | | | | | | | | | 1 | | Hepatocellular adenoma | | | | | | | | | | | | | | | X | | | | | | | | | | | 2 | | Mesentery | | + | + | + | | 7 | | Oral mucosa | | | | | | | + | | | | | + | | | | | | | | | | | | | | 5 | | Squamous cell carcinoma | 1 | | Pancreas | + | · A | + | 46 | | Acinus, adenoma | | | | | 37 | X | 37 | | 37 | | 37 | X | 37 | X | | X | | | | X | 37 | X | 37 | | | 6 | | Acinus, adenoma, multiple | | | | | X | | X | | X | | X | | X | | | | | | | | X | | X | | 37 | 8 | | Acinus, carcinoma | | | | | | | X | | | | | | | | 37 | | | | | | | | 37 | | X | 2 | | Acinus, carcinoma, multiple | | 3.6 | | | | | | | | | | | | | X | | | | | | | | X | | | 2
48 | | Salivary glands | + | M | . + | 48
49 | | Stomach, forestomach
Stomach, glandular | T | · + | T | T | T | T
_ | T | T | T
_ | + | T | T | T | T
_ | + | + | T
_ | T | + | + | + | T | T | T
_ | T
_ | 49 | | Tooth | | ' | ' | ' | ' | ' | ' | ' | ' | ' | ' | ' | ' | ' | ' | + | ' | ' | | + | ' | | ' | ' | ' | 2 | | Cardiovascular System | Blood vessel | | | + | 8 | | Heart | + | 50 | | Endocardium, schwannoma benign | | | • | | | | | | | | | | | | | | | X | | | | | | | X | 2 | | Endocrine System | Adrenal cortex | + | 50 | | Adrenal medulla | + | 50 | | Pheochromocytoma malignant | 1 | | Pheochromocytoma benign | | | | | | | X | | | X | | | | | | | X | | | | X | | | | | 5 | | Islets, pancreatic | + | A | + | + | + | + | - | + | + | + | | + | + | + | + | + | + | | + | + | + | + | + | + | + | 47 | | Adenoma | | | X | | | X | X | | | | X | | | | | X | | X | | | | | | | | 8 | | Parathyroid gland
Adenoma | + | M | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | 48
1 | | Pituitary gland | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Pars distalis, adenoma | | | | | X | X | X | | X | X | | | | X | | | | X | | | X | | | | | 15 | | Pars distalis, adenoma, multiple | X | | | | | | 1 | | Pars intermedia, adenoma | | | | | | | | | | | | X | | | | | | | | | | | | | | 1 | | Thyroid gland | + | M | + | + | | + | 49 | | C-cell, adenoma | | | | | X | | | | | | | | | | | | X | | | | | | X | | | 4 | | Follicular cell, carcinoma | X | - | | | | | | | | | | | | | | | | | | X | | | | | | 3 | | TABLE C2
Individual Animal Tumor Pathology | of Male | Wi | ista | ır I | Rat | s in | ı th | ne 2 | 2-Y | eai | r D | rin | ıkiı | ng | Wa | ate | r S | tud | ly (| of l | Pyr | idi | ine | : 0 |) pj | om | |--|----------------------------|-----------------------|----------------------------|------------------|-----------------------|---------------|---|---------------|---------------|-----------------------|---------------|------------------|-----------------------|---------------|-----------------------|---------------|----------------------------|---------------|---------------|---------------|-----------------------|-------------|---------------|-----------|---------------|----| | Number of Days on Study | 2
8
3 | 4
6
8 | 3 | 5
5
7 | 5 | 7 | 5
7
6 | 5
8
7 | 8 | 5
9
2 | 9 | 6
0
1 | 6
1
6 | 1 | 6
2
4 | 6
3
9 | 6
4
4 | 6
4
4 | 6
5
4 | 6
6
0 | 6
7
4 | 6
7
6 | 8 | 9 | 7
0
1 | | | Carcass ID Number | 0
3
6 | 0
1
3 | 5 | 0
0
3 | 4 | 0
4
1 | 3 | 4 | 0 | 3 | 2 | 0
1
4 | | 3 | | 3 | 2 | 0
4
8 | 0
0
5 | 0
2
7 | 4 | 0 | 0
3
9 | 3 | 0
2
6 | | | General Body System
None | Genital System Coagulating gland Epididymis Preputial gland Adenoma Prostate Adenoma Seminal vesicle Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma | + + + + + + + | + + + + + + | + + + + + + + | + + + + + + + | + + + + + + | + + + + + + + | M + + + + + + + + + + + + + + + + + + + | + + + + + + + | + + + + + + + | +
+
+
+
X | + + + + + + + | + + + + + + + | + + + + + + + | + + + + + + + | + + + + + + + | + + + + + + + | +
+
+
+
A
+ | + + + + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | + + + + + + + | | + + + + + + + | | | Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus Thymoma benign Thymoma malignant | +
+
+
+
+
+ | +
+
M
+
+ | +
+
+
+
+
+ | +
A
+
+ | +
+
A
+
+ | + + + + + | + + + + + + | + + + + + | + + + + + | + + + + + + | + + + + | +
+
A
+ | +
+
+
+
M | + + + + + | +
+
+
+
X | + + + + + | + + + + + | + + + + | + + + + + | + + + + + + | +
+
M
+
+ | + + + + + | + + + + + + | + + + + + | + + + + + | | | Integumentary System Mammary gland Fibroadenoma Skin Keratoacanthoma Squamous cell papilloma Subcutaneous tissue, fibroma Subcutaneous tissue, sarcoma | + | + | + | + | + | +
+
X | +
+
X | + | + | + | +
+
X | + | + | + | + | + | +
+
X | + | + | + | + | + | +
X | + | +
+
X | | | Musculoskeletal System Bone Cranium, osteoma Skeletal muscle Lipoma | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Nervous System Brain Astrocytoma malignant Hemangioma Peripheral nerve | +
X | | + | + | | | Respiratory System Lung Nose Squamous cell carcinoma, metastatic, oral mucosa | + | ++ | + | + | + | +++ | +++ | +++ | +
+
X | +++ | + | +++ | +++ | +++ | + | + | +++ | +++ | +++ | ++ | + | + | + | ++ | + | | | Trachea | + | | | | | _ | _ | _ | _ | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | |--|---------------|-----------------------|-------------|----------------------------|-------------|-----------------------|--------------------------|--------------------------|-------------------------------|-------------|-------------|----------------------------|----------------------------|---------------|------------------|-------------|---------------|----------------------------|---------------|-------------|---------------|---------------|---------------|----------------------------|--| | Number of Days on Study | 7
0
5 | 7
0
7 | 7
1
7 | 7
2
2 | 7
2
2 | 7
2
2 | 7 | 7 7
2 2
2 2 | 7
2
2
2
2 | 7
2
2 | | Carcass ID Number | 0
2
5 | 2 | 0
1
9 | 0
0
2 | 0 | 0 | 0 (| 0 1 | 0 1 | 1 | 1 | 0
1
6 | 1 | 1 | 0
2
0 | 2 | 2 | 0
3
3 | 0
3
4 | 0
3
7 | 4 | 0
4
2 | 4 | | Total
Tissues/
Tumors | | General Body System None | Genital System Coagulating gland Epididymis Preputial gland
Adenoma Prostate Adenoma Seminal vesicle Festes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma | + + + + + + + | +
+
+
+
X | ++++++++ | +
+
+
X
+
+ | ++++++++ | +
+
+
+
X | + -
+ -
+ -
+ - | + +
+ +
+ +
+ + | - +
- +
- +
- +
X | +++ + ++ | + + + + + + | +
+
+
X
+
+ | +
+
+
X
+
+ | M + + + + + + | + + + + + + + + | +++++++ | + + + + + + + | +
+
+
X
+
+ | + + + + + + + | + + + + + + | + + + + + + + | + + + + + + + | + + + + + + + | +
+
+
+
+
X | 48
50
50
1
50
3
49
50
3
2 | | Hematopoietic System Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus Thymoma benign Thymoma malignant | + + + + + + + | +
M
+
A
+ | + + + + + | + + + + + + | + + + + + + | +
+
+
+
X | + - + - + - + - + - | + +
+ +
+ +
+ + | - +
- +
- +
- + | + + + + + | + + + + + + | + + + + + | + + + + + | + + + + + + | +++++ | + + + + + + | + + + + + + | + ++++ | + ++++ | + + + + + + | + ++++ | + + + + + + | + + + + + + | + + + + + + | 50
31
48
46
49
48
1 | | Integumentary System Mammary gland Fibroadenoma Skin Keratoacanthoma Squamous cell papilloma Subcutaneous tissue, fibroma Subcutaneous tissue, sarcoma | + | M
+ | +
X | +
+
X | +
+
X | + | + - | + + | - + | + | +
+
X | +
+
X | + | + | +
X
+
X | | + | | + | M
+
X | + | + | + | + | 48
1
50
7
2
5
1 | | Musculoskeletal System Bone Cranium, osteoma Skeletal muscle Lipoma | + | + | + | + | + | + | + - | + + | - + | + | + | + | +
+
X | + | + | + | + | + | + | + | + | + | + | + | 50
1
1
1 | | Nervous System
Brain
Astrocytoma malignant
Hemangioma
Peripheral nerve | +
X | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50
1
1
1 | | Respiratory System Lung Nose Squamous cell carcinoma, metastatic, | ++ | + | +++ | + | ++ | + + | + - | + + | - + | ++ | + | +++ | +++ | ++ | ++ | ++ | ++ | ++ | +++ | + | + | +++ | +++ | +++ | 50
50 | | oral mucosa
Trachea | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 1
50 | C-10 Pyridine, NTP TR 470 TABLE C2 Leukemia mononuclear | | 2 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | |---|---| | Number of Days on Study | 8 | 6 | 3 | 5 | 5 | 7 | 7 | 8 | 8 | 9 | 9 | 0 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 7 | 8 | 9 | 0 | | | 3 | 8 | 6 | 7 | 9 | 2 | 6 | 7 | 9 | 2 | 8 | 1 | 6 | 8 | 4 | 9 | 4 | 4 | 4 | 0 | 4 | 6 | 1 | 5 | 1 | | | 0 | | Carcass ID Number | 3 | 1 | 5 | 0 | 4 | 4 | 3 | 4 | 0 | 3 | 2 | 1 | 2 | 3 | 4 | 3 | 2 | 4 | 0 | 2 | 4 | 0 | 3 | 3 | 2 | | | 6 | 3 | 0 | 3 | 7 | 1 | 1 | 3 | 1 | 8 | 8 | 4 | 4 | 2 | 6 | 0 | 3 | 8 | 5 | 7 | 4 | 7 | 9 | 5 | 6 | | Special Senses System | Ear | | + | Harderian gland | Zymbal s gland | + | | | | | | | Carcinoma | X | | | | | | | Urinary System | Kidney | + | | Lipoma | X | | Renal tubule, adenoma | | | | | | | X | Renal tubule, adenoma
Renal tubule, adenoma, multiple
Urinary bladder | | | | + | | + | | + | + | + | | | + | | | | | | | | | | | | + | TABLE C2 Individual Animal Tumor Pathology of Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine: 0 ppm | Number of Days on Study | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | |--|--| | Carcass ID Number | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | Special Senses System Ear Harderian gland Zymbal s gland Carcinoma | + 1
1
1
1 | | Urinary System Kidney Lipoma Renal tubule, adenoma Renal tubule, adenoma, multiple | + + + + + + + + + + + + + + + + + + + | | Urinary bladder Systemic Lesions Multiple organs Leukemia mononuclear | + A + + + + + + + + + + + + + + + + + + | C-12 Pyridine, NTP TR 470 | Individual Animal Tumor Pathology | of Male | W | ISU | II I | Cau | SШ | ım | e 2 | -Y | ear | . D | rın | kın | ıg \ | Wa | itei | r Si | ud | y (| f I | ' yr | 101 | ne: | 1 | 00 ppm | |--|---------|--------|------|--------|-----|----------|--------------|----------|----------|----------|----------|-----|----------|------|----|------|------|----------|----------|-----|-------------|-----|-----|---|--------| | | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | Number of Days on Study | 3 | 5 | 7 | 4 | 7 | 7 | 8 | 0 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | 9 | 1 | 1 | 3 | 3 | 3 | 4 | 4 | 4 | | | 6 | 2 | 2 | 5 | 0 | 9 | 6 | 6 | 6 | 1 | 9 | 2 | 1 | 3 | 1 | 3 | 5 | 0 | 1 | 4 | 8 | 9 | 2 | 7 | 9 | | | 0 | 0 | 0 | | 0 | | 0 | | | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Carcass ID Number | 8 | 8 | 6 | 7 | 9 | 8 | 5 | 0 | 7 | 5 | 9 | 9 | 8 | 6 | 7 | 6 | 7 | 8 | 7 | 6 | 5 | 5 | 5 | 9 | 5 | | | 0 | 2 | 3 | 7 | 6 | 1 | 8 | 0 | 8 | 3 | 2 | 8 | 8 | 0 | 9 | 5 | 0 | 5 | 2 | 4 | 7 | 4 | 2 | 9 | 1 | | Alimentary System | Esophagus | + | | Intestine large, colon | + | + | + | + | Α | + | + | + | + | + | | | + | | | | | | | | | | + | + | A | | Intestine large, rectum | + | + | + | + | + | + | + | + | + | + | + | | + | | | | | | | | | + | + | + | A | | Intestine large, cecum | + | · A | + | A | | + | | + | | + | + | | + | | | | | | | | | | + | | A | | Intestine small, duodenum | + | + | + | + | + | A | + | + | A | + | + | + | + | + | + | A | + | + | A | + | + | + | + | + | + | | Carcinoma | Intestine small, jejunum | + | + | + | A | Α | Α | + | + | + | + | Α | + | + | A | + | Α | + | + | Α | Α | + | + | + | + | + | | Carcinoma | | | | | | | , | | | | | | | | , | | | | | | | | | | | | intestine small, ileum | + | · A | | | Α | | | + | | | | | + | | | | | | | | | | | | | | Liver
Mecantery | + | | Mesentery | | | | | | | | | | | | | | + | | | | | | | | | | | | | Oral mucosa
Pancreas | | | | .1 | JI. | J | _ | д | _ | _ | _ | _ | _ | _ | _ | _ | ر | _ | ر | ر | _ | 5 | J | 5 | _ | | Carcinoma | + | + | + | + | + | + | + | + | + | + | + | + | _ | + | _ | + | + | _ | + | + | +
X | + | + | + | 7' | | Acinus, adenoma | | | X | | | | | X | | | X | | | | | | | X | | | Λ | X | | | | | Acinus, adenoma, multiple | | | Λ | X | | | | Λ | | | Λ | | | | | | | Λ | | | X | Λ | | | | | Salivary glands | 4 | + | + | Λ
+ | | Stomach, forestomach | | . + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Stomach, glandular | | . + | + | + | + | + | + | + | | | + | | + | + | | + | + | + | + | + | + | + | + | + | | | Tooth | | · | Ċ | • | · | | | | · | | • | | · | · | • | | · | | • | • | · | · | | | | | Cardiovascular System | Blood vessel | | _ | | _ | | _ | _ | _ | _ | _ | _ | | _ | | | | | _ | _ | _ | | _ | _ | | | | Heart | _ | | _ | | _ | <u> </u> | <u>.</u> | <u>.</u> | <u>.</u> | <u>'</u> | <u>.</u> | _ | <u> </u> | _ | + | + | + | <u>'</u> | <u>,</u> | + | _ | Τ, | | _ | _ | | Endocardium, schwannoma benign | | ' | | | ' | ' | ' | | • | ' | | | ' | ' | | X | ' | | | | ' | | ' | Endocrine System | Adrenal cortex | + | | Adenoma | Adrenal medulla | + | | Pheochromocytoma malignant | | | | | | | \mathbf{v} | Pheochromocytoma benign (slets, pancreatic | | | | .1 | JI. | J | X | д | _ | _ | _ | _ | _ | _ | _ | _ | ر | _ | ر | ر | _ | 5 | J | 5 | _ | | Carcinoma | + | _ | _ | | т | - | 7 | Τ* | т* | Τ' | Τ* | 7 | 7 | Τ- | Τ* | _ | _ | | - | _ | X | - | - | _ | T' | | Parathyroid gland | _ | | _ | _ | _ | _ | + | + | + | + | + | M | + | + | + | _ | _ | + | _ | _ | + | _ | _ | _ | M | | Pituitary gland | | T
+ | | | Pars distalis, adenoma | Т | | - 1- | 1. | ' | ' | ' | X | | ' | | | X | | | 1 | X | | X | 1 | X | 1 | ' | ' | • | | Pars distalis, adenoma, multiple | | | | | | | | | | | | | | | | | -11 | | -1 | | -1 | | | | | | Γhyroid gland | + | | C-cell, adenoma | | ' | | ď | | Ċ | • | | • | • | • | | | • | X | • | • | | • | • | • | • | Ċ | | • | | Follicular cell, carcinoma | | | | | | | | | | | | | | | | X | | | | | | | | | X
 | General Body System Tissue NOS Hemangiosarcoma | 11Cmangiosarcoma | Genital System | Coagulating gland | + | + | M | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | M | + | | Epididymis | + | | Penis | Preputial gland | Individual Animal Tumor Pathology | or ivia | | | | | | | | _ | | cai | ים | 1 111 | KII | g | vv a | ıcı | Si | uu | yu | <i>'</i> 1 1 | J - | | | | սս լ |)
hm | |---|---------|-----|-----|----|---|----|---|--------|----|---|--------|----|-------|-----|---|------|--------|----|--------|----|--------------|-----|--------|---|---|------|-------------------| | | | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | Number of Days on Study | | | 6 | | 7 | | | | | | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | | | 0 | | | | | 7 | | | 4 | | | | | | | | | | | | | | 2 | | | | | | ^ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | 0 | Λ | Λ | Λ | Λ | 0 | Λ | Total | | Carcass ID Number | | | 6 | | | 8 | | 0
9 | | | 7 | | | 6 | | | | 7 | | | | | 0
8 | 9 | | 9 | Total
Tissues/ | | carcass ID Ivallioci | | | | | | | | 5 | | | | | | | | | | | | | | | | | | | Tumors | | Alimentary System | | _ | Esophagus | | + | 50 | | Intestine large, colon | | À | + | + | + | À | A | | | + | A | | | | | | | | + | + | + | + | + | + | + | + | 39 | | ntestine large, rectum | | Α | + | + | + | | Α | | + | | | | | + | | | | + | + | + | + | + | + | + | + | + | 42 | | ntestine large, cecum | | Α | Α | | + | | Α | | | + | | | | | + | | + | + | + | + | + | + | + | + | + | + | 37 | | Intestine small, duodenum | | Α | | + | + | + | + | | | | + | | | | + | + | + | + | + | + | + | + | + | + | + | + | 44 | | Carcinoma | | | | | | | | | X | | | | | | | | | | | | | | | | | | 1 | | ntestine small, jejunum | | Α | + | + | + | Α | Α | Α | + | + | Α | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 36 | | Carcinoma | | | | | | | | | | | | | | | | | | X | | | | | | | | X | 2 | | ntestine small, ileum | | Α | + | + | + | Α | Α | Α | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 32 | | Liver | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | | + | + | + | + | + | + | | + | 50 | | Mesentery | 1 | | Oral mucosa | + | | | | 1 | | Pancreas | | + | 50 | | Carcinoma | 1 | | Acinus, adenoma | | | | | | | | | | | | | X | X | | | | | | | | | | | | | 7 | | Acinus, adenoma, multiple | | | | | | | | | | | | | | | | | X | | | | | | | | X | | 4 | | Salivary glands | | + | + | + | + | M | + | 49 | | Stomach, forestomach | | + | 50 | | Stomach, glandular | | + | 50 | | Cooth | | | | | | | | | | | | | | | + | | | | | | | | | + | | | 2 | | Cardiovascular System | Blood vessel | | + | | + | + | | + | + | | | + | + | | | | | | | | | | + | | | | + | 23 | | Heart | | + | 50 | | Endocardium, schwannoma benign | | | | · | · | · | • | · | | · | | | | · | | | | | | | · | | | · | X | · | 2 | | Endocrine System | Adrenal cortex | | + | 50 | | Adenoma | | | · | • | • | | • | • | • | • | | • | Ċ | • | • | | X | • | • | | • | | • | | Ċ | · | 1 | | Adrenal medulla | | + | 50 | | Pheochromocytoma malignant | | | | | | | | | X | | | | | | | | | | | | | | | | | | 1 | | Pheochromocytoma benign | | | X | | | | | | | | | | | | X | | | | | | X | | | | | | 4 | | slets, pancreatic | | + | 50 | | Carcinoma | 1 | | Parathyroid gland | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | Μ | + | + | + | + | + | 47 | | Pituitary gland | | + | + | + | + | M | + | 49 | | Pars distalis, adenoma | | | | X | | | | X | X | X | X | | | X | | | | | | | | | | X | X | | 16 | | Pars distalis, adenoma, multiple | | | | | | | | | | | | | | | | X | | | | | | | | | | | 1 | | Γhyroid gland | | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | 50 | | C-cell, adenoma | | • | • | • | • | • | | • | • | • | | • | | X | • | • | • | • | | | | • | • | • | • | - | 2 | | Follicular cell, carcinoma | | | | | | | | | | | | | X | | | | | | | | | | | | | | 3 | Jeneral Body System | | | + | 1 | | | | | X | 1 | | | | | 21 | Tissue NOS Hemangiosarcoma | | | 21 | Fissue NOS Hemangiosarcoma Genital System | | _ | 1 | | | | M | , | , | | M | M | | | | | M | , | Ŋ.f | | | | | | | , | 40 | | Fissue NOS Hemangiosarcoma Genital System Coagulating gland | | + | + | + | + | + | M | | + | + | M | | | + | + | | | | | | + | + | + | + | + | + | 42 | | General Body System Fissue NOS Hemangiosarcoma Genital System Coagulating gland Epididymis Penis | | +++ | + + | ++ | + | ++ | | | ++ | + | M
+ | | ++ | + | + | ++ | M
+ | + | M
+ | + | + | + | + | + | + | ++ | 42
49
1 | C-14 Pyridine, NTP TR 470 | TABLE C2
Individual Animal Tumor Pathology | of Male Wistar R | Rats in the 2-Year I | Orinking Water Stud | y of Pyridine: 100 ppm | |---|---|----------------------|---|---| | Number of Days on Study | 3 5 7 4 | 7 7 8 0 3 4 4 | 5 5 5 5 5 5 6
5 6 7 8 9 9 1
2 1 3 1 3 5 0 | | | Carcass ID Number | 8 8 6 7 | 9 8 5 0 7 5 9 | 0 0 0 0 0 0 0 0
9 8 6 7 6 7 8
8 8 0 9 5 0 5 | 7 6 5 5 5 9 5 | | Genital System (continued) | | | | | | Prostate
Adenoma | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Seminal vesicle | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Testes | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Bilateral, interstitial cell, adenoma
Interstitial cell, adenoma | | X | | X | | Hematopoietic System | | | | | | Bone marrow | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Lymph node Iliac, hemangiosarcoma | + + + | + + + | ++++++ | + + + + + + | | Lymph node, mandibular | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Lymph node, mesenteric
Hemangiosarcoma | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Spleen | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Hemangiosarcoma
Thymus | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Integumentary System Mammary gland | M + + + | + + + + + + + | ++++++ | + + + + + + + | | Fibroadenoma | | X | | | | Skin Basal cell adenoma | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Keratoacanthoma
Squamous cell carcinoma
Squamous cell papilloma | | | | X | | Subcutaneous tissue, fibroma | | | X | X | | Musculoskeletal System
Bone | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Nervous System | | | | | | Brain Astrocytoma malignant | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Peripheral nerve
Spinal cord | | + +
+ + | | + + | | Respiratory System | | | | | | Lung | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Nose
Trachea | + | + + + + + + + + | + + + + + + + + | + | | Special Senses System
None | | | | | | Urinary System Kidney Renal tubule, adenoma | + + + + | + + + + + + + | + + + + + + + X | + + + + + + + X | | Renal tubule, adenoma, multiple
Urinary bladder | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Systemic Lesions Multiple organs | + + + + | + + + + + + + | + + + + + + + | + + + + + + + | | Leukemia mononuclear Lymphoma malignant | , , , , | | X | X | | 5
1
0
5
9
+
+
+
+
+ | 6
6
0
0
6
6
+
+
X | 66 88 00 99 11 ++++ |) (| 7
9
0
9
3 | 8
2
0
8
4 | 9
0
0
5 | 9
7
0
9
5 | 9
8
0
8 | 1
0
0
8 | 7
1
4
0
7
1 | 1
6
0
6 | 2
2
0
5 | 2
2
0 | 2 2 | 2
2
0 | 0 | 0 | 0 | 2 2 0 | | 0 | | 2 2 | 2 2 0 | | Total | |--|---
---------------------------------|-------|-----------------------|---|---|--|---|---|---|---|---|---|---------------------------------------|--|--|---|--|--|--|-----------|---|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | 1 | 0 6 6 + + + + | 8
0
9
1
+
+
+ |) (| 9
0
9
3 | 2 0 8 4 + | 0
5
5 | 7
0
9
5 | 8
0
8 | 0
0
8 | 4
0
7 | 6
0
6 | 2
0
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Total | |)
5
9
+
+
+
+
+ | 0 6 6 + + + + + | 0 9 1 + + + + |) (| 0 9 3 | 0 8 4 + | 0
5
5 | 0
9
5 | 0 | 0 | 0
7 | 0 | 0 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Total | | 5
9
+
+
+
+
+ | 6
6
+
+
+ | 9
1
+
+
+ |) | 9 | 8
4
+ | 5 | 9
5 | 8 | 8 | 7 | 6 | 5 | | | | | | | | | | | | | | Tate | | + +++++++++++++++++++++++++++++++++++++ | +++ | ++++ | | 3 | + | 5 | 5 | | | | | | 6 | 6 | h | h | | / | | | | | | ^ | | | | + +++++++++++++++++++++++++++++++++++++ | + + + | ++++ | | | + | | | • | | | | () | 1 | | | | 3 | | | | 8
6 | 8 | 9 | 4 | 9
7 | Tissues/
Tumors | | + | +
+
X
+
+ | ++++ | | ++++ | | M | + | | | | | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | | ++++++ | +
+
X
+
+ | ++ | | + | | IVI | 49 | | ++++++++ | +
+
X
+
+ | + | | + | | | | т | _ | т | т | т | т | т | | +
X | + | + | т | _ | т | т | т | т | _ | 1 | | + + + + | +
X
+
+ | + | | + | + | M | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | 49 | | ++++ | +
+ | | | | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | ++++ | +
+ | | | | | | | | | | | | | | | | | X | | | | | | | | 1 | | ++++ | + | | | | | | | | | | | X | | | | | | | | | X | | | | | 5 | | ++++ | + | +++ | + | + | | + | 50 | | + | | + | | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | | 44 | | +
+ | X | | | | 1 | | + | + | + | | + : | M | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | | + | 49 | | | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + | 50 | , | | | X | | , | 1 | | | +
X | | | + | 50 | | | | + | | + | 1
49 | | | _ | | | | | | | | • | • | • | | | | | | — | — | — | — | _ | _ | <u> </u> | _ | — | | | L | | ر | _ 1 | Λſ | _ | M | _ | + | + | + | М | _ | _ | _ | _ | _ | _ | _ | _ | | | | _ | _ | | 46 | | _ | т | | - r | VΙ | т | IVI | т | т | т | т | IVI | т | т | т | Τ. | _ | т | Τ. | т | т | т | т | т | т | т | 1 | | + | + | + | | + | 50 | X | | | | 1 | | | | | | | | | | | | | | | | | | | X | | | X | | | | | | 3 | | | | | | | | | | | | | | | | X | | | | | | | | | | | | 1 | X | | | | | 1 | | | | | | | | | | | | | | | X | X | X | | | | | X | | | | | | 6 | + | + | + | | + | 50 | + | + | + | | + : | M | + | 49 | X | | | | | | 1 | 4 | | | | | | + | 4 | + | + | + | | + | 50 | | + | + | + | | + | 50 | | + | + | + | _ | + | 50 | _ | | _ | | | | | _ | | _ | | | _ | _ | | | | | | | | | | | | | | + | + | + | | + | 50 | | | | | | | | | X | | | | | | | | | | | | | | | | X | | | 4 | 1 | | + | + | + | | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | | _ | _ | _ | _ | | _ | | | | | | | | | | | | | | | | | | | - | | | + | | | | | | | | | | | | | | | | | _ | _ | _ | | | | | _ | | | | | + | + | | + | 50 | | +++ | | - + - + | - + + | - + + - | + + + +
+
+
+
+ + + +
+ + + +
+ + + + | + + + + M
+
+
+
+ + + + +
+ + + + +
+ + + + | + + + + M + + + + + + + + + + + + + + + | + + + + M + + + + + + + + + + + + + + + | + + + + M + + + + + + + + + + + + + + + | + + + + M + + + + + + + + + + + + + + + | + + + + M + + + + + + + + + + + + + + + | + + + + M + + + + + + + + + + + + + + + | + + + + M + + + + + + + + + + + + + + + | + + + + + + + + + + + + + + + + + + + | X X + + + + + + + + + + + + + + + + + + | X X X + + + + + + + + + + + + + + + + + | X
X X X
+ + + + + + + + + + + + + + + + + + + | X X X X + + + + + + + + + + + + + + + + | X X X X + + + + + + + + + + + + + + + + | X X X X + + + + + + + + + + + + + + + + | X X X X X | X
X X X X
+ + + + + + + + + + + + + + + + + + + | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | C-16 Pyridine, NTP TR 470 | | | | | | | | | | _ | _ | _ | _ | _ | _ | | | | | | | | | _ | |----|---|---|---|---|---|--|--|--
--|---|---|---|---|--|--|--|--|---|---|---|---|--|---| | - | | 4 | 4 | 4 | 4 | | 4 | 4 | 4 | 4 | 7 | 3 | 9 | 1 | 6 | 7 | 4 | 0 | 1 | 0 | 5 | 0 8 | 8 1 | 5 | 8 | 8 | 2 | 8 | 0 | 1 | 2 | 5 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | 1 | 2 | 4 | 4 | 4 | 0 | 0 | 3 | 3 | 1 | 3 | 2 | 0 2 | 2 3 | 3 | 3 | 1 | 2 | 1 | 4 | 4 | 0 | 5 | | 3 | 4 | 9 | 9 | 7 | 4 | 7 | 3 | 2 | 0 | 9 | 1 | 7 | 8 4 | 4 7 | 3 | 8 | 5 | 3 | 2 | 5 | 6 | 6 | 0 | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | Α | | | | | | | | | | | Α | Α | + | + | Α | Α | + | | + | + | + | + | + | + | Α | Α | + | | | | | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | • | | • | • | • | • | • | • | • | • | • | • | • | • | | | | | • | • | | | • | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | | 1. | ' | 1 | ' | ' | ' | | | ' | ' | | | ' | ' | . т | ı | 1 | | ' | ' | ' | ' | | | | | | | | | | 21 | | | | | 21 | | | | | | 1 | | | x | | /1 | 21 | _ | | _ | | _ | _ | _ | _ | _ | _ | _ | M | _ | _ | _ N | ſ 」 | M | | | | | | | _ | | T | | ⊥ | T | ⊤ | ⊤ | + | T
_ | ⊤ | + | T | 141 | T
_ | | | ı ⊤
. ⊥ | ıvı
⊥ | T
_ | T | T | T | T | T |
- | | + | + | + | + | т | т | т | т | т | _ | т | т | т | т - | - + | + | + | + | + | + | + | + | + | 7 | | | J | J | , | ر | _ | _ | _ | _ | _ | т | _ | _ | _ | L , | | .1 | J. | ٨ | 5 | J. | .1 | J. | _ | | | _ | т | т | т | т | _ | т | т | т | т | т | т | т - | т т | | т | т | А | т | _ | _ | т | т | + | + | | | | | | + | | | + | + | + | | | | | | + | + | + | + | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | | + | + | + | + | | | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | | | | | | | X | + | + | + | + | + | + | + | + | + | + | | | + | + - | + + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | | | | | M | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | | + - | + + | + | + | + | + | + | + | + | + | + | | | | | | | | | | | | | | X | | | | | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + N | 1 + | M | + | + | + | + | + | + | + | | | | | | | | | | | | | |
 | X | X | _ | | | | | J | J | , | ر | _ | _ | _ | _ | _ | т | _ | _ | _ | L , | | .1 | J. | 5 | , | _ | ,i | | _ | | | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | | | | , | - 1 | , | | | | | | | | | | | | | | | | 1.4 | | | 1 | | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | M | + | + | + | | | 1 1 3 3 + + + + + + + + + + + + + + + + | 5 0
4 4
1 1 1
1 3 4
+ + + + + + + + + + + + + + + + + + + | 5 0 4
4 4 7
1 1 1 1
1 1 2
3 4 9
+ + + +
+ + | 5 0 4 7
4 4 7 3
1 1 1 1
1 1 2 4
3 4 9 9
+ + + + +
+ + +
+ + + + + + +
+ + + + + + +
+ + + +
+ + + + + + + + +
+ + + + + + + + + +
+ | 5 0 4 7 7
4 4 7 3 9
1 1 1 1 1
1 1 2 4 4
3 4 9 9 7
+ + + + + +
+ + +
+ + + + + +
+ + + +
+ + + + + + + + + +
+ + + + + + + + + +
+ + + + + + + + + +
+ + + + + + + + + +
+ + + + + + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + +
+ + + + + + + + + + + + +
+ | 5 0 4 7 7 8
4 4 7 3 9 1
1 1 1 1 1 1
1 1 2 4 4 4
3 4 9 9 7 4
+ + + + + + +
+ + + + + +
+ + + + + | 5 0 4 7 7 8 8 8 4 4 7 3 9 1 6 1 1 1 1 1 1 1 1 1 1 1 1 2 4 4 4 4 0 3 4 9 9 7 4 7 + + + + + + + + + + + + + + + + + + | 5 0 4 7 7 8 8 8 8 4 4 7 3 9 1 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 4 4 0 0 0 3 4 9 9 7 4 7 3 + + + + + + + + + A A + + + + + + A A + + + + | 5 0 4 7 7 8 8 8 8 9 4 4 7 3 9 1 6 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 0 4 7 7 8 8 8 8 9 0 4 4 7 3 9 1 6 7 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 4 4 4 0 0 3 3 3 3 4 9 9 7 4 7 3 2 0 + + + + + + + + + + A A + + + + + + + | 5 0 4 7 7 8 8 8 8 9 0 0 0 4 4 7 7 3 9 1 6 7 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 4 4 4 0 0 3 3 3 1 3 4 9 9 7 4 7 3 2 0 9 + + + + + + + + + + A A + + + + + + + | 5 0 4 7 7 8 8 8 8 9 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 0 4 7 7 8 8 8 9 0 0 1 | 5 0 4 7 7 8 8 8 8 9 0 0 1 1 1 2 4 4 4 7 3 9 1 6 7 4 0 1 0 5 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 0 4 7 7 8 8 8 8 9 0 0 1 1 2 4 6 6 4 4 7 3 9 1 6 7 4 0 1 0 5 0 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 0 4 7 7 8 8 8 8 9 0 0 1 1 1 2 4 6 7 4 0 1 0 5 0 8 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 0 4 7 7 8 8 8 8 9 0 0 1 1 1 2 4 6 7 8 4 4 7 3 9 1 6 7 4 0 1 0 5 0 8 1 5 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 0 4 7 7 8 8 8 9 0 0 1 1 2 4 6 7 8 8 8 9 0 0 1 1 2 4 6 7 8 8 8 8 9 0 0 1 1 2 4 6 7 8 | 5 0 4 7 7 8 8 8 9 0 0 1 1 2 4 6 7 8 8 2 1 | 5 0 4 7 7 8 8 8 9 0 0 1 1 2 4 6 7 8 0 2 2 4 4 7 8 8 2 8 1 | 5 0 4 7 7 8 8 8 9 0 0 1 1 2 4 6 7 8 0 2 2 3 1 2 3 | 5 0 4 7 7 8 8 8 8 9 0 0 1 1 1 2 4 6 7 8 0 2 2 3 3 3 4 4 7 7 3 9 1 6 7 4 0 1 0 5 0 8 1 5 8 8 2 2 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 5 0 4 7 7 8 8 8 8 9 0 0 1 1 1 2 4 6 7 8 0 2 2 3 3 3 3 4 4 7 7 3 9 1 6 7 4 0 1 0 5 0 8 1 5 8 8 2 8 0 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | TABLE C2 Individual Animal Tumor Pathology of Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine: 200 ppm | N I ED C | | 6 | | | | | 6 (| | 7 | | | 7 | | 7 | | | | | 7 | 7 | | | 7 | | | |--|--------|---|--------|--------|--------|--------|------------|------------|---------|--------|--------|----|----------|--------|----------|--------|--------|--------|--------|----|---|----|----|----|----------| | Number of Days on Study | 5 | 6 | 6
4 | 7
4 | 7
5 | | 8 8 | | | 0
4 | 0
5 | 1 | 2 | 2 | | | | 2 | 2 | 2 | 2 | 2 | 2 | | | | | U | U | 4 | 4 | 3 | | 3 (| , U | 4 | 4 | 3 | 3 | 1 | 2 | | | | 2 | | | | | 2 | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | l 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Total | | Carcass ID Number | 0 | 4 | 4 | 1 | 4 | 2 | 0 4 | | | | 3 | 2 | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | Tissues/ | | | 1 | 1 | 8 | 8 | 3 | 0 | 9 2 | 2 1 | 2 | 5 | 6 | 8 | 1 | 2 | 4 | 5 | 0 | 6 | 7 | 5 | 6 | 4 | 9 | 0 | Tumors | | Alimentary System | Esophagus | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine large, colon | Α | Α | + | A | A | + | + - | + A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 36 | | Intestine large, rectum | Α | Α | + | Α | + | + | + - | + A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 41 | | Intestine large, cecum | Α | Α | Α | Α | Α | Α | + 1 | 4 A | + | + | Α | + | + | + | + | + | + | + | + | + | + | M | + | + | 29 | | Intestine small, duodenum | + | + | | + | A | + | | + A | | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | 42 | | Intestine small, jejunum | + | + | | + | A | | | | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | 34 | | Intestine small, ileum | A | + | Α | Α | Α | Α | | A A | ٠ + | + | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | 28 | | Liver | + | + | + | + | + | + | + - | + + | - + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | 50 | | Hepatocellular adenoma | | | | | | | | | | | | | | X | | | | | | | | | | | 1 2 | | Mesentery
Oral mucosa | | | | | | | + | _ | _ | | | | | | + | | | | | | | | | | 1 | | Pancreas | _ | _ | _ | _ | + | + | + - | †
⊥ ⊥ | | _ | _ | _ | + | + | + | + | + | + | + | + | _ | _ | _ | + | 50 | | Acinus, adenoma | +
X | Т | Г | Г | Г | 1" | ' ' | . 7 | Т* | Т | +
X | Г | X | 1. | X | 1 | 1 | 1. | 1. | 1- | ۲ | Г | Г | 1" | 8 | | Acinus, adenoma, multiple | Λ | | | | | | | | | | Λ | | | X | /1 | | | | X | x | | | | | 4 | | Acinus, carcinoma | | | | | | | | | | | | | | | X | | | | | 11 | X | | | | 2 | | Acinus, carcinoma, multiple | | | | | | | | | | | | | | X | | | | | | | | | | | 1 | | Salivary glands | + | + | + | + | + | + | + - | + + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | 47 | | Stomach, forestomach | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Fibrosarcoma | | | | | | | X | | | | | | | | | | | | | | | | | | 1 | | Stomach, glandular | + | + | + | + | + | + | + - | + A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Fibrosarcoma, metastatic, stomach, forestomach | | | | | | | X | | | | | | | | | | | | | | | | | | 1 | | Tongue | | | | | | | | | | + | | | | | | | | | | | | | | | 1 | | Squamous cell carcinoma | | | | | | | | | | X | | | | | | | | | | | | | | | 1 | | Tooth | | | | | | | | | | + | | | | | | | | | | + | | | | | 4 | | Cardiovascular System | Blood vessel | | | + | | + | | | | | | | | + | | | | | | | | | | | | 12 | | Heart | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Adrenal medulla | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Pheochromocytoma malignant | 1 | | Pheochromocytoma benign | | | | | | | | | | | | | X | | | | | | | | | | | | 1 | | Islets, pancreatic | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Adenoma | | X | | | | X | | | | | | | | | | | | | | | | | | | 3 | | Parathyroid gland | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Pituitary gland | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | | + | + | + | + | + | + | + | | + | 50 | | Pars distalis, adenoma | | | | | X | | | | X | | | | | | X | | | | | X | | X | X | | 12 | | Thyroid gland | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Bilateral, follicular cell, adenoma | | | 37 | X | | | | - | , | | | | | | 37 | | | | | | | | | | 1 | | Follicular cell, adenoma | | | X | | | | | X | | | | | | | X | | | | | | | | | | 4 | | Follicular cell, carcinoma | 1 | | General Body System None | Conital System | Genital System | M | М | J. | 5 | _ | _ | _ | | | ъл | J. | NЛ | ر | _ | M | _ | _ | _ | _ | ر | J | J. | J. | _ | 15 | | Coagulating gland
Epididymis | IVI | M | + | + | + | + | + - | - +
 | - + | M | + | M | | + | M | +
- | +
- | +
- | +
+ | + | + | + | + | + | 45
49 | | Еріаіаутіs
Preputial gland | | + | + | + | T
+ | T
+ | T - | r t
L J | . +
 | + | + | + | ⊤ | T
_ | ⊤ | + | +
+ | T
_ | T
+ | T | + | + | + | + | 50 | | r reputtar granu | + | + | + | + | _ | _ | т - | - + | - + | + | + | + | _ | _ | _ | т | т | т | т | _ | + | + | + | _ | | | Adenoma | | | | | | | | | | | | |
| | | | | | | | | | | | 1 | C-18 Pyridine, NTP TR 470 | Table C2
Individual Animal Tumor Pathology o | of Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine: 200 ppm | | |---|---|--| | Number of Days on Study | 3 4 4 4 4 4 4 4 4 5 5 5 5 5 | | | Carcass ID Number | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | Genital System (continued) Prostate | ++++++++++++++++++++++ | | | Adenoma Seminal vesicle Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma | + + + + + + + + + + + + + + + + + + + | | | Hematopoietic System | | | | Bone marrow
Lymph node
Lymph node, mandibular
Lymph node, mesenteric | + + + + + + + + + + + + + + + + + + + | | | Hemangiosarcoma
Spleen
Thymus
Thymoma benign | + + + + + + + + + + + + + + + + + + + | | | Integumentary System
Mammary gland
Carcinoma | + + + M + + + + + + + + + + + + + + + + | | | Skin Carcinoma, metastatic, Zymbal s gland Fibroma Keratoacanthoma | + + + + + + + + + + + + + + + + + + + | | | Squamous cell papilloma
Sebaceous gland, adenoma
Subcutaneous tissue, fibrosarcoma | X | | | Musculoskeletal System
Bone
Skeletal muscle
Fibroma
Lipoma | + + + + + + + + + + + + + + + + + + + | | | Nervous System
Brain | + | | | Astrocytoma malignant
Peripheral nerve
Spinal cord | +
+ | | | Respiratory System | +++++++++++++++++++++ | | | Alveolar/bronchiolar carcinoma Carcinoma, metastatic, Zymbal s gland Nose Trachea | X
+ + + + + + + + + + + + + + + + + + + | | | Special Senses System | | | | Ear
Eye
Hordorian gland | + | | | Harderian gland
Lacrimal gland
Zymbal s gland
Carcinoma | + + + + + + + + + + X | | | | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 7 | 7 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | |--|---|----|----|----|----|---|--------|---|---|---|-----|-----|------------|------------|-----|---|---|---|---|---|---|---|---|---|----------| | Number of Days on Study | 5 | 6 | 6 | 7 | | | 8 | 8 | | | | 0 | 1 2 | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 0 | 0 | 4 | 4 | 5 | 2 | 3 | 8 | 0 | 4 | 4 | 5 | 3 | 1 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Total | | Carcass ID Number | 0 | 4 | 4 | | 4 | 2 | | 4 | | | | | | 2 0 | | | 1 | | 1 | | 2 | 3 | | 4 | Tissues/ | | | 1 | 1 | 8 | 8 | 3 | 0 | 9 | 2 | 1 | 2 | 5 | 6 | 8 | 1 2 | 4 | | 0 | 6 | 7 | 5 | 6 | 4 | 9 | 0 | Tumors | | Genital System (continued) | Prostate | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | 50 | | Adenoma | | | | | | | | | | | | | | | | - | X | | | - | | | | | 1 | | Seminal vesicle | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Testes | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | 49 | | Bilateral, interstitial cell, adenoma
Interstitial cell, adenoma | | X | | | X | | | | | | X | | | Х | - | | | | | | | | | | 1 | | · | | 21 | | | | | | | | | 21 | | | 21 | | | | | | | | | | | | | Hematopoietic System | Bone marrow | + | + | + | + | + | + | + | + | + | + | + | + · | + - | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Lymph node | | + | + | + | + | J | _ | + | + | + | _ | + - | + -
- | + +
- ' | - + | + | , | + | + | + | ر | J | + | + | 38
47 | | Lymph node, mandibular Lymph node, mesenteric | + | + | + | + | + | + | + | + | + | | | + : | + -
+ - | + +
+ + | · + | + | + | + | + | + | + | + | + | + | 50 | | Hemangiosarcoma | | 15 | 1. | 11 | 11 | ' | , | | | ' | | X | ' ' | | 15 | ' | | ' | 1 | 1 | 1 | ' | 1 | ' | 1 | | Spleen | + | + | + | + | + | + | + | + | + | + | | | + - | + + | + | + | + | + | + | + | + | + | + | + | 49 | | Γ̂hymus | + | + | + | + | + | + | + | + | + | + | + | + 1 | М - | + + | + | + | + | + | + | + | + | + | + | + | 49 | | Thymoma benign | X | 2 | | ntegumentary System | Aammary gland | M | + | + | M | + | M | M | + | + | + | + | + | + - | + + | - + | + | M | + | + | + | + | + | + | + | 44 | | Carcinoma | | | | | X | 1 | | Skin | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Carcinoma, metastatic, Zymbal s gland | 1 | | Fibroma Variationary the amount of the second seco | | | | | | | X | | | | | X | | | X | | X | | | | | | | | 2 2 | | Keratoacanthoma
Squamous cell papilloma | | | | | | | | | | | | Λ | | | Λ | | | | | | | | | | 1 | | Sebaceous gland, adenoma | | | | | | | | | | | | | | | | X | | | | | | | | | 1 | | Subcutaneous tissue, fibrosarcoma | | | | X | 1 | | Musculoskeletal System | Bone | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Skeletal muscle | + | | | | | 2 | | Fibroma | 1 | | Lipoma | X | | | | | 1 | | Nervous System | Brain | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Astrocytoma malignant | | | | | | | X | | | | | | | | | | | | | | | | | | 1 | | Peripheral nerve | | | | | | | | | | | | | - | + | | | | | | | | | | | 2 | | Spinal cord | | | | | | | | | | | | | | + | | | | | | | | | | | 2 | | Respiratory System | Lung | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Alveolar/bronchiolar carcinoma | | | | | | | | | | | X | | | | | | | | | | | | | | 1 | | Carcinoma, metastatic, Zymbal s gland | 1 | | Vose | + | + | + | + | + | + | + | + | + | + | + . | + · | + - | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Trachea | + | + | + | + | + | + | + | + | + | + | + | + . | + - | - + | + | + | + | + | + | + | + | + | + | + | 50 | | Special Senses System | Ear | 1 | | Eye | 1 | | Harderian gland | + | | 4 | | Lacrimal gland
Zymbal s gland | | | | | | | J. | | | | | | | | | | | | | | | | | | 1 | | CVIIIDAL S PIAIIO | | | | | | | +
X | | | | | | | | | | | | | | | | | | 2 2 | C-20 Pyridine, NTP TR 470 | IABLE C2
Individual Animal Tumor Pathology of M | ale | Wi | ista | r F | Rat | s in | th | e 2 | 2-Y | ear | · D | rin | kir | ng ' | Wa | itei | · St | ud | y c | f I | yr | idi | ne: | 2 | 00 ppr | n | |---|--------|--------|--------|--------|--------|------|--------|--------|--------|-----|--------|--------|--------|--------|--------|--------|--------|----|--------|-----|--------|--------|--------|--------|--------|---| | | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | | | Number of Days on Study | 5
4 | 0
4 | 4
7 | 7 | 7
9 | 8 | 8
6 | 8
7 | 9
4 | 0 | 0
1 | 1
0 | 1
5 | 2
0 | 4
8 | 6
1 | 7
5 | 8 | 0
8 | 2 | 2
8 | 3
0 | 3
1 | 3
2 | 4
5 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Carcass ID Number | 1 | 1
4 | 9 | 4
9 | 4
7 | 4 | 0
7 | 0 | 2 | 0 | 1
9 | 3 | 2
7 | 0
8 | 2
4 | 3
7 | 3 | 8 | 1
5 | 2 | 1 2 | 4
5 | 4
6 | 0
6 | 5
0 | | | Urinary System | Kidney Alveolar/bronchiolar carcinoma, metastatic, lung Renal tubule, adenoma | + | | | Urinary bladder | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | A | Α | + | + | + | + | | | Systemic Lesions | Multiple organs Leukemia mononuclear Mesothelioma malignant | + | | TABLE C2 Individual Animal Tumor Pathology of Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine: 200 ppm | Number of Days on Study | 6
5
0 | 6
6
0 | 6
6
4 | 6
7
4 | 6
7
5 | 6
8
2 | 6
8
3 | 6
8
8 | 7
0
0 | 7
0
4 | 7
0
4 | 7
0
5 | 7
1
3 | 7
2
1 | 7
2
2 | |--|-----------------------------| | Carcass ID Number | 1
0
1 | 1
4
1 | 1
4
8 | 1
1
8 | 1
4
3 | 1
2
0 | 1
0
9 | 1
4
2 | 1
1
1 | 1
2
2 | 1
3
5 | 1
3
6 | 1
2
8 | 1
2
1 | 1
0
2 | 1
0
4 | 1
0
5 | 1
1
0 | 1
1
6 | 1
1
7 | 1
2
5 | 1
2
6 | 1
3
4 | 1
3
9 | 1
4
0 | Total
Tissues/
Tumors | | Urinary System Kidney Alveolar/bronchiolar carcinoma, metastatic, lung Renal tubule, adenoma Urinary bladder | + | + | + | + | + | + | + | + | + | + | +
X
+ | + | +
A | +
X
+ | + | + | + | + | + | + | + | + | + | | + | 50
1
1
47 | | Systemic Lesions Multiple organs Leukemia mononuclear Mesothelioma malignant | + | + | + | +
X | + | + | + | + | + | + | + | + | +
X | + | +
X | + | + | + | + | + | + | + | + | + | + | 50
2
1 | C-22 Pyridine, NTP TR 470 | | 0 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |---|--------|--------|-----------|---|---|-----|---|---|---|---|---|----|---|---|--------|---|-----|--------|---|--------|---|---|---|---|--------| | Number of Days on Study | 9 | 4 | 5 | 6 | 6 | 6 | | 6 | | | 8 | | | | | | | 4 | | 5 | 5 | 5 | 5 | 6 | | | | 4 | | 0 | | 4 | | 7 | | | | | 3 | | | | | 9 | | | | 3 | 3 | | 2 | | | | 1 | | Carcass ID Number | 8 | 5 | 6 | 8 | 9 | 8 | 7 | 7 | 9 | 6 | 7 | 8 | 6 | 7 | 7 | 6 | 5 | 8 | 6 | 8 | 8 | 9 | 8 | 9 | 7 | | | 0 | 8 | 1 | 9 | 9 | 3 | 1 | 9 | 2 | 6 | 8 | 6 | 4 | 6 | 0 | 9 | 4 | 1 | 5 | 2 | 8 | 5 | 4 | 7 | 2 | | Alimentary System | Esophagus | + | | Intestine large, colon | + | A | A | + | A | + | + | + | + | A | + | + | + | | | | | A | + | Α | + | + | A | + | A | | Intestine large, rectum | + | A | . A | | A | + | + | + | + | + | + | + | + | | A | | | A | + | + | + | + | + | + | + | | Intestine large, cecum | + | A | | | A | + | + | + | + | Α | + | + | + | A | | | A | | + | | + | A | Α | + | A | | Intestine small, duodenum Intestine small, jejunum | + | A
A | | | + | + | + | + | + | + | + | + | + | | | | | A
A | + | +
A | + | + | + | + | +
A | | Intestine small, ileum | +
+ | Α Δ | . Α.
Δ | + | Δ | + | + | Δ | + | + | Δ | + | + | | A | + | | A | + | A. | + | Δ | + | | A | | Liver | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + | | + | + | + | + | + | + | + | | | Cholangiocarcinoma | Т | 1- | 1. | ' | ' | - 1 | ' | | ' | | | | | ' | | | ' | | | X | ' | X | ' | ' | • | | Histiocytic sarcoma | | | | | | | | | | | | | | | | | X | | | | | | | | | | Mesentery | | | | + | Pancreas | + | + | + | + | + | + | + | + | + | + | + | + | + | + | Α | + | + | + | + | + | + | + | + | + | + | | Acinus, adenoma | | | | | | | | | | | | | | | | | | X | X | | | | | | X | | Salivary glands | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | M | | Stomach, forestomach | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + | + . | A | + | + | + | + | + | + | + | | Squamous cell papilloma | | | | | | | | | | | | | | | X | | | | | | | | | | | | Stomach, glandular | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | | Tooth | Cardiovascular System | Blood vessel | | | | | | | | | | + | | | + | | | | | | | | | | | | | | Heart | + | | Endocardium, schwannoma benign | Endocrine System | Adrenal cortex | + | | Carcinoma | • | · | | Ċ | · | • | | • | · | • | • | | | | | • | • | | | • | • | | | · | | | Adrenal medulla | + | | Pheochromocytoma malignant | X | | | | | | Islets, pancreatic | + | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | | Carcinoma | Parathyroid gland | + | M | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | | Pituitary gland | + | + | + | + | + | + | + | | | + | + | + | | | | | + | + | + | + | + | + | + | + | + | | Pars distalis, adenoma | | | | | | | | | X | | | | | X | | X | | | | | | X | | | | | Pars intermedia, adenoma | Thyroid gland
C-cell, adenoma | + | | General Body System None | Genital System | Coagulating gland | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Epididymis | + | | Preputial gland | + | | Adenoma | Prostate | + | | Schwannoma malignant | , | | | | | | Seminal vesicle | + | | Testes Rilateral interestitial cell adenoma | + | + | + | + | + | + | + | + | + | + | + | + | + | | +
X | + | + | + | + | + | + | + | + | + | + | | Bilateral, interstitial cell, adenoma
Interstitial cell, adenoma | | | | | X | | | | | | X | 37 | v | | Λ | | | | | | | | | | | | | 5 | - 5 | - 5 | - 5 | 5 | 6 | 6 6 | 6 | 6 | 6 | 6 | 6 | 6 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | |---------------------------------------|--------|-----|-----|-----|---|-----|------------|-----|---|---|-----|-----|-----|---|---|--------|---|---|---|---|---|---|---|----------| | Number of David on Study | 2 | 2 | 2 | | | Number of Days on Study | 7
4 | | | | | | 1 2
6 7 | | | | | | 8 8 | | | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | | - | | | | 0 | 0 / | | | 0 | 0 | т. | | | | | | | | | _ | | | | | | | 1 | | | | | 1 1 | | | | | | | | 1 | 1 | | | | | | 1 | | Total | | Carcass ID Number | 0 | | | | | 5 | 7 9 | | 7 | | | 6 | | | | | | | | | | 7 | | Tissues/ | | | C | 3 | 4 | 2 | 7 | 9 | 7 6 | 5 | 5 | 0 | 1 | 2 | 3 7 | 8 | 4 | 1 | 3 | 5 | 6 | 0 | 1 | 3 | 8 | Tumors | | Alimentary System | Esophagus | + | + | + | + | + | + | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Intestine large, colon | + | - A | + | Α | + | | A + | + | + | | | | Α - | | | | | + | + | + | + | + | + | 33 | | Intestine large, rectum | + | - + | + | | + | | + + | | + | | | | A | | | | | + | + | + | + | + | + | 40 | | Intestine large, cecum | + | - A | | | + | A | | | + | | | | Α - | | | | | | + | + | + | + | + | 27 | | Intestine small, duodenum | + | + | + | + | + | | + + | | + | | | | + + | | | | | + | + | + | + | + | + | 42 | | Intestine small, jejunum | + | - A | . + | Α | + | + | A + | · A | + | | | | Α - | | | | | + | + | + | + | + | + | 35 | | Intestine small, ileum | + | - A | + | Α | + | A | | · A | + | | | | Α - | | | | | + | + | + | + | + | + | 31 | | Liver | + | + | + | + | + | + | + + | + | + | + | + | + . | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Cholangiocarcinoma | 2 | | Histiocytic sarcoma |
| 1 | | Mesentery | | | | | | | | | + | | | | | | | | | | | | | | | 2 | | Pancreas | + | + | + | + | + | + | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | 49 | | Acinus, adenoma | | | | | | | | | | X | | | | | | | X | | X | X | | | | 7 | | Salivary glands | + | + | + | + | + | + 3 | M + | + | + | + | + | + . | + + | + | + | + | + | + | + | + | + | + | + | 48 | | Stomach, forestomach | + | + | + | + | + | + | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | 49 | | Squamous cell papilloma | 1 | | Stomach, glandular | + | + | + | + | + | + | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | 48 | | Γooth | | | | | | | + | | | | | | | | | + | | | | + | | | | 3 | Cardiovascular System Blood vessel | 3 | | | | | | | | Τ. | | | | | | | | | | | | | | | | | | 50 | | Heart | 7 | - + | + | + | + | + | + + | + | + | + | + | + - | + + | + | + | +
X | + | + | + | + | + | + | + | | | Endocardium, schwannoma benign | | | | | | | | | | | | | | | | Λ | | | | | | | | 1 | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Carcinoma | | | | | | | | | | | | | | | | X | | | | | | | | 1 | | Adrenal medulla | + | + | + | + | + | + | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Pheochromocytoma malignant | 1 | | Islets, pancreatic | + | + | + | + | + | + | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | 49 | | Carcinoma | | | | | | | | | X | | | | | | | | | | | | | | | 1 | | Parathyroid gland | + | - + | + | + | + | + 3 | M + | + | | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | 47 | | Pituitary gland | + | - + | + | + | + | + | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Pars distalis, adenoma | | | | | X | | XX | | | | X | | | | | | | | | | X | | X | 13 | | Pars intermedia, adenoma | | | | | | | | | | | | | | | X | | | | | | | | | 1 | | Thyroid gland | + | - + | + | + | + | + | M + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | 49 | | C-cell, adenoma | X | | - | • | - | | | X | | | | | | | | • | - | - | - | - | X | | - | 3 | | General Body System | None | g + 1 g . | Genital System | | | | | , | | A 3.4 | | | | , . | M | | | | M | | | | | | | | A.E | | Coagulating gland | + | - + | + | + | + | | A M | | + | + | | M | T 1 | + | + | M | + | + | + | + | + | + | + | 45 | | Epididymis | + | - + | + | + | + | + | + + | + | + | + | + | + . | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Preputial gland | + | - + | + | + | + | + | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Adenoma | X | | 1 | | Prostate | + | - + | + | + | + | + | + + | + | + | + | | + . | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Schwannoma malignant | | | | | | | | | | | | X | | | | | | | | | | | | 1 | | Seminal vesicle | + | + | + | + | + | | A + | + | + | + | | | + + | | | + | + | + | + | + | + | + | + | 49 | | Γestes | + | + | + | | + | + | + + | + | + | + | + | + . | + + | + | + | + | + | + | + | + | + | | + | 50 | | Bilateral, interstitial cell, adenoma | | | | X | | | | | | | | | | | | X | | | | | X | X | | 5 | | Interstitial cell, adenoma | | X | | | | | X | | | | | | | | | | | | | | | | X | 7 | C-24 Pyridine, NTP TR 470 | Carcass ID Number 1 | 5 5 5 5 5
5 5 5 6 6 | |--|------------------------| | Carcass ID Number | 3 3 6 2 8 | | Mematopoietic System | | | Bone marrow Histiocytic sarcoma Lymph node Pancreatic, histocytic sarcoma Lymph node, mandibular Histiocytic sarcoma Lymph node, mandibular Histiocytic sarcoma Lymph node, mesenteric Hemangioma Histiocytic sarcoma Spleen H+++++++++++++++++++++++++++++++++++ | | | Bone marrow Histiocytic sarcoma Lymph node Pancreatic, histocytic sarcoma Lymph node, mandibular Histiocytic sarcoma Lymph node, mesenteric Hemangioma Histiocytic sarcoma Spleen H+++++++++++++++++++++++++++++++++++ | | | Lymph node Pancratic, histiocytic sarcoma Lymph node, mandibular Karcoma Histiocytic sarcoma Karcoma Mammary gland Histiocytic sarcoma Mammary gland Historytic sarcoma Histiocytic sarcoma Historytic | + + + + + | | Pancreatic, histiocytic sarcoma | . + + + | | Lymph node, mandibular Histocytic sarcoma Lymph node, mesenteric Hemangioma Histocytic sarcoma Spleen Histocytic sarcoma Spleen Histocytic sarcoma Histocytic sarcoma Spleen Nammary gland Histocytic sarcoma Histocytic sarcoma Histocytic sarcoma Karatocacanthoma Skin Histocytic sarcoma Histocyt | | | Lymph node, mesenteric | + + + + M | | Hemangioma Histocytic sarcoma Spleen | | | Histiocytic sarcoma Spleen | + + + + + | | Thymus | | | Integumentary System | + + + + + | | Mammary gland Fibroadenoma Skin Basal cell carcinoma Keratoacanthoma Subcutaneous tissue, fibroma, multiple Subcutaneous tissue, fibroma, multiple Subcutaneous tissue, fibroma | + + + + + | | Fibroadenoma Skin | | | Skin | + + + + + | | Basal cell carcinoma Keratoacanthoma Subcutaneous tissue, fibroma, multiple Subcutaneous tissue, fibroma, multiple Subcutaneous tissue, fibrosarcoma Musculoskeletal System Bone | | | Keratoacanthoma Subcutaneous tissue, fibroma Subcutaneous tissue, fibroma, multiple Subcutaneous tissue, fibrosarcoma Musculoskeletal System Bone | + + + + + | | Subcutaneous tissue, fibroma, multiple Subcutaneous tissue, fibrosarcoma Musculoskeletal System Bone | | | Subcutaneous tissue, fibrosarcoma Musculoskeletal System Bone | | | Musculoskeletal System Bone | | | Bone | | | Nervous System Sprain | | | Nervous System Brain | + + + + + | | Brain | | | Peripheral nerve | | | Spinal cord | + + + + + | | Respiratory System Lung | | | Lung | | | Carcinoma, metastatic, Zymbal s gland Fibrosarcoma, metastatic, skin Histiocytic sarcoma X Nose + + + + + + + + + + + + + + + + + + + | | | Fibrosarcoma, metastatic, skin Histiocytic sarcoma X Nose + + + + + + + + + + + + + + + + + + + | + + + + + | | Histiocytic sarcoma X Nose | | | Nose + + + + + + + + + + + + + + + + + + + | | | Chondroma | + + + + + | | Trachea + + + + + + + + + + + + + + + + + + + | | | | + + + + + | | Special Senses System | | | Ear + | | | Harderian gland | | | Zymbal s gland + Carcinoma X | | | | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | |--|----------| | Number of Days on Study | 7 | 8 | 8 | | 9 | | 1 | | | | 5 | | 7 | | 8 | 8 | 8 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | valued of Edgs on Stady | 4 | 0 | | 7 | | | 6 | | | | | | | | 3 | | | - | | 2 | 2 | 2 | 2 | 2 | 2 | | | | 2 | 1 | 1 | 1 | 1 | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Total | | Carcass ID Number | 0 | 9 | 9 | 5 | 5 | 5 | 7 | 9 | 8 | 7 | 9 | 9 | 6 | 6 | 8 | 6 | 7 | 5 | 5 | 5 | 5 | 6 | 6 | 7 | 9 | Tissues/ | | | 0 | 3 | 4 | 2 | 7 | 9 | 7 | 6 | 5 | 5 | 0 | 1 | 2 | 3 | 7 | 8 | 4 | 1 | 3 | 5 | 6 | 0 | 7 | 3 | 8 | Tumors | | Hematopoietic System | Bone marrow | + | 50 | | Histiocytic sarcoma | 1 | | Lymph node | + | + | | | | | + | | | | + | + | + | | + | + | + | | | + | + | | + | | + | 32 | | Pancreatic, histiocytic
sarcoma | 1 | | Lymph node, mandibular | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Histiocytic sarcoma | 1 | | Lymph node, mesenteric | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Hemangioma | | | | | | | | | | X | | | | | | | | | | | | | | | | 1 | | Histiocytic sarcoma | 1 | | Spleen | + | 49 | | Гhymus | + | 50 | | Integumentary System | Mammary gland | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | 46 | | Fibroadenoma | | | | | | | | | | X | | | | | | | | | | | | | | | | 1 | | Skin | + | 50 | | Basal cell carcinoma | X | | | | | | 1 | | Keratoacanthoma | | | | | | | | | | | | | | | | | X | | | | | | | | | 1 | | Subcutaneous tissue, fibroma | X | | | | | 1 | | Subcutaneous tissue, fibroma, multiple | X | | | | 1 | | Subcutaneous tissue, fibrosarcoma | | | | | | | | | | | | | | | | | | X | | | | | | | | 1 | | Musculoskeletal System | Bone | + | 50 | | Joint, sarcoma | X | | | | 1 | | Nervous System | Brain | + | 50 | | Peripheral nerve | | | + | | | | | | | + | | | | | | | | | | | | + | | | | 5 | | Spinal cord | | | + | | | | | | | + | | | | | | | | | | | | + | | | | 4 | | Respiratory System | Lung | + | 50 | | Carcinoma, metastatic, Zymbal s gland | | | | | | | | | | • | | | | • | X | | | | | | | • | | | • | 1 | | Fibrosarcoma, metastatic, skin | | | | | | | | | | | | | | | | | | X | | | | | | | | 1 | | Histiocytic sarcoma | 1 | | Nose | + | 50 | | Chondroma | | X | 1 | | Ггасћеа | + | | + | 50 | | Special Senses System | ar | 1 | | Harderian gland | | | | | | | | | | | | | | | + | | | | | | | | | | | 1 | | Zymbal s gland | | | | | | | | | | | | | | | + | | + | | | | | | | | | 3 | | Zymoai s gianu | C-26 Pyridine, NTP TR 470 | Individual Animal Tumor Patholo | ogy of Male | V | /is | tar | R | ats | in in | th | e 2 | 2-Y | ear | r D | rin | kiı | ng | Wa | atei | r S 1 | tud | ly c | of l | Pyr | idi | ne | : 4 | 100 | ppm | |---------------------------------|-------------|------------|-----|-----|---|-----|-------|----|-----|-----|-----|-----|-----|-----|----|----|------|--------------|-----|------|------|-----|-----|----|-----|-----|-----| | | (| ، (| 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | | | Number of Days on Study | Ģ |) 4 | 4 | 5 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 9 | 9 | 1 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | | | | 2 | 1 : | 3 | 0 | 3 | 4 | 6 | 7 | 8 | 3 | 6 | 9 | 3 | 9 | 1 | 1 | 2 | 9 | 5 | 0 | 2 | 3 | 3 | 6 | 2 | 8 | | | | 1 | | | Carcass ID Number | 8 | 3 : | 5 | 6 | 8 | 9 | 8 | 7 | 7 | 9 | 6 | 7 | 8 | 6 | 7 | 7 | 6 | 5 | 8 | 6 | 8 | 8 | 9 | 8 | 9 | 7 | | | | (|) 8 | 3 | 1 | 9 | 9 | 3 | 1 | 9 | 2 | 6 | 8 | 6 | 4 | 6 | 0 | 9 | 4 | 1 | 5 | 2 | 8 | 5 | 4 | 7 | 2 | | | Urinary System | Kidney | 4 | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | | | Histiocytic sarcoma | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | Renal tubule, adenoma | Renal tubule, carcinoma | Urinary bladder | | | F | + | + | + | + | + | + | + | Α | + | + | + | + | Α | + | + | + | + | + | + | A | + | + | A | | | Systemic Lesions | Multiple organs | + | - - | + | | | Histiocytic sarcoma | | | | | | | | | | | | | | | | | | X | | | | | | | | | | | Lymphoma malignant | | | | | | | X | TABLE C2 Individual Animal Tumor Pathology of Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine: 400 ppm | Number of Days on Study | | 5
7
4 | 5
8
0 | 5
8
2 | 5
8
7 | 5
9
5 | 6
0
6 | 6
1
6 | 6
2
7 | 6
2
9 | 6
3
1 | 6
5
8 | 6
6
0 | 6
7
4 | 6
8
2 | 6
8
3 | 6
8
5 | 6
8
7 | 7
0
9 | 7
2
2 | |---|---|-------------------| | Carcass ID Number | : | 2 | 1 | 1 9 | 1 5 | 1 5 | 1 5 | 1
7 | 1 | 1 8 | 1
7 | 1 | 1 9 | 1 | 1 | 1 8 | 1 | 1
7 | 1 5 | 1 5 | 1 5 | 1 5 | 1 | 1 | 1 7 | 1 | Total
Tissues/ | | | | 0 | 3 | 4 | 2 | 7 | 9 | 7 | 6 | 5 | 5 | 0 | 1 | 2 | 3 | 7 | 8 | 4 | 1 | 3 | 5 | 6 | 0 | 7 | 3 | 8 | Tumors | | Urinary System | Kidney | | + | 50 | | Histiocytic sarcoma Renal tubule, adenoma | | | | | | | X | | | | | | | | | X | | | | | | | | | | | $\frac{1}{2}$ | | Renal tubule, carcinoma | | | | | | | 21 | | | | | | | | | 71 | X | | | | | | | | | | 1 | | Urinary bladder | | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | 44 | | Systemic Lesions | Multiple organs Histiocytic sarcoma | | + | 50
1 | | Lymphoma malignant | 1 | C-28 Pyridine, NTP TR 470 TABLE C3 Statistical Analysis of Primary Neoplasms in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ррт | 100 ppm | 200 ppm | 400 ppm | |---|--------------------|-----------------|------------------------|------------------| | Adrenal Medulla: Benign Pheochromocytoma | | | | | | Overall rate ^a | 5/50 (10%) | 4/50 (8%) | 1/50 (2%) | 0/50 (0%) | | Adjusted rate ^b | 12.5% | 11.1% | 3.0% | 0.0% | | Terminal rate ^c | 5/22 (23%) | 2/14 (14%) | 0/11 (0%) | 0/7 (0%) | | First incidence (days) | 722 (T) | 486 | 721 | D 0.050M | | Poly-3 test ^d | P = 0.022N | P = 0.568N | P = 0.144N | P = 0.073N | | Adrenal Medulla: Benign or Malignant Pheochromocy | ztoma | | | | | Overall rate | 6/50 (12%) | 5/50 (10%) | 2/50 (4%) | 1/50 (2%) | | Adjusted rate | 14.8% | 13.8% | 5.8% | 3.5% | | Terminal rate | 5/22 (23%) | 2/14 (14%) | 0/11 (0%) | 0/7 (0%) | | First incidence (days) | 587 | 486 | 481 | 553 | | Poly-3 test | P = 0.055N | P = 0.582N | P = 0.189N | P = 0.133N | | Small Intestine (Duodenum, Jejunum): Carcinoma | | | | | | Overall rate | 1/50 (2%) | 3/50 (6%) | 0/50 (0%) | 0/50 (0%) | | Adjusted rate | 2.5% | 8.5% | 0.0% | 0.0% | | Terminal rate | 1/22 (5%) | 2/14 (14%) | 0/11 (0%) | 0/7 (0%) | | First incidence (days) | 722 (T) | 698 | | | | Poly-3 test | P = 0.221N | P = 0.259 | P = 0.534N | P = 0.569N | | Kidney (Renal Tubule): Adenoma (Single Sections) | | | | | | Overall rate | 2/50 (4%) | 5/50 (10%) | 1/50 (2%) | 2/50 (4%) | | Adjusted rate | 4.9% | 13.9% | 3.0% | 7.0% | | Terminal rate | 0/22 (0%) | 1/14 (7%) | 0/11 (0%) | 0/7 (0%) | | First incidence (days) | 576 | 610 | 721 | 606 | | Poly-3 test | P = 0.531N | P = 0.167 | P = 0.564N | P=0.562 | | Kidney (Renal Tubule): Adenoma or Carcinoma (Sing | le Sections) | | | | | Overall rate | 2/50 (4%) | 5/50 (10%) | 1/50 (2%) | 3/50 (6%) | | Adjusted rate | 4.9% | 13.9% | 3.0% | 10.4% | | Terminal rate | 0/22 (0%) | 1/14 (7%) | 0/11 (0%) | 0/7 (0%) | | First incidence (days) | 576
P. 0. 420 | 610 | 721 | 606 | | Poly-3 test | P = 0.420 | P = 0.167 | P = 0.564N | P=0.348 | | Kidney (Renal Tubule): Adenoma (Single and Step Sec | ctions) | | | | | Overall rate | 3/50 (6%) | 6/50 (12%) | 5/50 (10%) | 4/50 (8%) | | Adjusted rate | 7.4% | 16.5% | 14.4% | 13.6% | | Terminal rate | 1/22 (5%) | 1/14 (7%) | 2/11 (18%) | 0/7 (0%) | | First incidence (days) | 576
D 0 288 | 610 | 520
D 0 271 | 550
D 0 228 | | Poly-3 test | P = 0.288 | P=0.187 | P = 0.271 | P = 0.328 | | Kidney (Renal Tubule): Adenoma or
Carcinoma (Sing | | , | 61 5 0 (65 5 7) | 4450 (0.00) | | | 3/50 (6%) | 6/50 (12%) | 6/50 (12%) | 4/50 (8%) | | Adjusted rate | 7.4% | 16.5% | 17.2% | 13.6% | | Terminal rate | 1/22 (5%) | 1/14 (7%) | 2/11 (18%) | 0/7 (0%) | | First incidence (days) Poly-3 test | 576
P=0.258 | 610
P=0.187 | 520
P=0.167 | 550
P=0.328 | | • | - 0.200 | 2 0.107 | 2 0.207 | _ 0.0=0 | | Pancreas: Adenoma | | | | | | Overall rate | 14/46 (30%) | 11/50 (22%) | 12/50 (24%) | 7/49 (14%) | | Adjusted rate | 37.4% | 28.3% | 32.9% | 23.7% | | Terminal rate First incidence (days) | 13/22 (59%)
589 | 4/14 (29%) | 4/11 (36%)
486 | 3/7 (43%)
545 | | Poly-3 test | 989
P=0.176N | 372
P=0.267N | P=0.433N | 945
P=0.168N | | 201, 2 1001 | 2 0.17011 | 1 0.20/11 | 1 0.75514 | 2 0.10011 | TABLE C3 Statistical Analysis of Primary Neoplasms in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--|---------------------|-----------------|------------------|-----------------| | Pancreas: Carcinoma | | | | | | Overall rate | 4/46 (9%) | 1/50 (2%) | 3/50 (6%) | 0/49 (0%) | | Adjusted rate | 10.8% | 2.8% | 8.9% | 0.0% | | Terminal rate | 4/22 (18%) | 0/14 (0%) | 3/11 (27%) | 0/7 (0%) | | First incidence (days) | 722 (T) | 638 | 722 (T) | | | Poly-3 test | P = 0.107N | P = 0.190N | P = 0.550N | P = 0.105N | | Pancreas: Adenoma or Carcinoma | | | | | | Overall rate | 16/46 (35%) | 11/50 (22%) | 13/50 (26%) | 7/49 (14%) | | Adjusted rate | 42.7% | 28.3% | 35.6% | 23.7% | | Terminal rate | 15/22 (68%) | 4/14 (29%) | 5/11 (46%) | 3/7 (43%) | | First incidence (days) | 589 | 372 | 486 | 545 | | Poly-3 test | P = 0.098N | P = 0.131N | P = 0.343N | P = 0.077N | | Pancreatic Islets: Adenoma | | | | | | Overall rate | 8/47 (17%) | 0/50 (0%) | 3/49 (6%) | 0/49 (0%) | | Adjusted rate | 20.8% | 0.0% | 8.8% | 0.0% | | Terminal rate | 5/22 (23%) | 0/14 (0%) | 0/11 (0%) | 0/7 (0%) | | First incidence (days) | 624 | D 0.00514 | 510 | D 0.01.01 | | Poly-3 test | P = 0.005N | P = 0.005N | P = 0.134N | P = 0.014N | | Pancreatic Islets: Adenoma or Carcinoma | | | | | | Overall rate | 8/47 (17%) | 1/50 (2%) | 3/49 (6%) | 1/49 (2%) | | Adjusted rate | 20.8% | 2.8% | 8.8% | 3.6% | | Terminal rate | 5/22 (23%) | 0/14 (0%) | 0/11 (0%) | 0/7 (0%) | | First incidence (days) | 624
D. 0.025N | 638 | 510 | 631 | | Poly-3 test | P = 0.025N | P = 0.020N | P = 0.134N | P = 0.048N | | Pituitary Gland (Pars Distalis): Adenoma | | | | | | Overall rate | 16/49 (33%) | 17/49 (35%) | 12/50 (24%) | 13/50 (26%) | | Adjusted rate | 38.2% | 45.7% | 33.1% | 39.7% | | Terminal rate | 9/22 (41%) | 5/14 (36%) | 4/11 (36%) | 2/7 (29%) | | First incidence (days) | 468
D=0.480N | 506
P=0.324 | 494
D=0 404N | 483
P=0.545 | | Poly-3 test | P = 0.480N | P=0.324 | P = 0.404N | P=0.343 | | Prostate: Adenoma | | | | | | Overall rate | 3/50 (6%) | 1/49 (2%) | 1/50 (2%) | 0/50 (0%) | | Adjusted rate | 7.5% | 2.9% | 3.0% | 0.0% | | Terminal rate | 3/22 (14%) | 1/14 (7%) | 1/11 (9%) | 0/7 (0%) | | First incidence (days) | 722 (T)
P=0.097N | 722 (T) | 722 (T) | D=0.105N | | Poly-3 test | P=0.09/N | P = 0.363N | P = 0.368N | P = 0.195N | | Skin: Keratoacanthoma | | | | | | Overall rate | 7/50 (14%) | 3/50 (6%) | 2/50 (4%) | 1/50 (2%) | | Adjusted rate | 17.2% | 8.5% | 5.9% | 3.5% | | Terminal rate | 4/22 (18%) | 2/14 (14%) | 1/11 (9%) | 0/7 (0%) | | First incidence (days) | 598
D=0.035N | 639
P=0.216N | 705
D=0.128N | 687
P=0.000N | | Poly-3 test | P = 0.035N | P=0.216N | P = 0.128N | P = 0.090N | | Skin: Squamous Cell Papilloma or Keratoacanthoma | | | | | | Overall rate | 9/50 (18%) | 4/50 (8%) | 3/50 (6%) | 1/50 (2%) | | Adjusted rate | 21.8% | 11.3% | 8.7% | 3.5% | | Terminal rate | 5/22 (23%) | 3/14 (21%) | 1/11 (9%) | 0/7 (0%) | | First incidence (days) | 576 | 639 | 548
D. 0.10(N | 687 | | Poly-3 test | P = 0.014N | P = 0.177N | P = 0.106N | P = 0.038N | C-30 Pyridine, NTP TR 470 TABLE C3 Statistical Analysis of Primary Neoplasms in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 | 100 mm | 200 | 400 ppm | |--|------------------------|-----------------|-----------------|-----------------| | | 0 ррт | 100 ppm | 200 ppm | 400 ppm | | Skin: Squamous Cell Papilloma, Keratoacant | homa, or Squamous Cell | Carcinoma | | | | Overall rate | 9/50 (18%) | 5/50 (10%) | 3/50 (6%) | 1/50 (2%) | | Adjusted rate | 21.8% | 14.1% | 8.7% | 3.5% | | Terminal rate | 5/22 (23%) | 4/14 (29%) | 1/11 (9%) | 0/7 (0%) | | First incidence (days) | 576 | 639 | 548 | 687 | | Poly-3 test | P = 0.013N | P = 0.282N | P = 0.106N | P = 0.038N | | Skin: Squamous Cell Papilloma, Keratoacant | | | | | | Overall rate | 9/50 (18%) | 6/50 (12%) | 3/50 (6%) | 2/50 (4%) | | Adjusted rate | 21.8% | 17.0% | 8.7% | 7.1% | | Terminal rate | 5/22 (23%) | 5/14 (36%) | 1/11 (9%) | 1/7 (14%) | | First incidence (days) | 576
P=0.036N | 639
P=0.401N | 548
P=0.106N | 687
P=0.096N | | Poly-3 test | P=0.030N | P=0.401N | P=0.100N | P=0.090N | | Skin: Fibroma | | | | | | Overall rate | 5/50 (10%) | 6/50 (12%) | 2/50 (4%) | 2/50 (4%) | | Adjusted rate | 12.3% | 16.7% | 5.9% | 7.1% | | Terminal rate | 3/22 (14%) | 4/14 (29%) | 1/11 (9%) | 2/7 (29%) | | First incidence (days) | 572 | 552
D 0 412 | 683 | 722 (T) | | Poly-3 test | P = 0.198N | P = 0.412 | P = 0.294N | P = 0.388N | | Skin: Fibroma, Fibrosarcoma, or Sarcoma | | | | | | Overall rate | 6/50 (12%) | 6/50 (12%) | 3/50 (6%) | 3/50 (6%) | | Adjusted rate | 14.6% | 16.7% | 8.8% | 10.7% | | Terminal rate | 3/22 (14%) | 4/14 (29%) | 1/11 (9%) | 2/7 (29%) | | First incidence (days) | 572 | 552 | 674 | 709 | | Poly-3 test | P = 0.282N | P = 0.527 | P = 0.338N | P = 0.453N | | Testes: Adenoma | | | | | | Overall rate | 5/50 (10%) | 6/49 (12%) | 4/49 (8%) | 12/50 (24%) | | Adjusted rate | 12.3% | 16.9% | 11.9% | 36.6% | | Terminal rate | 3/22 (14%) | 3/14 (21%) | 1/11 (9%) | 3/7 (43%) | | First incidence (days) | 592 | 486 | 660 | 464 | | Poly-3 test | P = 0.008 | P = 0.404 | P = 0.618N | P=0.012 | | Thyroid Gland (C-cell): Adenoma | | | | | | Overall rate | 4/49 (8%) | 2/50 (4%) | 0/48 (0%) | 3/49 (6%) | | Adjusted rate | 10.2% | 5.6% | 0.0% | 10.6% | | Terminal rate | 3/22 (14%) | 1/14 (7%) | 0/11 (0%) | 1/7 (14%) | | First incidence (days) | 701 | 581 | | 574 | | Poly-3 test | P = 0.483N | P = 0.382N | P = 0.085N | P=0.634 | | Thyroid Gland (Follicular Cell): Adenoma | | | | | | Overall rate | 0/49 (0%) | 0/50 (0%) | 5/48 (10%) | 0/49 (0%) | | Adjusted rate | 0.0% | 0.0% | 14.9% | 0.0% | | Terminal rate | 0/22 (0%) | 0/14 (0%) | 1/11 (9%) | 0/7 (0%) | | First incidence (days) | | | 630 | | | Poly-3 test | P = 0.220 | | P = 0.019 | | | Thyroid Gland (Follicular Cell): Carcinoma | | | | | | Overall rate | 3/49 (6%) | 3/50 (6%) | 1/48 (2%) | 0/49 (0%) | | Adjusted rate | 7.6% | 8.4% | 3.0% | 0.0% | | Terminal rate | 1/22 (5%) | 1/14 (7%) | 0/11 (0%) | 0/7 (0%) | | First incidence (days) | 674 | 593 | 645 | | | Poly-3 test | P = 0.093N | P = 0.618 | P = 0.370N | P = 0.196N | | | | | | | TABLE C3 Statistical Analysis of Primary Neoplasms in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|-----------------|-------------|-------------|-------------| | Thyroid Gland (Follicular Cell): Adenor | na or Carcinoma | | | | | Overall rate | 3/49 (6%) | 3/50 (6%) | 6/48 (13%) | 0/49 (0%) | | Adjusted rate | 7.6% | 8.4% | 17.7% | 0.0% | | Γerminal rate | 1/22 (5%) | 1/14 (7%) | 1/11 (9%) | 0/7 (0%) | | First incidence (days) | 674 | 593 | 630 | (11) | | Poly-3 test | P = 0.355N | P = 0.618 | P = 0.168 | P = 0.196N | | Zymbal s Gland: Carcinoma | | | | | | Overall rate | 1/50 (2%) | 0/50 (0%) | 2/50 (4%) | 3/50 (6%) | | Adjusted rate | 2.5% | 0.0% | 5.8% | 10.3% | | erminal rate | 0/22 (0%) | 0/14 (0%) | 0/11 (0%) | 0/7 (0%) | | First incidence (days) | 660 | | 494 | 466 | | oly-3 test | P = 0.063 | P = 0.528N | P = 0.447 | P=0.200 | | All Organs: Hemangiosarcoma | | | | | | Overall rate | 0/50 (0%) | 3/50 (6%) | 1/50 (2%) | 0/50 (0%) | | Adjusted rate | 0.0% | 8.5% | 3.0% | 0.0% | | 'erminal rate | 0/22 (0%) | 2/14 (14%) | 0/11 (0%) | 0/7 (0%) | | first incidence (days) | | 660 | 705 | | | oly-3 test | P = 0.519N | P = 0.096 | P = 0.466 | | | All Organs: Hemangioma or Hemangios | sarcoma | | | | | Overall rate | 1/50 (2%) | 3/50 (6%) | 1/50 (2%) | 1/50 (2%) | | Adjusted rate | 2.5% | 8.5% | 3.0% | 3.5% | | erminal rate | 0/22 (0%) | 2/14 (14%) | 0/11 (0%) | 0/7 (0%) | | First incidence (days) | 705 | 660 | 705 | 631 | | Poly-3 test | P = 0.573N | P = 0.259 | P = 0.722 | P=0.678 | | All Organs: Benign Neoplasms | | | | | | Overall rate | 40/50 (80%) | 37/50 (74%) | 29/50 (58%) | 33/50 (66%) | | djusted rate | 86.7% | 84.4% | 72.4% | 81.9% | | erminal rate | 21/22 (96%) | 13/14 (93%) | 8/11 (73%) | 6/7 (86%) | | irst incidence (days) | 468 | 372 | 486 | 464 | | oly-3 test | P = 0.214N | P = 0.497N | P = 0.055N | P = 0.353N | | all Organs: Malignant Neoplasms | | | | | | Overall rate | 17/50 (34%) | 14/50 (28%) | 12/50 (24%) | 13/50 (26%) | | Adjusted rate | 40.2% | 37.5% | 33.2% | 40.5% | | erminal rate | 9/22 (41%) | 7/14 (50%) | 3/11 (27%) | 2/7 (29%) | | first incidence (days) | 587 | 552 | 481 | 466 | | oly-3 test | P = 0.513N | P = 0.496N | P = 0.341N | P=0.584 | | all Organs: Benign or Malignant Neopla | | | | | | Overall rate | 43/50 (86%) | 38/50 (76%) | 32/50 (64%) | 39/50 (78%) | | Adjusted rate | 91.2% | 86.1% | 78.4% | 90.9% | | erminal rate | 21/22 (96%) | 13/14 (93%) | 9/11 (82%) | 7/7 (100%) | | First incidence (days) | 468 | 372 | 481 | 464 | | Poly-3 test | P = 0.534N | P = 0.306N | P = 0.050N | P = 0.656N | (T)Terminal sacrifice ^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland,
kidney, pancreas, pancreatic islets, pituitary gland, prostate gland, testis, and thyroid gland; for other tissues, denominator is number of animals necropsied. b Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality ^c Observed incidence at terminal kill d Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in an exposure group is indicated by N. Not applicable; no neoplasms in animal group C-32 Pyridine, NTP TR 470 TABLE C4 Summary of the Incidence of Nonneoplastic Lesions in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine^a | | 0 ррш | 100 ppm | 200 ppm | 400 ppm | |--|----------|--------------------|----------------|-------------------| | D' | | | | | | Disposition Summary Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths
Moribund
Natural deaths | 2
26 | 9
27 | 9
30 | 10
33 | | Survivors Terminal sacrifice | | | | | | Animals examined microscopically | 22
50 | 14
50 | 11
50 | 7
50 | | | | | | | | Alimentary System | (50) | (50) | (50) | (50) | | Esophagus
Foreign body | (50) | (50) | (50)
1 (2%) | (50)
1 (2%) | | Inflammation, acute | | | 1 (270) | 1 (2%) | | Ulcer | | | | 1 (2%) | | Muscularis, degeneration | | | | 1 (2%) | | Intestine large, colon | (35) | (39) | (36) | (33) | | Mineralization | | | 1 (3%) | 1 (3%) | | Parasite metazoan | (12) | (10) | 1 (3%) | (40) | | ntestine large, rectum | (42) | (42) | (41) | (40) | | Hemorrhage
Minoralization | 1 (2%) | 1 (2%) | | | | Mineralization Parasite metazoan | | 1 (2%) | | 1 (3%) | | Ulcer | | | | 1 (3%) | | intestine large, cecum | (32) | (37) | (29) | (27) | | Congestion | (32) | (37) | 1 (3%) | (27) | | Edema | | 1 (3%) | 1 (370) | | | Hemorrhage | 1 (3%) | 2 (5%) | 1 (3%) | | | Inflammation, acute | (-1-) | 2 (5%) | 2 (7%) | 1 (4%) | | Inflammation, chronic | | ` ' | 1 (3%) | 1 (4%) | | Ulcer | | 2 (5%) | | 2 (7%) | | Artery, mineralization | | 1 (3%) | | | | Intestine small, jejunum | (37) | (36) | (34) | (35) | | Inflammation, chronic | | | | 1 (3%) | | Liver | (50) | (50) | (50) | (50) | | Angiectasis | 5 (10%) | 9 (18%) | 2 (4%) | 0 (40) | | Basophilic focus | | | | 2 (4%) | | Cholangiofibrosis
Clear cell focus | 15 (30%) | 7 (14%) | 8 (16%) | 1 (2%)
8 (16%) | | Congestion | 19 (38%) | 12 (24%) | 6 (12%) | 17 (34%) | | Degeneration, cystic | 7 (14%) | 13 (26%) | 9 (18%) | 5 (10%) | | Eosinophilic focus | 14 (28%) | 12 (24%) | 4 (8%) | 2 (4%) | | Fibrosis | 1 (2%) | 5 (10%) | 26 (52%) | 31 (62%) | | Hemorrhage | 1 (2%) | 1 (2%) | 5 (10%) | 3 (6%) | | Hepatodiaphragmatic nodule | 2 (4%) | 1 (2%) | 2 (4%) | (/ | | Hypertrophy | • • | | 1 (2%) | | | Infarct | | | 1 (2%) | | | Infiltration cellular, histiocyte | | 1 (2%) | 2 (4%) | | | Inflammation, acute | 1 (2%) | 1 (2%) | 3 (6%) | 1 (2%) | | Mineralization | | 1 (2%) | 3 (6%) | 3 (6%) | | Mixed cell focus | 1 (2%) | = /2 4 80 5 | 1 (2%) | 1 (2%) | | Necrosis | 6 (12%) | 7 (14%) | 6 (12%) | 2 (4%) | ^a Number of animals examined microscopically at the site and the number of animals with lesion TABLE C4 Summary of the Incidence of Nonneoplastic Lesions in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--------------------------------|-----------|-----------|----------------------|----------| | Alimentary System (continued) | | | | | | Liver (continued) | (50) | (50) | (50) | (50) | | Pigmentation | 6 (12%) | 15 (30%) | 34 (68%) | 42 (84%) | | Regeneration | 0 (12%) | 13 (30%) | 34 (08%) | 2 (4%) | | Tension lipidosis | | | 1 (2%) | 2 (470) | | Thrombosis | | | 1 (2%) | | | Vacuolization cytoplasmic | 18 (36%) | 18 (36%) | 12 (24%) | 15 (30%) | | Artery, mineralization | 10 (30%) | 1 (2%) | 12 (24%) | 13 (30%) | | Bile duct, cyst | | 1 (270) | 2 (4%) | 3 (6%) | | Bile duct, dilatation | | 2 (4%) | 2 (170) | 3 (0,0) | | Bile duct, hyperplasia | 31 (62%) | 33 (66%) | 30 (60%) | 27 (54%) | | Centrilobular, cytomegaly | 31 (0270) | 1 (2%) | 1 (2%) | 1 (2%) | | Centrilobular, degeneration | 1 (2%) | 15 (30%) | 25 (50%) | 33 (66%) | | Centrilobular, hypertrophy | 1 (2/0) | 1 (2%) | 23 (30%) | 33 (00%) | | Centrilobular, necrosis | 5 (10%) | 6 (12%) | 4 (8%) | 23 (46%) | | Hepatocyte, atrophy | 2 (4%) | 0 (1270) | 1 (2%) | 1 (2%) | | Oval cell, hyperplasia | 1 (2%) | | 1 (2/0) | 1 (2/0) | | Periportal, fibrosis | 1 (2%) | | 5 (10%) | 7 (14%) | | | 1 (20) | | 3 (10%) | 7 (14%) | | Sinusoid, congestion Mesentery | 1 (2%) | (1) | (2) | (2) | | • | (7) | (1) | (2) | (2) | | Mineralization | 1 (14%) | 1 (100%) | | 1 (500) | | Artery, inflammation | 5 (71%) | 1 (100%) | | 1 (50%) | | Artery, mineralization | 2 (29%) | | | 1 (50%) | | Fat, necrosis | 1 (14%) | | 0 (100%) | 1 (50%) | | Vein, thrombosis | (5) | (1) | 2 (100%) | | | Oral mucosa | (5) | (1) | (1) | | | Hyperplasia, squamous | 2 (52.5) | 1 (100%) | 1 (100%) | | | Inflammation, suppurative | 3 (60%) | | | | | ancreas | (46) | (50) | (50) | (49) | | Atrophy | 2 (4%) | 3 (6%) | 3 (6%) | 1 (2%) | | Basophilic focus | 1 (2%) | | | | | Edema | | | 1 (2%) | | | Fibrosis | | | 1 (2%) | | | Hemorrhage | | 1 (2%) | | | | Hyperplasia | 18 (39%) | 18 (36%) | 8 (16%) | 8 (16%) | | Necrosis | 1 (2%) | | | | | Acinus, hyperplasia | 1 (2%) | | 1 (2%) | | | Artery, inflammation | 3 (7%) | 5 (10%) | 3 (6%) | | | Artery, mineralization | 2 (4%) | 6 (12%) | 1 (2%) | | | Duct, hyperplasia | 1 (2%) | 1 (2%) | 1 (2%) | | | alivary glands | (48) | (49) | (47) | (48) | | Atrophy | | | | 1 (2%) | | Inflammation, acute | | 1 (2%) | | | | Artery, mineralization | 2 (4%) | 3 (6%) | | | | Duct, cyst | 1 (2%) | | 1 (2%) | | | tomach, forestomach | (49) | (50) | (50) | (49) | | Cyst | | | 1 (2%) | 2 (4%) | | Erosion | 1 (2%) | | . , | • • | | Fibrosis | | | | 1 (2%) | | Foreign body | | | 1 (2%) | 2 (4%) | | Hemorrhage | | | 1 (2%) | • • | | Hyperplasia, squamous | 2 (4%) | 13 (26%) | 11 (22%) | 10 (20%) | | Inflammation, acute | 1 (2%) | · · · · / | · · · · / | (/ | | Inflammation, chronic | - (-/-/ | | 1 (2%) | 1 (2%) | | Inflammation, chronic active | | | - (- /v) | 1 (2%) | | Mineralization | 3 (6%) | 5 (10%) | 3 (6%) | 1 (2%) | | Ulcer | 2 (4%) | 4 (8%) | 3 (6%) | 4 (8%) | | Ulcer, chronic | 1 (2%) | 4 (0%) | 3 (0%) | 7 (070) | | OICEI, CHIOIHC | 1 (2%) | | | | C-34 Pyridine, NTP TR 470 TABLE C4 Summary of the Incidence of Nonneoplastic Lesions in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | Alimentary System (continued) Stomach, glandular Erosion | | | | | |--|----------|----------|----------|----------| | Stomach, glandular
Erosion | | | | | | Erosion | (49) | (50) | (48) | (48) | | | 3 (6%) | 3 (6%) | 2 (4%) | 4 (8%) | | Fibrosis | - () | 1 (2%) | (1) | (-1-) | | Hemorrhage | | | 2 (4%) | | | Hyperplasia | 1 (2%) | | 1 (2%) | | | Inflammation, chronic active | | | 1 (2%) | | | Mineralization | 8 (16%) | 25 (50%) | 16 (33%) | 6 (13%) | | Ulcer | | | 1 (2%) | | | Artery, mineralization | | | 1 (2%) | 1 (2%) | | Serosa, edema | | 1 (2%) | | | | Γooth | (2) | (2) | (4) | (3) | | Peridontal tissue, inflammation, chronic | | | | 1 (33%) | | Peridontal tissue, inflammation, chronic | | | | | | active | 1 (50%) | | | 1 (33%) | | Peridontal tissue, inflammation, | | | | | | granulomatous | | 1 (50%) | , | , | | Peridontal tissue, inflammation, suppurative | 1 (50%) | 1 (50%) | 4 (100%) | 1 (33%) | | Cardiovascular System | | | | | | Blood vessel | (8) | (23) | (12) | (3) | | Mineralization | 6 (75%) | 6 (26%) | 1 (8%) | (-) | | Aorta, mineralization | 7 (88%) | 21 (91%) | 10 (83%) | 3 (100%) | | Pulmonary artery, degeneration | / | 1 (4%) | (/ | (/ | | Pulmonary artery, mineralization | 3 (38%) | 3 (13%) | 5 (42%) | 2 (67%) | | Heart | (50) | (50) | (50) | (50) | | Cardiomyopathy | 49 (98%) | 49 (98%) | 49 (98%) | 47 (94%) | | Inflammation, chronic | 1 (2%) | | | • • | | Mineralization | 6 (12%) | 17 (34%) | 12 (24%) | 3 (6%) | | Thrombosis | 1 (2%) | | 1 (2%) | | | Artery, inflammation | | 1 (2%) | | | | Artery, inflammation, acute | | | | 1 (2%) | | Artery, mineralization | 4 (8%) | 15 (30%) | 9 (18%) | 2 (4%) | | Artery, thrombosis | 1 (2%) | | | | | Atrium, dilatation | | | 1 (2%) | 1 (2%) | | Atrium, thrombosis | 4 (8%) | 2 (4%) | 5 (10%) | 3 (6%) | | Valve, inflammation | | | | 1 (2%) | | Endocrine System | | | | | | Adrenal cortex | (50) | (50) | (50) | (50) | | Accessory adrenal cortical nodule | 1 (2%) | (00) | (00) | (50) | | Angiectasis | 1 (2%) | | 1 (2%) | | | Congestion | (**) | 2 (4%) | (=) | 1 (2%) | | Degeneration | | 2 (4%) | | (/ | | Hemorrhage | 3 (6%) | Ç / | | | | Hyperplasia | 1 (2%) | 2 (4%) | 1 (2%) | 1 (2%) | | Hypertrophy | 2 (4%) | 2 (4%) | 2 (4%) | (/ | | Mineralization | · · · / | 1 (2%) | · · · / | | | Necrosis | | (/ | | 2 (4%) | | Thrombosis | | 1 (2%) | | 1 (2%) | | Vacuolization cytoplasmic | 17 (34%) | 13 (26%) | 12 (24%) | 7 (14%) | | Adrenal medulla | (50) | (50) | (50) | (50) | | Hyperplasia | 3 (6%) | 4 (8%) | 2 (4%) | 1 (2%) | TABLE C4 Summary of the Incidence of Nonneoplastic Lesions in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |--|---------------------------------------|---|-------------------|------------------| | Endocrine System (continued) | | | | | | Islets, pancreatic | (47) | (50) | (49) | (49) | | Hyperplasia | 1 (2%) | 1 (2%) | 2 (4%) | 1 (2%) | | Parathyroid gland |
(48) | (47) | (48) | (47) | | Hyperplasia | 16 (33%) | 32 (68%) | 29 (60%) | 12 (26%) | | Inflammation, chronic | 1 (2%) | | | | | Pituitary gland | (49) | (49) | (50) | (50) | | Angiectasis | | | | 1 (2%) | | Congestion | | | | 2 (4%) | | Cyst | 17 (35%) | 13 (27%) | 18 (36%) | 11 (22%) | | Hemorrhage | | | 1 (2%) | 1 (2%) | | Hyperplasia | 13 (27%) | 10 (20%) | 7 (14%) | 3 (6%) | | Hypertrophy | <u> </u> | .بد در و | | 1 (2%) | | Pars distalis, hyperplasia | 2 (4%) | 1 (2%) | (40) | (40) | | Γhyroid gland | (49) | (50) | (48) | (49) | | Inflammation, granulomatous | | 1 (2.0) | 1 (2%) | | | C-cell, hyperplasia | 2 (48) | 1 (2%) | 1 (2%) | 1 (0.01) | | Follicle, cyst | 2 (4%) | 4 (8%) | 5 (10%) | 1 (2%) | | Follicular cell, hyperplasia | | 2 (4%) | 1 (2%) | | | General Body System
None | | | | | | Genital System | | | | | | Coagulating gland | (48) | (42) | (45) | (45) | | Inflammation, acute | . , | 1 (2%) | 1 (2%) | , | | Inflammation, chronic | | . , | , , | 1 (2%) | | Inflammation, chronic active | 1 (2%) | | | ` , | | Artery, mineralization | , , | 1 (2%) | | | | Epididymis | (50) | (49) | (49) | (50) | | Arteriole, mineralization | 1 (2%) | | | | | Artery, inflammation | | | | 1 (2%) | | Epithelium, hyperplasia | | | | 1 (2%) | | Preputial gland | (50) | (48) | (50) | (50) | | Atrophy | | | 1 (2%) | | | Hyperplasia, squamous | | | | 1 (2%) | | Inflammation, chronic | 2 (4%) | 2 (4%) | 3 (6%) | 1 (2%) | | Inflammation, chronic active | 1 (2%) | | 1 (2%) | | | Inflammation, suppurative | 12 (24%) | 9 (19%) | 10 (20%) | 3 (6%) | | Duct, cyst | 49 (98%) | 43 (90%) | 46 (92%) | 48 (96%) | | Prostate | (50) | (49) | (50) | (50) | | Fibrosis | | | 2 (4%) | 1 (2%) | | Hemorrhage | 1 (2%) | | 1 (2%) | . | | | 4 (8%) | 4 (8%) | 1 (2%) | 2 (4%) | | Hyperplasia | | | | | | Hyperplasia
Inflammation, acute | 4 (8%) | 1 (2%) | | | | Hyperplasia
Inflammation, acute
Inflammation, chronic | 4 (8%)
3 (6%) | 4 (8%) | 5 (10%) | 2 (4%) | | Hyperplasia Inflammation, acute Inflammation, chronic Inflammation, chronic active | 4 (8%)
3 (6%)
5 (10%) | | 5 (10%)
2 (4%) | 2 (4%)
2 (4%) | | Hyperplasia Inflammation, acute Inflammation, chronic Inflammation, chronic active Artery, mineralization | 4 (8%)
3 (6%)
5 (10%)
1 (2%) | 4 (8%)
5 (10%) | 2 (4%) | 2 (4%) | | Hyperplasia Inflammation, acute Inflammation, chronic Inflammation, chronic active Artery, mineralization Seminal vesicle | 4 (8%)
3 (6%)
5 (10%) | 4 (8%)
5 (10%)
(49) | | ` / | | Hyperplasia Inflammation, acute Inflammation, chronic Inflammation, chronic active Artery, mineralization Seminal vesicle Cyst | 4 (8%)
3 (6%)
5 (10%)
1 (2%) | 4 (8%)
5 (10%)
(49)
1 (2%) | 2 (4%) | 2 (4%) | | Hyperplasia Inflammation, acute Inflammation, chronic Inflammation, chronic active Artery, mineralization Seminal vesicle Cyst Hyperplasia | 4 (8%)
3 (6%)
5 (10%)
1 (2%) | 4 (8%)
5 (10%)
(49)
1 (2%)
1 (2%) | 2 (4%) | 2 (4%) | | Hyperplasia Inflammation, acute Inflammation, chronic Inflammation, chronic active Artery, mineralization Seminal vesicle Cyst Hyperplasia Inflammation, chronic | 4 (8%)
3 (6%)
5 (10%)
1 (2%) | 4 (8%)
5 (10%)
(49)
1 (2%) | 2 (4%) | 2 (4%) | | Hyperplasia Inflammation, acute Inflammation, chronic Inflammation, chronic active Artery, mineralization Seminal vesicle Cyst Hyperplasia | 4 (8%)
3 (6%)
5 (10%)
1 (2%) | 4 (8%)
5 (10%)
(49)
1 (2%)
1 (2%) | 2 (4%) | 2 (4%) | C-36 Pyridine, NTP TR 470 TABLE C4 Summary of the Incidence of Nonneoplastic Lesions in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|-------------------|-----------------|------------------|-------------------| | Genital System (continued) | | | | | | Testes | (50) | (49) | (49) | (50) | | Atrophy | 20 (40%) | 20 (41%) | 18 (37%) | 9 (18%) | | Congestion | . (, | | - () | 1 (2%) | | Inflammation, granulomatous | | | 1 (2%) | 1 (2%) | | Mineralization | 6 (12%) | 2 (4%) | 9 (18%) | 4 (8%) | | Artery, inflammation | 24 (48%) | 24 (49%) | 14 (29%) | 11 (22%) | | Artery, mineralization | | 3 (6%) | 2 (4%) | | | Interstitial cell, hyperplasia | 3 (6%) | 4 (8%) | 7 (14%) | 7 (14%) | | Iematopoietic System | | | | | | one marrow | (50) | (50) | (50) | (50) | | Atrophy | | 1 (2%) | | 1 (2%) | | Erythroid cell, hyperplasia | | 1 (2%) | | | | Myeloid cell, hyperplasia | 2 (4%) | 1 (2%) | 1 (2%) | | | Lymph node | (31) | (44) | (38) | (32) | | Ectasia | 2 (6%) | 1 (2%) | | | | Hemorrhage | 2 (6%) | 1 (2%) | | | | Hyperplasia, plasma cell
Iliac, ectasia | 2 (6%)
5 (16%) | 3 (7%) | 3 (8%) | 1 (2%) | | Iliac, hemorrhage | 1 (3%) | 2 (5%) | 3 (8%)
2 (5%) | 1 (3%)
3 (9%) | | Iliac, hyperplasia, lymphoid | 1 (3/0) | 1 (2%) | 2 (5%) | 1 (3%) | | Iliac, hyperplasia, plasma cell | | 4 (9%) | 2 (5%) | 2 (6%) | | Inguinal, atrophy | 1 (3%) | (* (*) | (= /*/ | (~,~) | | Inguinal, ectasia | 1 (3%) | | 1 (3%) | | | Inguinal, hemorrhage | • | 1 (2%) | 1 (3%) | 1 (3%) | | Inguinal, hyperplasia, lymphoid | | | 1 (3%) | | | Inguinal, infiltration cellular, histiocyte | | | 1 (3%) | | | Mediastinal, atrophy | .بـــر | 1 (2%) | . | , | | Mediastinal, congestion | 1 (3%) | 3 (7%) | 2 (5%) | 1 (3%) | | Mediastinal, ectasia | 6 (19%) | 12 (27%) | 9 (24%) | 6 (19%) | | Mediastinal, hemorrhage
Mediastinal, hyperplasia, lymphoid | 8 (26%) | 15 (34%) | 10 (26%) | 9 (28%)
1 (3%) | | Mediastinal, hyperplasia, lymphoid
Mediastinal, hyperplasia, plasma cell | | 2 (5%) | 1 (3%) | 1 (3%) 1 (3%) | | Pancreatic, ectasia | 2 (6%) | 5 (11%) | 1 (3%) | 1 (3%) | | Pancreatic, ectasia Pancreatic, hemorrhage | 4 (13%) | 5 (11%) | 4 (11%) | 7 (22%) | | Pancreatic, hyperplasia, lymphoid | 2 (6%) | 1 (2%) | (11/0) | 4 (13%) | | Pancreatic, hyperplasia, plasma cell | 1 (3%) | · · · · / | 2 (5%) | 2 (6%) | | Pancreatic, pigmentation | . , | | 1 (3%) | , | | Renal, ectasia | 15 (48%) | 20 (45%) | 16 (42%) | 10 (31%) | | Renal, fibrosis | | 2 (5%) | | | | Renal, hemorrhage | 10 (32%) | 17 (39%) | 19 (50%) | 12 (38%) | | Renal, hyperplasia, lymphoid | | 1 (20) | 1 (3%) | 2 (6%) | | Renal, hyperplasia, plasma cell | | 1 (2%) | 6 (16%) | 2 (6%) | | Renal, pigmentation | (49) | (40) | 3 (8%) | (49) | | ymph node, mandibular
Congestion | (48) | (49)
5 (10%) | (47)
1 (2%) | (48)
4 (8%) | | Ectasia | 15 (31%) | 8 (16%) | 10 (21%) | 10 (21%) | | Hemorrhage | 3 (6%) | 1 (2%) | 3 (6%) | 10 (21%) 1 (2%) | | Hyperplasia, lymphoid | 2 (070) | 1 (2%) | 2 (070) | 1 (2%) | | Hyperplasia, plasma cell | 4 (8%) | 8 (16%) | 6 (13%) | 4 (8%) | | Lymph node, mesenteric | (46) | (50) | (50) | (50) | | Atrophy | | 6 (12%) | 1 (2%) | 2 (4%) | | Ectasia | 5 (11%) | 6 (12%) | 6 (12%) | 5 (10%) | | Hemorrhage | 12 (26%) | 14 (28%) | 12 (24%) | 12 (24%) | | Hyperplasia, lymphoid | 1 (2%) | 1 (2%) | 2 (4%) | 5 (10%) | | Hyperplasia, plasma cell | | 2 (4%) | | 1 (2%) | TABLE C4 Summary of the Incidence of Nonneoplastic Lesions in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|-------------------|----------|----------|----------| | Hematopoietic System (continued) | | | | | | Spleen | (49) | (50) | (49) | (49) | | Angiectasis | 1 (2%) | (30) | (49) | (4)) | | Atrophy | 2 (4%) | 1 (2%) | 1 (2%) | 1 (2%) | | Congestion | 1 (2%) | 1 (270) | 1 (2%) | 1 (270) | | Fibrosis | 1 (2%) | 1 (2%) | 1 (2%) | 1 (2%) | | | 1 (201) | * / | 1 (2%) | , , | | Hematopoietic cell proliferation | 1 (2%) | 2 (4%) | | 2 (4%) | | Hyperplasia, lymphoid | 1 (2%) | | | | | Necrosis | 1 (2%) | 1 (2.51) | | | | Artery, mineralization | 1 (2%) | 1 (2%) | (40) | (50) | | hymus | (48) | (49) | (49) | (50) | | Atrophy | 15 (31%) | 29 (59%) | 28 (57%) | 24 (48%) | | Cyst | 5 (10%) | 6 (12%) | 4 (8%) | 6 (12%) | | Ectopic parathyroid gland | 3 (6%) | 5 (10%) | 1 (2%) | 1 (2%) | | Ectopic thyroid | 1 (2%) | | | | | Fibrosis | | | 1 (2%) | | | Hemorrhage | 8 (17%) | 6 (12%) | 8 (16%) | 14 (28%) | | Hyperplasia, lymphoid | 1 (2%) | | | | | Hyperplasia, squamous | | | | 2 (4%) | | Artery, mineralization | | 1 (2%) | | | | Epithelial cell, hyperplasia | | | 1 (2%) | | | Integumentary System | (49) | (46) | (44) | (46) | | Mammary gland | (48) | (46) | (44) | (46) | | Cyst | 4 (0.01) | 2 (4%) | 2 (5%) | 1 (2%) | | Hyperplasia | 4 (8%) | 5 (110) | 2 (5%) | 4 (9%) | | Artery, mineralization | 3 (6%) | 5 (11%) | | | | Duct, dilatation | 6 (13%) | 7 (15%) | 5 (11%) | 4 (9%) | | Skin | (50) | (50) | (50) | (50) | | Cyst | 1 (2%) | 2 (4%) | 1 (2%) | | | Hyperkeratosis | 1 (2%) | | | | | Hyperplasia, squamous | | 2 (4%) | 1 (2%) | 2 (4%) | | Inflammation, chronic | 1 (2%) | 2 (4%) | | 1 (2%) | | Inflammation, suppurative | | 1 (2%) | | 1 (2%) | | Ulcer | 1 (2%) | 1 (2%) | | 2 (4%) | | Hair follicle, cyst | 1 (2%) | | | 1 (2%) | | Musculoskeletal System | | | | | | Bone | (50) | (50) | (50) | (50) | | Fibrous osteodystrophy | 10 (20%) | 21 (42%) | 16 (32%) | 6 (12%) | | Inflammation, chronic active | · · · · / | 1 (2%) | ζ, | - () | | Osteosclerosis | | Ç / | 1 (2%) | | | Cartilage, degeneration | | | (= /*/ | 1 (2%) | | Cranium, fibrous osteodystrophy | 10 (20%) | 15 (30%) | 13 (26%) | 2 (4%) | | Joint, arthrosis | (((((((((| (50,0) | (=0,0) | 1 (2%) | | Joint, fibrosis | | | | 1 (2%) | | Joint, inflammation, chronic | | | 1 (2%) | 1 (2%) | | Mandible, hyperplasia | | | 1 (270) | 1 (2%) | | Metacarpal, inflammation, chronic active | | | | 1 (2%) | | Metatarsal, hyperplasia | | | 1 (2%) | 1 (2/0) | | Metatarsal, inflammation, chronic active | | | 1 (270) | 1 (2%) | | Periosteum, hyperplasia | | | | | | | | 1 (29/) | | 1 (2%) | | Rib, callus | | 1 (2%) | 2 (40) | | | Vertebra, fibrous osteodystrophy
Vertebra, inflammation, chronic | | 4 (8%) | 2 (4%) | 1 (2%) | | | | | | | C-38 Pyridine, NTP TR
470 TABLE C4 Summary of the Incidence of Nonneoplastic Lesions in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 100 ppm | 200 ppm | 400 ppm | |---|--------------------------|----------|-----------|-----------| | Nervous System | | | | | | Brain | (50) | (49) | (50) | (50) | | Degeneration | , | 1 (2%) | , | . , | | Hemorrhage | 1 (2%) | 1 (2%) | | | | Hydrocephalus | 1 (2%) | 1 (2%) | | | | Peripheral nerve | (1) | (4) | (2) | (5) | | Degeneration | 1 (100%) | , | . , | . , | | Mineralization | (1111) | 2 (50%) | 2 (100%) | | | Radicular neuropathy | | 4 (100%) | 1 (50%) | 2 (40%) | | Respiratory System | | | | | | Lung | (50) | (50) | (50) | (50) | | Congestion | (30) | 4 (8%) | 2 (4%) | 4 (8%) | | Edema | | 2 (4%) | 2 (4/0) | T (0 /0) | | Hemorrhage | 2 (4%) | 1 (2%) | 10 (20%) | 7 (14%) | | Inflammation, acute | 1 (2%) | 3 (6%) | 10 (2070) | , (17/0) | | Inflammation, chronic | 1 (2%) | 3 (070) | 1 (2%) | | | Inflammation, granulomatous | 4 (8%) | 1 (2%) | 5 (10%) | 2 (4%) | | Mineralization | T (0/0) | 1 (2%) | 3 (1070) | 2 (7/0) | | Necrosis | 1 (2%) | 1 (270) | 1 (2%) | | | Alveolar epithelium, hyperplasia | 1 (2%) | | 2 (4%) | | | Alveolar epithelium, hyperplasia | 1 (270) | 1 (2%) | 2 (470) | | | Alveolus, infiltration cellular, histiocyte | 8 (16%) | 5 (10%) | 4 (8%) | | | Alveolus, mineralization | 2 (4%) | 3 (10%) | 4 (070) | | | Artery, mineralization | 2 (4%) | 3 (6%) | | | | Bronchus, inflammation, acute | 1 (2%) | 3 (0%) | | | | Bronchus, mineralization | 1 (2%) | | | | | Interstitium, fibrosis | 4 (8%) | 6 (12%) | 4 (8%) | 1 (2%) | | Interstitium, inflammation, chronic | 4 (8%) | 2 (4%) | 4 (8%) | 1 (270) | | Nose | (50) | (50) | (50) | (50) | | Cyst | 1 (2%) | (50) | (30) | (30) | | Erosion | 1 (2%) | | | | | Foreign body | 11 (22%) | 4 (8%) | 6 (12%) | 1 (2%) | | Hemorrhage | 3 (6%) | . (070) | 1 (2%) | 1 (270) | | Hyperplasia, squamous | 1 (2%) | | 1 (270) | | | Inflammation, acute | 7 (14%) | 7 (14%) | 4 (8%) | 2 (4%) | | Inflammation, chronic | 7 (14%) | 1 (2%) | 2 (4%) | 1 (2%) | | Inflammation, chronic active | 4 (8%) | 6 (12%) | 5 (10%) | 6 (12%) | | Metaplasia, squamous | Ŧ (0 <i>/</i> 0 <i>)</i> | 1 (2%) | 1 (2%) | 2 (4%) | | Thrombosis | | 2 (270) | 1 (2%) | - (170) | | Ulcer | | | 2 (4%) | | | Artery, thrombosis | | | - (./// | 1 (2%) | | Olfactory epithelium, hyperplasia | 1 (2%) | | | 1 (270) | | Olfactory epithelium, metaplasia | - (= /v) | | 1 (2%) | | | Respiratory epithelium, hyperplasia | 20 (40%) | 9 (18%) | 12 (24%) | 15 (30%) | | Respiratory epithelium, metaplasia | -0 (1070) | 1 (2%) | 12 (2170) | 20 (0070) | | Respiratory epithelium, metaplasia, squamou | S | 1 (270) | 1 (2%) | | | Frachea | (50) | (50) | (50) | (50) | | Cyst | (30) | 1 (2%) | (50) | (30) | | Foreign body | | 2 (270) | 1 (2%) | | | Inflammation, acute | | 1 (2%) | 1 (270) | | | , | | - (-/0) | | 1 (2%) | TABLE C4 Summary of the Incidence of Nonneoplastic Lesions in Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 г | opm | 10 | 0 ppm | 200 | ppm | 40 | 0 ppm | |---|---------------|--------|------|--------|---------------|--------|---------------|--------| | Special Senses System | | | | | | | | | | Eye | | | | | (1) | | | | | Cornea, ulcer | | | | | 1 | (100%) | | | | Harderian gland | (1) | | | | (4) | | (1) | | | Inflammation, chronic | | | | | | | 1 | (100%) | | Lacrimal gland | | | | | (1) | | | | | Atrophy | | | | | 1 | (100%) | | | | H | | | | | | | | | | Urinary System | (= 0) | | (#O) | | (= 0) | | (= 0) | | | Kidney | (50) | | (50) | | (50) | | (50) | | | Congestion | | (8%) | | | | | | (4%) | | Cyst | | (42%) | | (62%) | | (38%) | | (32%) | | Hydronephrosis | 19 | (38%) | | (40%) | 30 | (60%) | | (30%) | | Inflammation, acute | | | | (4%) | | | | (2%) | | Mineralization | | (16%) | | (34%) | | (16%) | | (10%) | | Nephropathy | | (100%) | | (100%) | | (100%) | 50 | (100%) | | Artery, mineralization | 5 | (10%) | 8 | (16%) | | (6%) | | | | Renal tubule, accumulation, hyaline droplet | | | | | | (2%) | | (2%) | | Renal tubule, hyperplasia | 6 | (12%) | 17 | (34%) | 8 | (16%) | 5 | (10%) | | Vein, thrombosis | | | | (4%) | 1 | (2%) | 3 | (6%) | | Urinary bladder | (47) | | (49) | | (47) | | (44) | | | Dilatation | | | | | 1 | (2%) | | | | Edema | | | 1 | (2%) | | | | | | Hemorrhage | | | | | 1 | (2%) | | | | Inflammation, acute | | | 1 | (2%) | | | | | | Inflammation, chronic | 1 | (2%) | | | | | | | | Inflammation, chronic active | | | | | 1 | (2%) | | | | Ulcer | | | 1 | (2%) | | | | | | Artery, mineralization | | | | | 1 | (2%) | | | | Transitional epithelium, hyperplasia | 1 | (2%) | 3 | (6%) | 1 | (2%) | | | C-40 Pyridine, NTP TR 470 ## APPENDIX D SUMMARY OF LESIONS IN MALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF PYRIDINE | TABLE D1 | Summary of the Incidence of Neoplasms in Male Mice | | |----------|---|--------------| | | in the 2-Year Drinking Water Study of Pyridine | D-2 | | TABLE D2 | Individual Animal Tumor Pathology of Male Mice | | | | in the 2-Year Drinking Water Study of Pyridine | D-6 | | TABLE D3 | Statistical Analysis of Primary Neoplasms in Male Mice | | | | in the 2-Year Drinking Water Study of Pyridine | D-28 | | TABLE D4 | Historical Incidence of Liver Neoplasms in Untreated Male B6C3F ₁ Mice | D-3 1 | | TABLE D5 | Summary of the Incidence of Nonneoplastic Lesions in Male Mice | | | | in the 2-Year Drinking Water Study of Pyridine | D-32 | D-2 Pyridine, NTP TR 470 TABLE D1 Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Drinking Water Study of Pyridine^a | | 0 ppm | 250 ppm | 500 ppm | 1,000 ppm | |---|----------------|----------|----------|-----------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | 30 | 30 | 30 | 30 | | Accidental deaths | 2 | 1 | 1 | 3 | | Moribund | $\frac{2}{2}$ | 3 | 3 | 1 | | Natural deaths | 11 | 18 | 11 | 11 | | Survivors | 11 | 10 | 11 | 11 | | Other | | | 1 | | | Terminal sacrifice | 35 | 28 | 34 | 35 | | Terminal sacrifice | 33 | 20 | 34 | 33 | | Animals examined microscopically | 50 | 50 | 49 | 50 | | Alimentary System | | | | | | ntestine small, duodenum | (43) | (44) | (43) | (44) | | ntestine small, jejunum | (40) | (46) | (42) | (44) | | Carcinoma | * * | • • | | 1 (2%) | | Histiocytic sarcoma | | | 1 (2%) | ` ' | | Liver | (50) | (50) | (49) | (50) | | Hemangioma | | 1 (2%) | | | | Hemangiosarcoma | 1 (2%) | | | | | Hemangiosarcoma, multiple | | 2 (4%) | | | | Hepatoblastoma | 1 (2%) | 14 (28%) | 16 (33%) | 13 (26%) | | Hepatoblastoma, multiple | 1 (2%) | 4 (8%) | 6 (12%) | 2 (4%) | | Hepatocellular carcinoma | 12 (24%) | 16 (32%) | 15 (31%) | 22 (44%) | | Hepatocellular carcinoma, multiple | 3 (6%) | 19 (38%) | 26 (53%) | 18 (36%) | | Hepatocellular adenoma | 13 (26%) | 11 (22%) | 5 (10%) | 11 (22%) | | Hepatocellular adenoma, multiple | 16 (32%) | 29 (58%) | 29 (59%) | 28 (56%) | | Hepatocholangiocarcinoma, multiple | | 1 (2%) | | | | Histiocytic sarcoma | 1 (2%) | 2 (4%) | | | | Mast cell tumor malignant, metastatic, skin | | | 1 (2%) | | | Sarcoma, metastatic, mesentery | | 1 (2%) | | | | Squamous cell carcinoma, metastatic, | | | | | | uncertain primary site | | | | 1 (2%) | | Mesentery | (2) | (7) | (6) | (4) | | Hepatocholangiocarcinoma, metastatic, liver | | 1 (14%) | | | | Histiocytic sarcoma | | 1 (14%) | 4 22-25 | | | Sarcoma | | 1 (14%) | 1 (17%) | | | Squamous cell carcinoma, metastatic, | | | | 1 (25%) | | uncertain primary site | (40) | (50) | (49) | 1 (25%) | | Pancreas | (49) | (50) | (48) | (50) | | Squamous cell carcinoma, metastatic, | | | | 1 (2.6) | | uncertain primary site | (40) | (50) | (49) | 1 (2%) | | Stomach, forestomach | (49) | (50) | (48) | (49) | | Squamous cell papilloma | 1 (2%)
(49) | (50) | (49) | (47) | | Stomach, glandular | (49) | (30) | (48) | (47) | | Squamous cell carcinoma, metastatic, uncertain primary site | | | | 1 (20) | | uncertain primary site | | | | 1 (2%) | | Cardiovascular System | | | | | | Heart | (50) | (50) | (49) | (50) | | | V/ | \ / | \ · / | \ / | TABLE D1 Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 250 ppm | 500 ppm | 1,000 ppm | |---|---------|--------------------------------------|----------------|-----------| | Endocrine System | | | | | | Adrenal cortex | (49) | (49) | (49) | (49) | | Adenoma | 1 (2%) | (42) | (42) | 1 (2%) | | Sarcoma, metastatic, mesentery | 1 (270) | 1 (2%) | | 1 (270) | | Capsule, adenoma | 2 (4%) | 1 (270) | | | | Capsule, sarcoma, metastatic, mesentery | 2 (470) | | 1 (2%) | | | Capsule, squamous cell carcinoma, metastatic, | | | 1 (270) | | | uncertain primary site | | | | 1 (2%) | | Adrenal medulla | (49) | (49) | (40) | | | | (48) | (48) | (49) | (49) | | Pheochromocytoma benign | | 1 (2%) | | | | Sarcoma, metastatic, mesentery | (40) | 1 (2%) | (40) | (50) | | slets, pancreatic | (49) | (50) | (48) | (50) | | Adenoma | | 1 (2%) | 2 (4%) | 1 (2%) | | Γhyroid gland | (49) | (50) | (49) | (50) | | Follicular cell, adenoma | 2 (4%) | 2 (4%) | 1 (2%) | 2 (4%) | | Follicular cell, adenoma, multiple | | | 1 (2%) | | | General Body System Peritoneum Squamous cell carcinoma, metastatic, | | | | (1) | | uncertain primary site | | | | 1 (100%) | | Γissue NOS | | | (1) | | | Thoracic, hemangiosarcoma | | | 1 (100%) | | | Sarcoma, metastatic, mesentery
Epididymis
Sarcoma
Sarcoma, metastatic, mesentery | (50) | 1 (100%)
(50)
1 (2%)
1 (2%) | (49)
1 (2%) | (50) | | Squamous cell carcinoma, metastatic, | | | | | | uncertain primary site | | | | 1 (2%) | | Preputial gland | (50) | (50) | (49) | (49) | | Sarcoma,
metastatic, mesentery | | | 1 (2%) | | | Prostate | (50) | (48) | (48) | (49) | | Sarcoma, metastatic, mesentery | * * | • • | 1 (2%) | , , | | Seminal vesicle | (49) | (49) | (49) | (50) | | Sarcoma, metastatic, mesentery | ` / | 1 (2%) | 1 (2%) | . , | | Squamous cell carcinoma, metastatic, | | ζ= // | (= /- / | | | uncertain primary site | | | | 1 (2%) | | Testes | (50) | (50) | (49) | (50) | | Sarcoma, metastatic, mesentery | (50) | 1 (2%) | 1 (2%) | (50) | | Squamous cell carcinoma, metastatic, | | 1 (270) | 1 (270) | | | uncertain primary site | | | | 1 (2%) | | | (49) | (50)
1 (2%) | (49) | 1 (2%) | | | | 1 (2%) | | | | | | | | | | Hemangiosarcoma, metastatic, liver | 1 (2%) | | | | | | 1 (2%) | 1 (2%) | 1 (2%) | | D-4 Pyridine, NTP TR 470 TABLE D1 Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 250 ppm | 500 ppm | 1,000 ppm | |--|----------------|------------------------------------|--------------------------|------------------| | Hematopoietic System (continued) | | | | | | Lymph node Mediastinal, hepatocholangiocarcinoma, | (2) | (4) | (4) | (2) | | metastatic, liver
Mediastinal, sarcoma, metastatic, mesentery
Mediastinal, squamous cell carcinoma, | | 1 (25%)
1 (25%) | 1 (25%) | | | metastatic, uncertain primary site ymph node, mandibular Mast cell tumor malignant, metastatic, skin | (48) | (47) | (48)
1 (2%) | 1 (50%)
(50) | | Squamous cell carcinoma, metastatic, skin
Lymph node, mesenteric
Hemangioma
Histiocytic sarcoma | 1 (2%)
(43) | (47)
1 (2%)
1 (2%) | (44)
1 (2%)
1 (2%) | (50) | | Sarcoma, metastatic, mesentery
Squamous cell carcinoma, metastatic,
uncertain primary site | | , , | 1 (2%) | 1 (2%) | | Spleen Hemangiosarcoma Hemangiosarcoma, metastatic, liver Histiocytic sarcoma | (49)
1 (2%) | (50)
3 (6%)
1 (2%)
1 (2%) | (47)
1 (2%) | (49)
1 (2%) | | Mast cell tumor malignant, metastatic, skin
Squamous cell carcinoma, metastatic,
uncertain primary site | | , | 1 (2%) | 1 (2%) | | Thymus Hepatocellular carcinoma, metastatic, liver Sarcoma, metastatic, mesentery | (46) | (46)
1 (2%) | (39)
1 (3%) | (47) | | ntegumentary System | | | | | | Skin
Squamous cell carcinoma | (49)
1 (2%) | (50) | (48) | (50) | | Subcutaneous tissue, basal cell adenoma
Subcutaneous tissue, hemangioma
Subcutaneous tissue, hemangiosarcoma | 1 (2%) | 1 (2%) | | 1 (2%)
1 (2%) | | Subcutaneous tissue, histiocytic sarcoma
Subcutaneous tissue, mast cell tumor
malignant | | 1 (2%) | 1 (2%) | | | Musculoskeletal System | | (3) | (2) | (1) | | Hepatoblastoma, metastatic, liver
Sarcoma, metastatic, mesentery | | 1 (33%)
1 (33%) | 1 (50%) | (1) | | Squamous cell carcinoma, metastatic, uncertain primary site | | | | 1 (100%) | | Nervous System
Brain | (50) | (50) | (49) | (50) | | Histiocytic sarcoma | (30) | 1 (2%) | (12) | (30) | TABLE D1 Summary of the Incidence of Neoplasms in Male Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 250 ppm | 500 ppm | 1,000 ppm | |---|----------|----------------|----------------|-----------| | Respiratory System | | | | | | Lung | (49) | (50) | (49) | (50) | | Alveolar/bronchiolar adenoma | 10 (20%) | 5 (10%) | 7 (14%) | 6 (12%) | | Alveolar/bronchiolar adenoma, multiple | 2 (4%) | ` , | 1 (2%) | 2 (4%) | | Alveolar/bronchiolar carcinoma | 1 (2%) | 2 (4%) | 1 (2%) | 1 (2%) | | Hemangiosarcoma, metastatic, liver | | 1 (2%) | | | | Hepatoblastoma, metastatic, liver | | 4 (8%) | 7 (14%) | 3 (6%) | | Hepatocellular carcinoma, metastatic, liver | 7 (14%) | 7 (14%) | 11 (22%) | 13 (26%) | | Hepatocholangiocarcinoma, metastatic, liver | | 1 (2%) | | | | Histiocytic sarcoma | | 1 (2%) | | | | Mediastinum, hepatocellular carcinoma, | | 1 (2.6) | | | | metastatic, liver | | 1 (2%) | | | | Mediastinum, hepatocholangiocarcinoma, metastatic, liver | | 1 (2%) | | | | Nose | (50) | 1 (2%)
(49) | (49) | (50) | | TOSC | (50) | (49) | (49) | (50) | | Special Senses System | | | | | | Harderian gland | (5) | | | (1) | | Adenoma | 3 (60%) | | | 1 (100%) | | Carcinoma | 2 (40%) | | | , | | | | | | | | Jrinary System | | | | | | Kidney | (49) | (50) | (48) | (50) | | Hemangiosarcoma, metastatic, tissue NOS | | | 1 (2%) | | | Histiocytic sarcoma | | 1 (2%) | | | | Mast cell tumor malignant, metastatic, skin | | | 1 (2%) | | | Sarcoma, metastatic, mesentery | | 1 (2.6) | 1 (2%) | | | Renal tubule, adenoma | (40) | 1 (2%) | 1 (2%) | (50) | | Jrinary bladder
Hemangioma | (48) | (49) | (44)
1 (2%) | (50) | | Squamous cell carcinoma, metastatic, | | | 1 (2%) | | | uncertain primary site | | | | 1 (2%) | | Transitional epithelium, papilloma | 1 (2%) | | | 1 (270) | | | | | | | | Systemic Lesions Multiple organs ^b | (50) | (50) | (49) | (50) | | Histiocytic sarcoma | 1 (2%) | 2 (4%) | 1 (2%) | (30) | | Lymphoma malignant | 3 (6%) | 3 (6%) | 3 (6%) | 1 (2%) | | Mesothelioma malignant | - (-11) | - (-1-7) | 1 (2%) | 1 (2%) | | Na andagus Commons | | | | | | Neoplasm Summary | 42 | 40 | 40 | 45 | | Total primary peoplesms | 43 | 49 | 48 | 47 | | Total primary neoplasms otal animals with benign neoplasms | 79
35 | 122 | 122 | 114
39 | | Totoal benign neoplasms | 55
51 | 42
53 | 36
49 | 39
54 | | Total animals with malignant neoplasms | 22 | 33
46 | 49
47 | 42 | | Total malignant neoplasms | 28 | 69 | 73 | 60 | | Total mangnant neoplasms Total animals with metastatic neoplasms | 8 | 12 | 19 | 14 | | Total metastatic neoplasms | 8 | 30 | 35 | 30 | | Γotal animals with malignant neoplasms | ~ | 20 | 20 | 1 | | of uncertain primary site | | | | 1 | Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms D-6 Pyridine, NTP TR 470 TABLE D2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Drinking Water Study of Pyridine: 0 ppm | Individual Allinial Tullor Tathology | y of whate white in the 2-1ear Drinking water Study of Lyndine. V ppm | |--|---| | Number of Days on Study | 1 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 | | Carcass ID Number | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | Alimentary System | | | Esophagus | + + + + + + + + + + + + + A + + + + + + | | Gallbladder | + M $+$ $+$ $+$ $+$ $+$ $+$ A A $+$ A A $+$ A $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ | | Intestine large, colon | + + + + + + + + + + + A + + A + + + + + | | Intestine large, rectum Intestine large, cecum | + + + + + + + + + + + + A + A + + + + + | | Intestine rarge, cecum
Intestine small, duodenum | + + + + + + A + + + + + + + A A + + + + | | Intestine small, jejunum | A + + + A + A + A + A + A + A + A + A + | | Intestine small, ileum | A + + + A + A + A + A + A + A + A + | | Liver | + | | Hemangiosarcoma | X | | Hepatoblastoma | | | Hepatoblastoma, multiple
Hepatocellular carcinoma | $\mathbf{X} \ \mathbf{X} \qquad \mathbf{X} \qquad \mathbf{X} \qquad \mathbf{X}$ | | Hepatocellular carcinoma, multiple | X X X X X | | Hepatocellular adenoma | X X X X X X | | Hepatocellular adenoma, multiple | $\mathbf{X} \qquad \mathbf{X} \qquad \mathbf{X} \qquad \mathbf{X}$ | | Histiocytic sarcoma | X | | Mesentery | | | Oral mucosa
Pancreas | + | | Palicreas
Salivary glands | + + + + + + + + + + + + + + + + + + + | | Stomach, forestomach | + + + + + + + + + + + + + A + + + + + + | | Squamous cell papilloma | | | Stomach, glandular | + + + + + + + + + + + + + + + + + + + | | Tongue | | | Tooth | +++++++++++++++++++++++++++++++++++++++ | | Cardiovascular System | | | Blood vessel | + | | Heart | + | | Endocrine System | | | Adrenal cortex | + + + + + + + + + + + + + A + + + + + + | | Adenoma | | | Capsule, adenoma | X | | Adrenal medulla | + + + + + + + + M + + + + + A + + + + + | | Islets, pancreatic Parathyroid gland | + + + + + + + + + + + + + + + + + + + | | Pituitary gland | + + + + + + + + + + + + + + + + + + + | | Thyroid gland | + + + + + + + + + + + + + + + + + + + | | Follicular cell, adenoma | X X | | General Body System
None | | | Genital System | | | Epididymis | + | | Preputial gland | + | | Prostate | + | | Seminal vesicle | + + + + + + + + + + + + + + A + + + + + | | Testes | + | +: Tissue examined microscopically M: Missing tissue I: Insufficient tissue X: Lesion present Blank: Not examined TABLE D2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Drinking Water Study of Pyridine: 0 ppm | | | | | | | | | | | | - 0 | | | | | | | | | | | . 1. | _ | | | | |------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------------------| | Number of Days on Study | 7
2
2 2 | 7
2
2 | 7
2
3 | | Carcass ID Number | 0
2
8 | 0
2
9 | 0
4
1 | 0
4
2 | 0
4
4 | 0
4
5 | 0
4
6 | 0
4
7 | 4 | | 5 | 0 | | 0
0
4 | 0 | 0
0
7 | 0
0
8 | | 0
1
0 | 0
3
1 | 0
3
3 | 3 | 0
3
6 | 0
3
8 | 3 | Total
Tissues/
Tumors | | Alimentary
System | Esophagus | + | 49 | | Gallbladder | + | 43 | | Intestine large, colon | + | 48 | | Intestine large, rectum | + | 48 | | Intestine large, cecum | + | 47 | | Intestine small, duodenum | + | 43 | | Intestine small, jejunum | + | 40 | | Intestine small, ileum | + | 42 | | Liver | + | 50 | | Hemangiosarcoma | 1 | | Hepatoblastoma | | | | | | | | | | X | | | | | | | | | | | | | | | | 1 | | Hepatoblastoma, multiple | X | 1 | | Hepatocellular carcinoma | | | X | | X | X | X | X | X | | | | | | | | | | | | | | X | | | 12 | | Hepatocellular carcinoma, multiple | 3 | | Hepatocellular adenoma | X | | | | | | | | | | | | X | X | X | X | | X | | | | X | | | | 13 | | Hepatocellular adenoma, multiple | | | X | | X | X | | | X | | X | X | | | | | X | | X | X | | | | X | X | 16 | | Histiocytic sarcoma | 1 | | Mesentery | | | | + | | | + | | | | | | | | | | | | | | | | | | | 2 | | Oral mucosa | 1 | | Pancreas | + | 49 | | Salivary glands | + | 48 | | Stomach, forestomach | + | 49 | | Squamous cell papilloma | X | | | 1 | | Stomach, glandular | + | 49 | | Tongue | + | 1 | | Tooth | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | 42 | | Cardiovascular System | Blood vessel | + | 50 | | Heart | + | 50 | | Endocrine System | Adrenal cortex | + | 49 | | Adenoma | | | | | X | 1 | | Capsule, adenoma | | | | | | | | | | | | | | | X | | | | | | | | | | | 2 | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | 48 | | Islets, pancreatic | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Parathyroid gland | + | M | M | + | + | + | + | | | | | + | M | | + | + | + | M | + | + | + | + | M | + | | 31 | | Pituitary gland | + | + | + | + | + | | | + | + | | + | | | | | | | + | | | | | + | | + | 46 | | Thyroid gland | | + | | | | + | | | | | | | | | | | + | | | | | | | + | | 49 | | Follicular cell, adenoma | | | • | 2 | | General Body System None | Genital System | | _ | Epididymis Epididymis | + | 50 | | Preputial gland | + | 50 | | Prostate | + | 50 | | 1 1 Uphate | 1. | - 1 | <u>'</u> | <u>'</u> | | ,
 | | <u>.</u> | <u>.</u> | Ţ | | | <u>.</u> | Ţ | <u>.</u> | + | <u>,</u> | + | + | + | + | + | + | + | + | 49 | | Seminal vesicle | + | Seminal vesicle
Testes | + | + | | | <u> </u> | + | + | + | + | + | + | + | + | + | + | + | + | + | + | <u>.</u> | <u>.</u> | + | <u>.</u> | <u>+</u> | + | 50 | TABLE D2 | TABLE D2
Individual Animal Tumor Pathology of | Male 1 | Mi | ce : | in t | he | 2-Տ | 'ea | r D | riı | ıkir | ıg | Wa | tei | r St | ud | ly o | f I | yr | idi | ine | : : | 0 I | pn | n | | | |--|-------------|-------------|-------------|-------------|-------------|-------|-------------|----------|--------|-------------------|-----|-------------------|-----|-------------------|-----|-------------------|-----|------------|--------|-------------|-------------|-------------|-------------|-------------|-----|---| | Number of Days on Study | 1
1
8 | 5
2
0 | 4 | 5
7
4 | 9 | | 3 | | 3 | 6 6
5 6
3 3 | , | 6 6
7 7
0 2 | , | 7 7
0 1
6 4 | | 7 7
2 2
2 2 | : : | 2 2 | 2 | 7
2
2 | 7
2
2 | 7
2
2 | 7
2
2 | 7
2
2 | 2 | | | Carcass ID Number | 0
1
2 | 3 | 4 | 0
2
5 | 3 | 0 | 1 | 4 | 0 | 3 2 | | 2 2 | : : | 0 0
2 3
4 4 | | | | 1 | | 1 | | 1 | | 2 | | | | Hematopoietic System Bone marrow Histiocytic sarcoma | + | + | + | + | + | + | + | | | + +
X | - | + + | | + A | | + + | | + - | + | + | + | + | + | + | . 4 | - | | Lymph node Lymph node, mandibular Squamous cell carcinoma, metastatic, skin | + | + | +
+
X | + | + | + | + | + - | - | | | | | + A | | | | + - | + | + | + | + | + | + | . 4 | - | | Lymph node, mesenteric
Spleen
Hemangiosarcoma
Thymus | + + | + + + | + + + | + + + | + + + | + + + | + | + - | + | + + | - | + + | | M A
+ A
+ A | | + + | | + - | +
+ | +++++ | + + + | ++++ | +
+
M | + | | - | | Integumentary System Mammary gland Skin Squamous cell carcinoma | | | | | | | M] | M I | M | мм | 1] | M M | 1 l | M M
+ A | 1 l | м м | 1 N | и N | M | M | + | M | M | + | · N | 1 | | Subcutaneous tissue, hemangiosarcoma Musculoskeletal System Bone | + | + | + | + | + | + | + | + - | + | + + | | + + | | X
+ + | | + + | | - | + | + | + | + | + | + | . 4 | - | | Nervous System
Brain | + | + | + | + | + | + | + | + - | + | + + | | + + | | + + | | + + | | F - | + | + | + | + | + | + | | - | | Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple | + | +
X | + | + | + | + | + | + - | + | + + | - : | + +
X | | + A
X | | + +
X X | | + - | + | + | +
X | +
X | + | + | + + | - | | Alveolar/bronchiolar carcinoma
Hepatocellular carcinoma, metastatic, liver
Nose
Trachea | +++ | ++ | ++ | +++ | +++ | | X
+
+ | X
+ - | + | + + | | + +
+ + | | + +
+ A | | + + | | ⊦ -
+ - | + | ++ | ++ | X
+
+ | X
+
+ | + | · + | | | Special Senses System Eye Harderian gland Adenoma Carcinoma | | | M | | | | +
X | | | | | | | +
X | | | | | | | | | | | | | | Urinary System
Kidney
Urinary bladder
Transitional epithelium, papilloma | ++ | +++ | ++ | ++ | +
+
X | +++ | + | + - | +
A | + + | - | + + | | + A
+ A | | + + | | + - | + | + | + | + | + | + | · + | - | | Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant | + | + | +
X | + | + | + | + | + - | | + +
X | _ | + + | | + + | | + + | | + - | + | + | + | + | + | + | - 1 | - | TABLE D2 | Individual Animal Tumor Dat | thology of Male Miss in | the 2 Veer Drinking | Water Ctude of Devidings | 0 | |------------------------------------|-------------------------|---------------------|--------------------------|-------| | Individual Animal Tumor Pat | mology of Male Mice in | the 2-Year Drinking | water Study of Pyridine: | v ppm | _ | | | | |--|---|------------|-----|--------|---|-------------|------------------|-----------------------------| | Number of Days on Study | 2 | 2 | 2 | 2 | 2 | 2 | 7
2
2 | 7
2
2 | 7
2
2 | 7
2
2 | 7
2
2 | 7
2
2 | 7
2
3 | | Carcass ID Number | 2 | 2 : | 2 | 4 | 4 | 4 | 4 | 4 | 0
4
7 | 0
4
8 | 0
4
9 | 5 | 0 | 0
0
3 | 0
0
4 | 0
0
6 | 0
0
7 | 0 | 0
0
9 | 0
1
0 | 0
3
1 | 0
3
3 | 0
3
5 | 0
3
6 | 0
3
8 | 3 | Total
Tissues/
Tumors | | Hematopoietic System Bone marrow Histiocytic sarcoma | - | + - | + - | + | 49
1 | | Lymph node Lymph node, mandibular Squamous cell carcinoma, metastatic, skin | - | + - | + - | + |
2
48
1 | | Lymph node, mesenteric Spleen Hemangiosarcoma Thymus | - | + - | + - | | | + | +
+
X
+ | + | M
+
+ | + + + | + + + | + + + | + + + | + + + | + + + | + + + | + + + | + + + | M
+
+ | + + + | + + + | + + + | + + + | + + + | + + + | ++++++ | 43
49
1
46 | | Integumentary System Mammary gland Skin Squamous cell carcinoma Subcutaneous tissue, hemangiosarcoma | | И -
+ - | | | | M | | | | | | M
+ | | M
+ | | | | M
+ | | | | | | | M | | 5
49
1
1 | | Musculoskeletal System
Bone | - | + - | + - | + | 50 | | Nervous System
Brain | - | + - | + - | + | 50 | | Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple | - | + - | + · | + | + | + | + | + | + | +
X | + | +
X | + | + | +
X | + | +
X | + | + | + | + | + | + | + | + | + | 49
10
2 | | Alveolar/bronchiolar carcinoma
Hepatocellular carcinoma, metastatic, liver
Nose
Trachea | - | + -
+ - | + - | + | + | X
+
+ | ++ | X
+
+ | ++ | ++ | ++ | +++ | ++ | +++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | ++ | X
+
+ | ++ | +++ | 1
7
50
49 | | Special Senses System Eye Harderian gland Adenoma Carcinoma | | | | | | | | | | | | | | | | | | +
X | | | | | | +
X | | +
+
X | 1
5
3
2 | | Urinary System
Kidney
Urinary bladder
Transitional epithelium, papilloma | - | + - | + - | + | + | +++ | +++ | +++ | +++ | + | ++ | +++ | +++ | + | +++ | + | +++ | +++ | +++ | +++ | ++ | +++ | +++ | ++ | +++ | + | 49
48
1 | | Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant | - | + - | + - | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | 50
1
3 | D-10 Pyridine, NTP TR 470 TABLE D2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Drinking Water Study of Pyridine: 250 ppm | 0
0
8 | 2
3
7 | 5
2
2 | 5
3
2 | 4 | 4 | 6 | 8 | 9 | 9 | 0 | 3 | 6
4
5 | | 7 | 7 | 7 | 8 | | 9 | 7
0
2 | 1 | 2 | 2 | | |-------------|------------------|---|---|---|--|---|---|---|---|---|---|--|---|--|--|--|---|--|--|---|--|---|--|--| | 0
7
8 | 0
7
0 | 0
6
3 | 0
6
9 | 9 | 8 | 7 | 7 | 9 | 8 | 5 | 5 | 8 | 7 | 8 | 5 | 6 | 6 | 6 | 7 | 6 | | | 5 | 5 | + | + | + | + | + | + | + | + | | | | | | | | | | | | | | | | + | + | | + | + | + | + | M | A | + | A | | | + | A | A | + | + | A | A | + | A | A | M | M | + | + | + | | + | + | + | + | A | + | | | | | | | | + | + | + | + | + | A | + | + | + | + | + | + | | + | + | + | + | + | A | + | M | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | Α | Α | + | + | + | + | + | + | A | + | + | + | M | + | A | Α | + | + | + | + | + | | + | + | + | + | A | + | + | + | + | + | + | + | A | + | Α | + | Α | + | A | Α | + | + | + | + | + | | + | + | + | + | Α | + | + | + | + | + | + | + | + | + | + | + | + | A | A | Α | + | + | + | + | + | | + | + | + | Α | Α | Α | + | + | + | Α | + | + | Α | + | + | + | + | A | Α | Α | + | Α | + | + | + | | + | X | | | | | | | | | | X | | | | | | | | | | | | | | | | | | X | | | X | | X | | | | | | X | X | | | | | X | | X | | | | | | | | | | | | | | X | | | | | | X | | | | | | | | | | X | | | | | | | | | | | X | | X | X | | | |
 | X | | X | | | | | | X | | | | | | | X | X | | X | | | X | | X | X | X | | X | | | | | | X | | X | | | | | | | X | | | | | X | | | | | | X | | | | | X | | | | | X | | X | | | | | X | X | X | | X | X | X | | X | | X | | | | | | | | | | | | | | | | | | | X | | | | | | | | | | X | | | | | | | | | | X | X | + | + | | | | | | | | | | | | | | | + | X | X | + | | + | | + | | + | | | | + | | | | | | | | | | + | | + | | | | | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + : | M | + | + | + | + | + | + | + | + | | + | + | | | • | • | • | • | • | | | • | • | • | • | • | • | | • | | • | | • | • | • | • | • | | | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + 1 | M | + | + | + | + | + | + | + | | | ' | ' | | | ' | ' | | | | | ' | | | | | , , | | | | | ' | | | • | | | | | | | | X | _ | _ | _ | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | _ | _ | _ | + | | 7' | Г | Г | | 1- | 1- | 1. | 1. | 1" | 1 | 1" | 1- | 1- | 1" | 1 | 1 | 1 | | 1. | 1" | Г | 1 | - | Г | 1 | | N/I | | | _ | _ | _ | _ | м | _ | _ | _ | _ | _ | _ | _ | _ | м | _ | м | _ | м | М | | | _ | | 1V1 | _T | 7 | 7 | т
Т | т
Т | | | | | | | | | | | | | | | | 141 | J | T . | + | | + | + | + | _ | T | T | _ | T . | T . | | T . | | | | | | | | | | | | + | + | + | | + | + | + | _ | _ | т | _ | т | т | _ | _ | т | _ | _ | Τ . | | + X | - | т | _ | _ | т | т | + | т | | | 0
8
0
7 | 0 3
8 7
0 0 0
7 7 8 0
+ + + + + + + + + + + + + + + + + + + | 0 3 2
8 7 2
0 0 0 0
7 7 6
8 0 3
+ + + +
+ + +
+ + + +
+ + + +
+ + + + + + +
+ + + + + + +
+ + + + + + + +
+ + + + + + + + + +
+ | 0 3 2 3
8 7 2 2
0 0 0 0 0
7 7 6 6
8 0 3 9
+ + + + +
+ + + +
X X X X X X X X + + + X X + | 0 3 2 3 4
8 7 2 2 6
0 0 0 0 0 0
7 7 6 6 9
8 0 3 9 4
+ + + + + + + + + + + + + + + + + + + | 0 3 2 3 4 4 8 7 2 2 6 9 0 0 0 0 0 0 0 7 7 6 6 9 8 8 0 3 9 4 9 + + + + + + + + + + + + + + + + + + | 0 3 2 3 4 4 6 8 7 2 2 6 9 1 0 0 0 0 0 0 0 0 0 0 7 7 6 6 9 8 7 8 0 3 9 4 9 5 + + + + + + + + + + + + + + + + + + | 0 3 2 3 4 4 6 8 8 7 2 2 6 9 1 7 0 0 0 0 0 0 0 0 0 0 0 0 7 7 6 6 6 9 8 7 7 8 0 3 9 4 9 5 7 + + + + + + + + + + + + + + + + + + | 0 3 2 3 4 4 6 8 9 8 7 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 6 6 6 9 8 7 7 9 9 8 0 3 9 4 9 5 7 7 7 + + + + + + + + + + + + + + + + | 0 3 2 3 4 4 6 8 9 9 9 8 7 7 1 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 6 6 6 9 8 7 7 9 8 8 8 0 3 9 4 9 5 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 3 2 3 4 4 6 8 9 9 0 0 8 7 2 2 6 9 1 7 1 5 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 2 3 4 4 6 8 9 9 0 3 8 7 2 2 6 9 1 7 1 5 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 2 3 4 4 6 8 9 9 0 3 4 8 7 2 2 6 9 1 7 1 5 8 8 5 5 8 8 5 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 2 3 4 4 6 8 8 9 9 0 3 4 5 8 7 2 2 6 9 1 7 1 5 8 8 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 2 3 4 4 6 8 9 9 0 3 3 4 5 7 8 8 7 2 2 6 9 1 7 1 5 8 8 8 5 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 2 3 4 4 6 8 9 9 0 3 4 5 7 7 8 7 8 7 2 2 6 9 1 7 1 5 8 8 8 5 0 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 2 3 4 4 6 8 8 9 9 0 3 4 5 7 7 7 8 7 2 2 6 9 1 7 1 5 8 8 8 5 0 4 6 7 7 7 7 8 7 7 7 6 6 9 8 7 7 7 9 8 5 5 8 7 8 5 6 8 0 3 9 4 9 5 7 7 7 1 2 9 8 4 0 7 8 8 8 5 0 4 6 7 8 8 8 5 0 4 6 7 8 8 8 5 0 4 6 7 7 8 8 8 5 0 4 6 7 7 8 8 8 5 0 8 7 8 5 6 8 8 0 3 9 4 9 5 7 7 7 1 2 9 8 4 0 7 8 8 8 5 6 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 7 7 1 2 9 8 8 4 0 7 7 8 8 8 7 8 7 8 7 8 8 7 8 7 8 7 8 7 | 0 3 2 3 4 4 6 8 8 9 9 0 3 3 4 5 7 7 7 7 8 8 7 7 2 2 6 9 1 7 1 5 8 8 8 5 0 4 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 2 3 4 4 6 8 8 9 9 0 3 3 4 5 7 7 7 7 8 9 8 7 7 2 2 6 9 1 7 1 1 5 8 8 8 5 0 4 6 7 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 2 3 4 4 6 8 8 9 9 0 3 3 4 5 7 7 7 7 8 9 9 9 8 7 7 2 2 6 9 1 7 1 5 8 8 8 5 0 4 6 7 0 2 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 2 3 4 4 6 8 8 9 9 0 3 4 5 7 7 7 8 8 9 9 0 8 7 7 2 2 6 9 1 7 1 5 8 8 8 5 0 4 6 7 0 2 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 2 3 4 4 6 8 8 9 9 0 3 4 5 7 7 7 8 8 9 9 0 1 8 7 2 2 6 9 1 7 1 5 8 8 8 5 0 4 6 7 0 2 6 2 5 5 | 0 3 2 3 4 4 4 6 8 9 9 0 3 3 4 5 7 7 7 7 8 9 9 0 1 2 8 7 2 2 6 9 1 7 1 5 8 8 5 0 4 6 7 0 2 6 2 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0 3 2 3 4 4 6 8 9 9 0 3 4 5 7 7 7 7 8 9 9 0 1 2 2 2 8 7 2 2 6 9 1 7 1 5 8 8 5 0 4 6 7 0 2 6 2 5 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | TABLE D2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Drinking Water Study of Pyridine: 250 ppm | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 ' | 7 ′ | 7 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | |---|----|----|----|----|---|----|-----|--------------|------------|-----|-----|-----|-----|----|----|----|----|----|----|----|----|---|----|------------|----------| | Number of Days on Study | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 2 | . 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | | | | 0 (| | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | Total | | Carcass ID Number | 5 | 5 | 5 | 6 | 6 | | | | 7 ′ | | | | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 8 | 9 | | Tissues/ | | | 5 | 6 | 8 | 0 | 4 | 5 | 6 | 1 : | 2 | 3 6 |) 2 | 2 3 | 4 | 6 | 0 | 1 | 2 | 3 | 8 | 9 | 0 | 7 | 5 | 6 | Tumors | | Alimentary System | Esophagus | + | + | + | + | + | + | + - | + - | + - | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Gallbladder | + | M | + | + | + | + | M | + - | + - | + + | - N | 1 + | + | + | + | + | M | + | + | + | + | M | + | + | 33 | | Intestine large, colon | + | + | + | + | + | + | + - | + - | + - | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Intestine large, rectum | + | + | + | + | + | + | + - | + - | + - | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Intestine large, cecum | + | + | + | + | + | + | + - | + - | + - | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 44 | | Intestine small, duodenum | + | + | + | + | + | + | + - | + - | + - | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 44 | | Intestine small, jejunum | + | + | + | + | + | + | + - | + - | + - | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 46 | | Intestine small, ileum | + | + | + | + | + | + | + - | + - | + - | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 41 | | Liver | + | + | + | + | + | + | + - | + - | + - | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Hemangioma | | | | | | X | | | | | | | | | | | | | | | | | | | 1 | | Hemangiosarcoma, multiple | | | ** | | | 37 | | | 3 7 | | | | ** | | 37 | | | | | | ٠, | | | | 2 | | Hepatoblastoma | X | | X | | | X | | 2 | X, | ., | | | X | | X | | 37 | | | | X | | | | 14 | | Hepatoblastoma, multiple | | ** | | | | 37 | | | 2 | X | , - | , | | 77 | 37 | | X | | 37 | 37 | | | 37 | | 4 | | Hepatocellular carcinoma | | X | | | • | X | 37 | | | | 2 | X | | | X
 • | | | X | Х | | | X | T 7 | 16 | | Hepatocellular carcinoma, multiple | ** | | Х | X | | | X | | | X | | 37 | X | | • | X | | X | | | X | • | | X | 19 | | Hepatocellular adenoma | X | 37 | 37 | 37 | X | 37 | 37 | 5 7 7 | | X | , , | X | | 37 | X | 37 | 37 | 37 | 37 | 37 | 37 | X | | 37 | 11 | | Hepatocellular adenoma, multiple | | Х | X | X | | Х | X | Χ. | X | Χ | Σ . | | X | X | | X | X | Х | Х | Х | Х | | | X | 29 | | Hepatocholangiocarcinoma, multiple | 1 | | Histiocytic sarcoma | 2 | | Sarcoma, metastatic, mesentery | 1 | | Mesentery | | | | | | | | | | + | - | | + | | | | | | | | | | + | | 7 | | Hepatocholangiocarcinoma, metastatic, liver | 1 | | Histiocytic sarcoma | 1 | | Sarcoma | 1 | | Pancreas | + | + | + | + | + | + | + - | + - | + - | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Salivary glands | + | + | + | + | + | + | + - | + - | + - | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Stomach, forestomach | + | + | + | + | + | + | + - | + - | + - | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Stomach, glandular | + | + | + | + | + | + | + . | + - | + - | + + | - + | | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Γooth | | | | | | | | + | | | | + | + | | | | | | + | | + | | + | | 10 | | Cardiovascular System | Blood vessel | + | + | + | + | + | + | + · | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Heart | + | + | + | + | + | + | + · | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + - | + - | + - | + + | - + | - M | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Sarcoma, metastatic, mesentery | • | 1 | | Adrenal medulla | + | + | + | + | + | + | + - | + - | + - | + + | - + | - M | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Pheochromocytoma benign | • | • | • | | • | • | | | • | | | | | • | | | X | • | • | • | | • | | • | 1 | | Sarcoma, metastatic, mesentery | 1 | | slets, pancreatic | + | + | + | + | + | + | + - | + - | + - | + + | - + | - + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Adenoma | , | | | | • | • | | • | | . ' | | | ' | X | | • | • | • | | • | • | | • | • | 1 | | Parathyroid gland | М | + | М | + | M | + | + | + | + - | + + | | ⊦ M | [+ | | + | М | М | M | + | + | + | + | М | М | 35 | | Pituitary gland | + | + | + | + | + | | Μ· | | | + + | - 4 | | | | + | | | + | | | | | + | | 47 | | Γhyroid gland | + | + | + | + | + | | | | | + + | - + | | | + | | | | | | + | | | + | | 50 | | , O | | X | | | • | • | - | | | | | | | | | | • | | | | • | | | | 2 | None D-12 Pyridine, NTP TR 470 TABLE D2 | | 0 | 2 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | | |---|-----------------------|------------| | Number of Days on Study | 0 | 3 | 2 | 3 | 4 | 4 | 6 | 8 | 9 | 9 | 0 | 3 | 4 | 5 | 7 | 7 | 7 | 8 | 9 | 9 | 0 | 1 | 2 | 2 | 2 | | | | 8 | 7 | 2 | 2 | 6 | 9 | 1 | 7 | 1 | 5 | 8 | 8 | 5 | 0 | 4 | 6 | 7 | 0 | 2 | 6 | 2 | 5 | 2 | 2 | 2 | | | | 0 | | | Carcass ID Number | Trof Days on Study 0 | 8 | 0 | 3 | 9 | 4 | 9 | 5 | 7 | 7 | 1 | | | | 4 | 0 | 7 | 8 | 7 | 1 | 9 | 2 | 5 | 1 | 3 | 4 | | | Genital System | Coagulating gland | | | | | | | + | Sarcoma, metastatic, mesentery | Epididymis | + | | | Sarcoma | Sarcoma, metastatic, mesentery | | | | | | | X | Preputial gland | + | | | Prostate | + | M | + | + | + | | | Seminal vesicle | + | | | Sarcoma, metastatic, mesentery | | | | | | | X | Testes | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Sarcoma, metastatic, mesentery | | | | | | | X | Hematopoietic System | Bone marrow | + | | | Hemangiosarcoma | | | | X | Hemangiosarcoma, metastatic, liver | | | | | | | | | | | | | | X | | | | | | | | | | | | | | Histiocytic sarcoma | | | | | | | | | | | | X | | | | | | | | | | | | | | | | Lymph node | | | | | | | + | | | + | | | | | | | | + | | | | | | + | | | | Mediastinal, hepatocholangiocarcinoma, | metastatic, liver | | | | | | | | | | | | | | | | | | X | | | | | | | | | | Mediastinal, sarcoma, metastatic, mesentery | | | | | | | X | Lymph node, mandibular | + | + | M | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | | | Lymph node, mesenteric | + | + | M | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | | | Hemangioma | X | | | | | | Histiocytic sarcoma | Spleen | + | + | + | | + | | | Hemangiosarcoma | | | | X | Hemangiosarcoma, metastatic, liver | | | | | | | | | | | | | | X | | | | | | | | | | | | | | Histiocytic sarcoma | | X | Thymus | + | + | + | + | + | + | + | + | + | + | M | + | + | I | + | + | + | + | + | Ι | + | + | + | + | + | | | Hepatocellular carcinoma, metastatic, liver | X | | | | | | Integumentary System | Mammary gland | M | M | M | M | M | M | M | M | M | + | M | M | | | | | | | | | | | | | | | | Skin | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + | + | + | + | + | + | + | | | Subcutaneous tissue, hemangioma | | | | | | | | | | | | | | | | | | X | | | | | | | | | | Subcutaneous tissue, histiocytic sarcoma | | | | | | | | | | | | X | | | | | | | | | | | | | | | | Musculoskeletal System | _ | · <u> </u> | | Bone | + | | | Skeletal muscle | | | | | | | + | | | | | | | | | | | | | | + | | | | + | | | Hepatoblastoma, metastatic, liver | X | | | Sarcoma, metastatic, mesentery | | | | | | | X | Nervous System | Brain | + | | | Histiocytic sarcoma | | X | Peripheral nerve | + | | | | | | | Spinal cord | + | | | | | | TABLE D2 | Table D2
Individual Animal Tumor Pathology o | f Male | Mi | ice | in 1 | the | 2- | Yea | ar l | Dri | nki | ing | W | ate | er S | Stu | dy | of | Рy | rid | ine | e: | 250 |) p | pm | ì | | |---|-------------|----|-----------------------------| | Number of Days on Study | 7
2
2 | 2 | 7
2
2 7
2
3 | 7
2
3 | 7
2
3 | | | Carcass ID Number | 0
5
5 | 5 | 0
5
8 | 6 | 0
6
4 | | | 7 | 0
7
2 | 7 | 0
7
6 | 8 | 0
8
3 | 8 | 8 | 0
9
0 | 9 | 0
9
2 | 0
9
3 | 0
9
8 | 0
9
9 | 1
0
0 | 8 | | 9 | Total
Tissues/
Tumors | | Genital System | Coagulating gland | 1 | | Sarcoma, metastatic, mesentery | 1 | | Epididymis
Sarcoma | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | 50
1 | | Sarcoma, metastatic, mesentery | | | | | | | | | | | | | | Λ | | | | | | | | | | | | 1 | | Preputial gland | + | 50 | | Prostate | + | M | + | + | + | + | + | + | + | +
| + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Seminal vesicle | + | M | + | 49 | | Sarcoma, metastatic, mesentery | 1 | | Testes | + | 50 | | Sarcoma, metastatic, mesentery | 1 | | Hematopoietic System | Bone marrow | + | 50 | | Hemangiosarcoma | 1 | | Hemangiosarcoma, metastatic, liver | 1 | | Histiocytic sarcoma | 1 | | Lymph node | 4 | | Mediastinal, hepatocholangiocarcinoma, | 1 | | metastatic, liver Mediastinal, sarcoma, metastatic, mesentery | 1 | | Lymph node, mandibular | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | M | _ | _ | _ | _ | _ | 47 | | Lymph node, mesenteric | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | M | + | 47 | | Hemangioma | | · | | · | · | · | • | • | • | | • | • | · | · | • | • | • | | | · | • | · | • | | · | 1 | | Histiocytic sarcoma | 1 | | Spleen | + | 50 | | Hemangiosarcoma | | | | | | | | | X | | | | | | | | | | | | | | | | X | 3 | | Hemangiosarcoma, metastatic, liver | 1 | | Histiocytic sarcoma | 1 | | Thymus | + | M | + | + | 46 | | Hepatocellular carcinoma, metastatic, liver | 1 | | Integumentary System | Mammary gland | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | + | M | M | M | M | M | M | M | M | 3 | | Skin | + | 50 | | Subcutaneous tissue, hemangioma | 1 | | Subcutaneous tissue, histiocytic sarcoma | 1 | | Musculoskeletal System | Bone | + | 50 | | Skeletal muscle | 3 | | Hepatoblastoma, metastatic, liver
Sarcoma, metastatic, mesentery | 1
1 | | • | Nervous System
Brain | + | 50 | | Histiocytic sarcoma | т | 1- | 1. | - 1 | | ' | ' | 1 | 1 | ' | ' | 1 | ' | 1 | 1 | 1 | ' | | | 1 | ' | ' | 1 | ' | ' | 1 | | Peripheral nerve | 1 | D-14 Pyridine, NTP TR 470 TABLE D2 | Number of Days on Study | 0
0
8 | - | 2 | 3 | 4 | 5
4
9 | 5
6
1 | 8 | 5
9
1 | 9 | 0 | 3 | 6
4
5 | - | 7 | 6
7
6 | 6
7
7 | 6
8
0 | 6
9
2 | | 7
0
2 | 1 | 7
2
2 | 2 | 2 | |--|-------------|-------------|---|---------------|--------|-------------|-------------|----|-------------|--------|--------|-------------|-------------|-------------|--------|-------------|-------------|-------------|-------------|--------|-------------|-------------|-------------|--------|--------| | Carcass ID Number | 0
7
8 | 0
7
0 | 6 | 6 | 9 | 8 | 0
7
5 | 7 | 9 | 8 | 5 | 5 | 8 | 7 | | 5 | 6 | 6 | 6 | 7 | 6 | 8 | 5 | 5 | 5 | | Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Hemangiosarcoma, metastatic, liver Hepatoblastoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver Histiocytic sarcoma | + | - + | | + + | +
X | | + | + | + | + | +
X | + | + | +
X
X | +
X | + | + | +
X
X | + | +
X | + | +
X | X | +
X | +
X | | Mediastinum, hepatocellular carcinoma, metastatic, liver Mediastinum, hepatocholangiocarcinoma, metastatic, liver Nose Trachea | + | - + | | + +
+ + | · + | +++ | +++ | ++ | + + | ++ | ++ | ++ | + + | ++ | ++ | ++ | ++ | X
+
+ | A
+ | +++ | +++ | X
+
+ | +++ | ++ | +++ | | Special Senses System
None | Urinary System Kidney Histiocytic sarcoma Renal tubule, adenoma Urinary bladder | + | - +
- + | | -
-
- + | · + | + | + | + | + | + | + | +
X
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | | Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant | + | - +
X | | + + | + | + | + | + | + | +
X | + | +
X | + | + | +
X | + | + | +
X | + | + | + | + | + | + | + | TABLE D2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Drinking Water Study of Pyridine: 250 ppm | Number of Days on Study | 7
2
2 7
2
3 | 7
2
3 | 7
2
3 | | |--|---------------| | Carcass ID Number | 0
5
5 | 0
5
6 | 0
5
8 | 0
6
0 | 0
6
4 | 0
6
5 | 0
6
6 | 0
7
1 | 7 | 0
7
3 | 0
7
6 | 0
8
2 | 0
8
3 | 0
8
4 | 0
8
6 | 0
9
0 | 0
9
1 | 0
9
2 | 0
9
3 | 0
9
8 | 0
9
9 | 1
0
0 | 0
8
7 | 0
9
5 | 9 | Total
Tissues/
Tumors | | Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Hemangiosarcoma, metastatic, liver Hepatoblastoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver Hepatocholangiocarcinoma, metastatic, liver Histiocytic sarcoma Mediastinum, hepatocellular carcinoma, metastatic, liver Mediastinum, hepatocholangiocarcinoma, metastatic, liver Nose Trachea | ++++ | +
X | +++ | + + + | +
X | +
X | +
X | +++ | + + + | +++ | + + + | + + + | +
X | +++ | + + + | +
X | +++ | + + + | + + + | + + + | + + + | +
X | ++++ | +
X | +++ | 50
5
2
1
4
7
1
1
1
1
49
50 | | Special Senses System
None | Urinary System Kidney Histiocytic sarcoma Renal tubule, adenoma Urinary bladder | | +
X
M | + | 50
1
1
49 | | Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant | + | 50
2
3 | D-16 Pyridine, NTP TR 470 TABLE D2 | Individual Animal Tumor Pathology of | of Male Mice in the 2-Year Drinking Water Study of Pyridine: 500 ppm | |---|--| | Number of Days on Study | 0 2 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 | | Carcass ID Number | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | Alimentary System | | | Esophagus Gallbladder Intestine large, colon Intestine large, rectum Intestine large, cecum Intestine large, cecum Intestine small, duodenum Intestine small, jejunum Histiocytic sarcoma Intestine small, ileum Liver Hepatoblastoma Hepatoblastoma, multiple Hepatocellular carcinoma Hepatocellular carcinoma, multiple Hepatocellular adenoma Hepatocellular adenoma Hepatocellular adenoma, multiple Mast cell tumor malignant, metastatic, skin | + + + + + + + + + + + + + + + + + + + | | Mesentery Sarcoma Pancreas Salivary glands Stomach, forestomach Stomach, glandular Tooth | + + + + + + + + + + + + + + + + + + + | | Cardiovascular System | | | Blood vessel
Heart | M M + + + + + + + + + + + + + + + + + + | | Endocrine System Adrenal cortex Capsule, sarcoma, metastatic, mesentery Adrenal medulla Islets, pancreatic Adenoma Parathyroid gland
Pituitary gland Thyroid gland Follicular cell, adenoma Follicular cell, adenoma, multiple | + + + + + + + + + + + + + + + + + + + | | General Body System Tissue NOS Thoracic, hemangiosarcoma | +
X | TABLE D2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Drinking Water Study of Pyridine: 500 ppm | Number of Days on Study | 7
2 | 7
2 | 7
2 | 7
2 | 7
2 | 7 | 2 | 2 | 2 | 7 | 7
2 | 7
2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7
2 | | |---|--------|--------|--------|--------|--------|--------------|----|--------------|--------|--------------|--------|--------|--------|--------|---|----|---|--------|---|--------|--------|---|--------|---|--------|--------------------| | | 2 | | | | | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | 1 | | Total | | Carcass ID Number | 1
7 | 1 8 | 1
9 | 2 | 2 | 2 | | 2
9 | 3
0 | 3 | 3 | 3 | 3
5 | 3
8 | | | 4 | 4
2 | | 4
4 | 4
5 | 4 | 4
7 | | 5
0 | Tissues/
Tumors | | Alimentary System | Esophagus | + | 49 | | Gallbladder | M | + | M | M | + | M | M | + | + | + | + | M | Α | M | + | + | + | + | + | + | + | + | + | + | M | 30 | | Intestine large, colon | + | 46 | | Intestine large, rectum | + | 47 | | Intestine large, cecum | + | 42 | | Intestine small, duodenum | + | 43 | | Intestine small, jejunum | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | 42 | | Histiocytic sarcoma | X | | | 1 | | Intestine small, ileum | + | | + | 43 | | Liver | + | | + | 49 | | Hepatoblastoma | X | | | X | | 37 | 37 | | | | X | X | | | | X | X | | X | | X | X | | | | 16 | | Hepatoblastoma, multiple | X | | | | | X | X | | | | | | | | | X | | X | | v | | v | | | X | 6
15 | | Hepatocellular carcinoma Hepatocellular carcinoma, multiple | X | | X | | X | \mathbf{v} | | \mathbf{v} | v | \mathbf{v} | v | v | X | v | | | X | Λ | X | X | X | X | X | v | Λ | 15
26 | | Hepatocellular adenoma | | X | | | Λ | X | | Λ | Λ | Λ | Λ | Λ | Λ | Λ | Λ | | Λ | | Λ | | Λ | | Λ | Λ | | 5 | | Hepatocellular adenoma, multiple | | Λ | | Y | X | Λ | | | X | | v | v | v | Y | X | v | Y | v | v | v | v | v | v | Y | v | 29 | | Mast cell tumor malignant, | | | | Λ | Λ | | | | Λ. | | Λ | Λ. | Λ | Λ | Λ | 21 | Λ | 71 | Λ | Λ. | | | Λ | Λ | Λ | | | metastatic, skin | X | | | | | 1 | | Mesentery | | | | | | | | | | + | | | | | | | | + | | | | | | | | 6 | | Sarcoma | 1 | | Pancreas | + | 48
49 | | Salivary glands
Stomach, forestomach | + | 49 | | Stomach, glandular | T | + | + | + | T | + | + | + | + | + | + | + | + | + | T | + | + | + | + | T | + | + | + | + | T | 48 | | Tooth | Т | Т | | + | Т | | Т | Т | Т | | т | | Т | | т | т | Т | т | т | _ | Т | т | Т | | т | 1 | | Cardiovascular System | Blood vessel | + | 47 | | Heart | + | 49 | | Endocrine System | - | Adrenal cortex | + | 49 | | Capsule, sarcoma, metastatic, mesentery | 1 | | Adrenal medulla | + | 49 | | (slets, pancreatic
Adenoma | + | 48
2 | | Parathyroid gland | + | + | + | M | + | M | + | + | + | + | + | + | + | + | + | + | + | + | M | + | M | + | + | M | + | 40 | | Pituitary gland | + | + | M | | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | 45 | | Γhyroid gland | + | 49 | | Follicular cell, adenoma | | | | | | | | | | | | X | | | | | | | | | | | | | | 1 | X | | | | | 1 | D-18 Pyridine, NTP TR 470 TABLE D2 | | 0 | 2 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | |--|---|---|----|-----|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|----|----|---|--| | Number of Days on Study | 0 | 2 | | | | | 2 | | | | | | | 6 | | | 2 | | 2 | 2 | 2 | 2 | 2 | 2 | | | | 3 | 6 | 3 | 4 | 6 | 6 | 3 | 0 | 7 | 2 | 3 | 7 | 1 | 4 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | + | Carcass ID Number | 2 | 2 | 0 | 1 | 2 | 2 | 0 | 2 | 3 | 3 | 4 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | | | 4 | 0 | 1 | 6 | 6 | 7 | 3 | 5 | 6 | 1 | 8 | 5 | 7 | 5 | 4 | 2 | 6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 | | | Genital System | Epididymis | _ | _ | | | _ | | | Sarcoma, metastatic, mesentery | ' | | ' | | ' | ' | ' | | | ' | | ' | ' | ' | | ' | ' | | | ' | | | | ' | | | Penis | | + | Preputial gland | + | | | + | | | Sarcoma, metastatic, mesentery | | | | | | | | | X | | | | | | | | | | | | | | | | | | Prostate | + | I | + | | | Sarcoma, metastatic, mesentery | | | | | | | | | X | | | | | | | | | | | | | | | | | | Seminal vesicle | + | | | Sarcoma, metastatic, mesentery | | | | | | | | | X | | | | | | | | | | | | | | | | | | Testes | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Sarcoma, metastatic, mesentery | | | | | | | | | X | | | | | | | | | | | | | | | | | | Hematopoietic System | Bone marrow | _ | _ | | | + | | | Mast cell tumor malignant, | Г | - | Г | - | 1. | 1. | ' | 1 | 1 | 1 | | 1 | 1 | ' | | ' | 1 | 1 | ' | ' | - 1 | 1. | 1. | 1 | | | metastatic, skin | Lymph node | | | | | | | | | + | | | + | | | | | | | | + | | | | | | | Mediastinal, sarcoma, metastatic, mesentery | | | | | | | | | X | | | • | | | | | | | | | | | | | | | Lymph node, mandibular | + | | | Mast cell tumor malignant, | | | | | • | • | • | • | • | | | • | • | • | | • | | • | • | | • | • | • | • | | | metastatic, skin | Lymph node, mesenteric | + | + | + | + | Α | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Hemangioma | X | | | | Histiocytic sarcoma | Sarcoma, metastatic, mesentery | | | | | | | | | X | | | | | | | | | | | | | | | | | | Spleen | + | + | + | + | Α | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Hemangiosarcoma | Mast cell tumor malignant, | metastatic, skin | Thymus | + | + | + | + | + | + | M | + | | M | M | + | + | M | + | + | + | + | + | + | + | + | + | + | | | Sarcoma, metastatic, mesentery | | | | | | | | | X | | | | | | | | | | | | | | | | | | Integumentary System | Mammary gland | М | N | ΙN | I M | М | М | M | М | M | M | M | М | M | M | M | M | M | М | М | М | М | М | М | M | | | Skin | | | | | | | + | Subcutaneous tissue, mast cell tumor malignant | | | | , | | | | | | | | | | | | | | | | • | Musculoskeletal System | | | | | | | | , | | | | | | | | | | , | | | | | | | | | Bone | + | | | Skeletal muscle | | | | | | | | | + | | | | | | | | | | | | | | | | | | Sarcoma, metastatic, mesentery | | | | | | | | | X | | | | | | | | | | | | | | | | | | Nervous System | Brain | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
+ | + | + | + | + | + | | | Peripheral nerve | | | | | | | | + | | | | | | | | | | | | | | | | | | | Spinal cord | | | | | | | | + | | | | | | | | | | | | | | | | | | TABLE D2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Drinking Water Study of Pyridine: 500 ppm | individual Animal Tumor Pathology of N | iaic i | . 4 1 1 | | 111 | .11(| | 10 | MI J | 711 | 1117 | s | * * | ail | | ···· | -J | <i>J</i> 1 | J | Iu | | • • | -00 | . h | 7111 | | | |---|-------------|-------------|-------------|-----|---------|-----|-----------------------------| | Number of Days on Study | 7
2
2 | 7
2
2 | | | 7 2 2 2 | _ | 7
2
2 | | Carcass ID Number | 1
1
7 | 1 | 1
1
9 | 2 | 1 2 2 | 2 | 2 | 2 | 3 | 1
3
2 | 1
3
3 | 3 | 3 | 3 | 1
3
9 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | Total
Tissues/
Tumors | | Genital System | Epididymis Sarcoma, metastatic, mesentery | + | - + | - + | | + + | + + | 49
1 | | Penis Preputial gland Sarcoma, metastatic, mesentery | + | | - + | | + + | + + | 1
49
1 | | Prostate Sarcoma, metastatic, mesentery | + | | - + | | + + | + + | 48
1 | | Seminal vesicle
Sarcoma, metastatic, mesentery | + | | - + | | + + | + + | 49
1 | | Testes Sarcoma, metastatic, mesentery | + | | - + | | + + | + + | 49
1 | | Hematopoietic System Bone marrow | | | | | | | | | | | _ | | | | _ | | | _ | _ | | | _ | | | | 49 | | Mast cell tumor malignant,
metastatic, skin | Т | 7 | , | | | | · T | | | _ | _ | _ | Т | т | _ | _ | _ | _ | _ | _ | X | _ | | Т | _ | 1 | | Lymph node Mediastinal, sarcoma, metastatic, mesentery | | | | | | | | | + | | | | | | | | | | | | 21 | | | | | 4 | | Lymph node, mandibular Mast cell tumor malignant, | + | | - + | | + + | + + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | metastatic, skin
Lymph node, mesenteric
Hemangioma | + | . 4 | - + | | + + | + + | + | + | + | M | + | M | M | + | + | + | + | + | + | + | X
+ | + | + | + | + | 1
44
1 | | Histiocytic sarcoma
Sarcoma, metastatic, mesentery | X | | | 1 | | Spleen Hemangiosarcoma Most call types malignant | + | | - + | | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | 47
1 | | Mast cell tumor malignant,
metastatic, skin
Thymus | + | . + | - + | - N | vI ⊣ | + + | · M | I M | [+ | M | M | + | M | + | + | + | + | + | + | + | X
+ | + | + | + | + | 1
39 | | Sarcoma, metastatic, mesentery | 1 | | Integumentary System Mammary gland Skin Subcutaneous tissue, mast cell tumor malignant | | | | | | | | | | | M
+ | | | | | | | | | | | + | | | | 48
1 | | Musculoskeletal System Bone Skeletal muscle Sarcoma, metastatic, mesentery | + | . 4 | | | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | 49
2
1 | | Nervous System
Brain
Peripheral nerve
Spinal cord | + | . 4 | - + | | + + | + + | + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49
1
1 | TARLE D2 | | | _ | _ | - | _ | _ | _ | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | |---|---|---|-----|-----|---|---|---|-----|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|--| | NI L CD CL L | | 2 | 5 | 5 | - | 5 | - | 6 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | Number of Days on Study | 0 | 2 | 1 | 1 | 2 | 8 | | 3 3 | 4 | 4 | 5 | 6 | 6 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 3 | 6 | 3 | 4 | 6 | 6 | 3 | 0 7 | 2 | 3 | 7 | 1 | 4 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | . 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Carcass ID Number | 2 | 2 | 0 | 1 | 2 | 2 | 0 | 2 3 | 3 | 4 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | | | 4 | 0 | 1 | 6 | 6 | 7 | 3 | 5 6 | 1 | 8 | 5 | 7 | 5 | 4 | 2 | 6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 | | | Respiratory System | Lung | + | + | + | - + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Alveolar/bronchiolar adenoma | | | | | X | | | | Х | | | | | | | | | X | | | | | | | | Alveolar/bronchiolar adenoma, multiple | Alveolar/bronchiolar carcinoma | Hepatoblastoma, metastatic, liver | | | | | X | | | | | | | | | | | | | | X | X | | X | | | | Hepatocellular carcinoma, metastatic, liver | | | | | | | X | | X | | | | | | | | | | | | | X | | | | Nose | + | + | + | - + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Trachea | + | + | + | - + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Special Senses System
None | Urinary System | Kidney | + | + | + | - + | + | + | + | + - | + + | - A | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Hemangiosarcoma, metastatic, tissue NOS | | | | | | | | X | | | | | | | | | | | | | | | | | | Mast cell tumor malignant, metastatic, skin | Sarcoma, metastatic, mesentery | | | | | | | | 3 | ζ. | | | | | | | | | | | | | | | | | Renal tubule, adenoma | | | | | | | | • | | | | | | | | | | | | | X | | | | | Urinary bladder | + | + | A | + | Α | + | + | + 1 | Л + | - A | + | + | + | + | + | + | + | + | + | + | | | + | | | Hemangioma | | | . 1 | | | ' | | . 1 | | . 1 | ' | | | | | | • | | | | , | | X | Systemic Lesions | Multiple organs | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Histiocytic sarcoma | Lymphoma malignant | | X | | | | | | | | | | | | | | | | | X | | | | | | | Mesothelioma malignant | TABLE D2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Drinking Water Study of Pyridine: 500 ppm | Individual Ammai Tumoi Tathology of | wait. | | | | пс | ⊿ = 1 | ca | | <i>/</i> 111 | 1171 | 6 | * * | acc | 1 0 | ···· | a y | UI . | . J | iu | | • | 300 | , P | hiii | | | |---|-------|-----|-----|-----|----|--------------|----|---|--------------|------|---|-----|-----|-----|------|-----|-------------|-----|----|---|---|-----|-----|------|---|----------| | | 7 | | | Number of Days on Study | 2 | | | | 2 | | | | 1 | Total | | Carcass ID Number | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | Tissues/ | | | 7 | 8 | 9 | 1 | 2 | 3 | 8 | 9 | 0 | 2 | 3 | 4 | 5 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 0 | Tumors | | Respiratory System | Lung | + | - + | - + | 49 | | Alveolar/bronchiolar adenoma | | | | | | X | | | | | | | | | X | | | | X | | | | | X | | 7 | | Alveolar/bronchiolar adenoma, multiple | | X | 1 | | Alveolar/bronchiolar carcinoma | | | | | | | | X | | | | | | | | | | | | | | | | | | 1 | | Hepatoblastoma, metastatic, liver | | | | | | X | | | | | | | | | | | | | | | X | X | | | | 7 | | Hepatocellular carcinoma, metastatic, liver | | X | X | | | | | X | | X | | | | X | | X | | | X | | | | X | | | 11 | | Nose | + | - + | + | - + | 49 | | Trachea | + | - + | 49 | | Special Senses System
None | Urinary System | Kidney | + | - + | - + | - + | 48 | | Hemangiosarcoma, metastatic, tissue NOS | 1 | | Mast cell tumor malignant, metastatic, skin | X | | | | | 1 | | Sarcoma, metastatic, mesentery | 1 | | Renal tubule, adenoma | 1 | | Urinary bladder | + | - + | - + | - + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | 44 | | Hemangioma | 1 | | Systemic Lesions | |
 | Multiple organs | + | - + | - + | 49 | | Histiocytic sarcoma | X | | | 1 | | Lymphoma malignant | | | | | | | | | X | | | | | | | | | | | | | | | | | 3 | | Mesothelioma malignant | | | | | | | | | | X | | | | | | | | | | | | | | | | 1 | D-22 Pyridine, NTP TR 470 TABLE D2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Drinking Water Study of Pyridine: 1,000 ppm | | of Male Mice in the 2-Year Drinking Water Study of Pyridine: 1,000 ppm | |--------------------------------------|--| | | 0 0 0 4 4 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 | | lumber of Days on Study | 0 0 5 0 3 9 2 3 4 6 7 8 8 9 0 2 2 2 2 2 2 2 2 2 2 | | | 3 9 9 6 2 4 4 9 9 5 2 0 6 9 9 2 2 2 2 2 2 2 2 2 2 | | | 1 | | Carcass ID Number | 5 7 6 7 7 7 9 6 7 5 8 9 5 5 8 5 5 5 5 6 6 6 6 6 | | | 6 0 8 3 5 1 4 6 4 7 8 8 4 3 4 1 2 5 8 9 0 1 3 4 5 | | Alimentary System | | | Esophagus | + | | Gallbladder | + A + A M + + A A A M A M + + + + + + + | | ntestine large, colon | + | | ntestine large, rectum | + + + + + + + + + + + A + + + + + + + + | | ntestine large, cecum | + + + + A A + + + A A A + + + + + + + + | | ntestine small, duodenum | + A + A A A + + + A A + + + + + + + + + | | ntestine small, jejunum | + A + A A + + + + + A A + + A + + + + + | | Carcinoma | X | | ntestine small, ileum | + A + A A A + + + A A + + + + + + + + + | | Liver | + | | Hepatoblastoma | \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} | | Hepatoblastoma, multiple | X X | | Hepatocellular carcinoma | $\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} $ | | Hepatocellular carcinoma, multiple | \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} | | Hepatocellular adenoma | \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} | | Hepatocellular adenoma, multiple | X XXX XXXXXX | | Squamous cell carcinoma, metastatic, | | | uncertain primary site | X | | Mesentery | + + + | | Squamous cell carcinoma, metastatic, | | | uncertain primary site | X | | Pancreas | + | | Squamous cell carcinoma, metastatic, | | | uncertain primary site | X | | Salivary glands | + | | Stomach, forestomach | + + + + A + + + + + + + + + + + + + + + | | Stomach, glandular | + + + + A A + + + + + + A + + + + + + + | | Squamous cell carcinoma, metastatic, | | | uncertain primary site | X | | Γooth | + | | Cardiovascular System | | | Blood vessel | M + + + + + + + + + + + + + + + + + + + | | Heart | + | | Endocrine System | | | Adrenal cortex | + | | Adenoma | X | | Capsule, squamous cell carcinoma, | ·• | | metastatic, uncertain primary site | X | | Adrenal medulla | + | | slets, pancreatic | +++++++++++++++++++++++++++++++++++++++ | | Adenoma | | | Parathyroid gland | + + + + + M + M + M + M + M + M + M + + + + + M M + | | Pituitary gland | +++++++++++++++++++++++ | | Γhyroid gland | +++++++++++++++++++++++ | | Follicular cell, adenoma | X | | General Body System | | | Peritoneum | + | | Squamous cell carcinoma, metastatic, | | | uncertain primary site | X | TABLE D2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Drinking Water Study of Pyridine: 1,000 ppm | Number of Days on Study | 7
2
2 7
2
3 | 7
2
3 | 7
2
3 | 7
2
3 | 7
2
3 | | |---|----------------|-----------------------------| | Carcass ID Number | 1
7
2 | 7 | 1
7
7 | 1
7
8 | 1
7
9 | 1
8
0 | 8 | 1
8
2 | 1
8
3 | 8 | 1
8
6 | 8 | 8 | 9 | 1
9
1 | 9 | 1
9
5 | 1
9
7 | 1
9
9 | 2
0
0 | 1
6
2 | 1
6
7 | 1
6
9 | | 9 | Total
Tissues/
Tumors | | Alimentary System | Esophagus | + | 50 | | Gallbladder | + | + | + | + | M | + | M | M | + | M | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | 36 | | Intestine large, colon | + | 50 | | Intestine large, rectum | + | 49 | | Intestine large, cecum | + | 45 | | Intestine small, duodenum | + | 44 | | ntestine small, jejunum
Carcinoma | + | 44
1 | | ntestine small, ileum | + | 44 | | Liver | + | 50 | | Hepatoblastoma | | | X | | X | | | | | | X | | | X | X | X | X | | X | | | | | | X | 13 | | Hepatoblastoma, multiple | 2 | | Hepatocellular carcinoma | | X | X | | X | _ | X | X | X | _ | _ | X | _ | | _ | X | | _ | _ | | _ | X | X | | _ | 22 | | Hepatocellular carcinoma, multiple | | | | | | X | | | | X | X | | X | | X | | | | X | | X | | | | X | 18 | | Hepatocellular adenoma | - - | | | X | | | | | | | | X | X | | | | | X | | | X | | | X | | 11 | | Hepatocellular adenoma, multiple | X | X | X | | | X | X | | X | | X | | | X | X | X | X | | X | X | | X | | | X | 28 | | Squamous cell carcinoma, metastatic, uncertain primary site | 1 | | Mesentery | | | | + | 4 | | Squamous cell carcinoma, metastatic, | uncertain primary site | 1 | | Pancreas | + | 50 | | Squamous cell carcinoma, metastatic, | _ | | uncertain primary site | 1 | | Salivary glands | + | 50 | | Stomach, forestomach | + | 49 | | Stomach, glandular | + | 47 | | Squamous cell carcinoma, metastatic, | uncertain primary site | 1 | | Footh | + | | | | | | | | | | | | | + | | | | | | | | | | | | 3 | | Cardiovascular System | 40 | | Blood vessel | + | 49
50 | | Heart | + | 50 | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | 49 | | Adenoma | 1 | | Capsule, squamous cell carcinoma, | metastatic, uncertain primary site | 1 | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | | | | + | + | + | + | + | + | + | 49 | | slets, pancreatic | + | 50 | | Adenoma | _ | | - | | | | | | | | | | | | | X | | | | | | | _ | | | 1 | | Parathyroid gland | M | + | | | + | | M | | | | | | | | | | | | + | + | + | + | | M | | 31 | | Pituitary gland | + | + | + | | | + | + | | | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Γhyroid gland | + | + | + | | + | 50 | | Follicular cell, adenoma | | | | X | 2 | | General Body System | Peritoneum | 1 | | Squamous cell carcinoma, metastatic, | uncertain primary site | 1 | D-24 Pyridine, NTP TR 470 TABLE D2 | IABLE D2 Individual Animal Tumor Pathology of | Male 1 | Mi | ce i | n t | he : | 2-Ն | Zea: | r I |)riı | ıki | ng | W | ate | r S | tud | ly (| of l | Pyr | idi | ine | : 1 | 1,0 | 00 | pp | m | | |--|-------------|----|--------|-----|------|-----
-------------|-----|--------|-----|--------|--------|-------------|--------|--------|--------|-------------|-----|-----|--------|-----|-----|--------|----|---|--| | Number of Days on Study | 0 | 0 | 0
5 | | 4 | | 2 | | 6
4 | 6 | 6
7 | 8 | 8 | 9 | 0 | | 2 | 7 | 7 | 7 | 7 2 | 7 | 7 2 | 7 | | | | | 3 | 9 | 9 | | | | | | | | | | 6 | | | | | | | | | | | | | | | Carcass ID Number | 1
5
6 | 7 | 6 | 7 | 7 | 7 | 9 | 6 | 7 | 5 | 8 | 9 | 1
5
4 | 5 | 8 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | | | Genital System | | 0 | 0 | 3 | 3 | 1 | _ | 0 | | , | 0 | 0 | _ | 3 | _ | 1 | | 3 | 0 | , | 0 | 1 | 3 | _ | 3 | | | Epididymis Squamous cell carcinoma, metastatic, | + | | | uncertain primary site Preputial gland | + | + | + | + | + | + | + | + | + | + | | | M | | | + | | + | + | + | + | + | + | + | + | | | Prostate Seminal vesicle Squamous cell carcinoma, metastatic, | + | + | + | + | + | + | + | + | + | + | | + | M
+ | | | + | | | + | + | + | + | + | + | + | | | uncertain primary site Testes Squamous cell carcinoma, metastatic, uncertain primary site | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | | | | | | | | | | | | | | | X | | | | | | | | | | | | | | | | Hematopoietic System Bone marrow Lymph node | + | + | + | + | + | + | + | + | + | + | + | ++ | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Mediastinal, squamous cell carcinoma,
metastatic, uncertain primary site
Lymph node, mandibular | + | + | + | + | + | + | + | + | + | + | + | X
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Lymph node, mesenteric
Squamous cell carcinoma, metastatic,
uncertain primary site | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Spleen Hemangiosarcoma Squamous cell carcinoma, metastatic, | + | + | + | + | + | + | + | M | + | + | + | | + | + | + | + | +
X | + | + | + | + | + | + | + | + | | | uncertain primary site
Thymus | + | + | + | + | + | M | + | + | + | + | + | X
+ | + | + | M | + | + | + | + | + | + | + | + | + | + | | | Integumentary System | Mammary gland
Skin | M
+ | | | | | | | | | | | | M
+ | | | | | | | | | | | | | | | Subcutaneous tissue, basal cell adenoma
Subcutaneous tissue, hemangioma | | | | | | | | | | | | | | | | | X | | | | | | | | | | | Musculoskeletal System | Bone Skeletal muscle Squamous cell carcinoma, metastatic, | + | | | uncertain primary site | | | | | | | | | | | | X | | | | | | | | | | | | | | | | Nervous System
Brain | + | | | Respiratory System Lung | + | | | Alveolar/bronchiolar adenoma
Alveolar/bronchiolar adenoma, multiple
Alveolar/bronchiolar carcinoma | | | | | | | | X | | | | | X | | | | | X | | | | | | | | | | Hepatoblastoma, metastatic, liver
Hepatocellular carcinoma, metastatic, liver
Nose | + | + | + | + | + | + | X
X
+ | + | + | + | + | X
+ | + | X
+ | X
+ | X
+ | X
X
+ | + | + | X
+ | + | + | X
+ | + | + | | | Trachea | + | | | f Male | Mi | ce | in | the | 2- | Yea | r I |)rii | nki | ng | W | ate | r S | tuc | dy | of 1 | Pyı | ridi | ine | : 1 | 1,0 | 00 | pp | m | | |--------|---|---|---|---|---|---|---|---|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | 2 | 2 | 2 | 2 | 2 | 7
2
2 7
2
3 | 7
2
3 | 7
2
3 | 2 | 2 | | | 7 | 7 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 1
9
9 | 0 | 6 | 1
6
7 | 1
6
9 | 9 | 9 | Total
Tissues/
Tumors | 50 | | + | + | - + | - + | - + | 50 | | + | + | - + | - + | 49 | | + | + | - +
- + | - +
- + | - +
- + | 49
50 | | | | | ' | 1 | | + | + | - + | - + | - + | 50 | + | + | - + | - + | - + | 50
2 | 1
50 | | + | + | - + | - + | - + | 50 | 1 | | + | + | - + | - + | - + | 49
1 | | + | + | - + | - + | - + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 1
47 | + | + | - + | | | + | 50
1 | | | | | Λ | 1 | + | + | - + | - + | - + | 50
1 | 1 | + | + | - + | - + | - + | 50 | 50 | | + | X | - + | - + | - + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | +
X | +
X | + | + | + | + | 50
6 | X | | 2 | | | | | | | | | | | | | | X | | | | v | | | | | | | | | 1 3 | | | | Х | | X | | | X | | | | | | | | X | Λ | | | | | X | | | | 13 | | + | + | - + | - + | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | | 7 2 2 1 7 2 + + + + + + + + + + + + + + + + + + | 7 7 7 2 2 2 2 2 1 1 1 7 7 7 2 6 6 + + + + + + + + + + + + + + + + + | 7 7 7 7 2 2 2 2 2 2 2 2 2 2 1 1 1 1 7 7 7 7 | 7 7 7 7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 7 7 7 7 7 7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 | 7 7 7 7 7 7 7 7 7 7 2 2 2 2 2 2 2 2 2 2 | 7 7 7 7 7 7 7 7 7 7 7 7 2 2 2 2 2 2 2 2 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 2 2 2 2 2 2 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | D-26 Pyridine, NTP TR 470 TABLE D2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Drinking Water Study of Pyridine: 1,000 ppm | Individual Animal Tumor Pathology | of Male Mice in the 2-Year Drinking Water Study of Pyridine: 1,000 ppm | |--------------------------------------|---| | | 0 0 0 4 4 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 | | Number of Days on Study | $0\ 0\ 5\ 0\ 3\ 9\ 2\ 3\ 4\ 6\ 7\ 8\ 8\ 9\ 0\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\ 2$ | | | 3 9 9 6 2 4 4 9 9 5 2 0 6 9 9 2 2 2 2 2 2 2 2 2 2 | | | 1 | | Carcass ID Number | 5 7 6 7 7 7 9 6 7 5 8 9 5 5 8 5 5 5 5 6 6 6 6 6 | | | 6 0 8 3 5 1 4 6 4 7 8 8 4 3 4 1 2 5 8 9 0 1 3 4 5 | | Special Senses System | | | Eye | + | | Harderian gland | + | | Adenoma | X | | Urinary System | | | Kidney | + | | Urinary bladder | + | | Squamous cell carcinoma, metastatic, | | | uncertain primary site | X | | Systemic Lesions | | | Multiple organs | + | | Lymphoma malignant | X | | Mesothelioma malignant | X | TABLE D2 Individual Animal Tumor Pathology of Male Mice in the 2-Year Drinking Water Study of Pyridine: 1,000 ppm | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | |
---|-------------|--------|--------|-----------------------------| | Number of Days on Study | 7
2
2 | · · | 7
2
2 7
2
3 | 7
2
3 | 7
2
3 | 7
2
3 | 7
2
3 | 7 2 3 | | | Carcass ID Number | 1
7
2 | | 1
7
6 | 1
7
7 | 1
7
8 | 1
7
9 | 1
8
0 | 1
8
1 | 1
8
2 | 1
8
3 | 1
8
5 | 1
8
6 | 1
8
7 | 1
8
9 | 1
9
0 | 1
9
1 | 1
9
2 | 1
9
5 | 1
9
7 | 1
9
9 | 2
0
0 | 1
6
2 | 1
6
7 | 1
6
9 | 1
9
3 | - | | Total
Tissues/
Tumors | | Special Senses System Eye Harderian gland Adenoma | 1
1
1 | | Urinary System Kidney Urinary bladder Squamous cell carcinoma, metastatic, uncertain primary site | - | +
+ | +
+ | +
+ | +++ | +++ | +++ | + | +++ | ++ | +++ | +++ | + | + | +++ | ++ | +++ | +++ | +++ | + | + | + | +++ | +++ | + | | +
+ | 50
50 | | Systemic Lesions Multiple organs Lymphoma malignant Mesothelioma malignant | - | + | | + | 50
1
1 | D-28 Pyridine, NTP TR 470 TABLE D3 Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 250 ppm | 500 ppm | 1,000 ppm | |---|-------------|--------------|--------------|--------------| | Adrenal Cortex: Adenoma | | | | | | Overall rate ^a | 3/49 (6%) | 0/49 (0%) | 0/49 (0%) | 1/49 (2%) | | Adjusted rate ^b | 6.8% | 0.0% | 0.0% | 2.4% | | erminal rate ^c | 2/35 (6%) | 0/27 (0%) | 0/34 (0%) | 1/34 (3%) | | irst incidence (days) | 598 | e | | 722 (T) | | oly-3 test ^d | P = 0.234N | P = 0.134N | P = 0.126N | P=0.321N | | Iarderian Gland: Adenoma | | | | | | Overall rate | 3/50 (6%) | 0/50 (0%) | 0/49 (0%) | 1/50 (2%) | | djusted rate | 6.7% | 0.0% | 0.0% | 2.3% | | Cerminal rate | 1/35 (3%) | 0/28 (0%) | 0/34 (0%) | 1/35 (3%) | | First incidence (days) | 633 | | | 722 (T) | | oly-3 test | P = 0.235N | P = 0.133N | P = 0.130N | P = 0.320N | | Harderian Gland: Adenoma or Carcinoma | | | | | | Overall rate | 5/50 (10%) | 0/50 (0%) | 0/49 (0%) | 1/50 (2%) | | Adjusted rate | 11.1% | 0.0% | 0.0% | 2.3% | | Terminal rate | 3/35 (9%) | 0/28 (0%) | 0/34 (0%) | 1/35 (3%) | | First incidence (days) | 633 | | | 722 (T) | | oly-3 test | P = 0.052N | P = 0.038N | P = 0.036N | P = 0.111N | | .iver: Hepatocellular Adenoma | | | | | | Overall rate | 29/50 (58%) | 40/50 (80%) | 34/49 (69%) | 39/50 (78%) | | adjusted rate | 63.2% | 88.0% | 75.7% | 84.9% | | erminal rate | 24/35 (69%) | 27/28 (96%) | 27/34 (79%) | 31/35 (89%) | | irst incidence (days) | 520 | 522 | 513 | 406 | | oly-3 test | P = 0.031 | P = 0.003 | P = 0.134 | P=0.011 | | Liver: Hepatocellular Carcinoma | | | | | | Overall rate | 15/50 (30%) | 35/50 (70%) | 41/49 (84%) | 40/50 (80%) | | adjusted rate | 32.3% | 78.7% | 89.9% | 85.1% | | erminal rate | 9/35 (26%) | 23/28 (82%) | 32/34 (94%) | 28/35 (80%) | | First incidence (days) | 574 | 522 | 513 | 406 | | Poly-3 test | P<0.001 | P<0.001 | P<0.001 | P < 0.001 | | iver: Hepatocellular Adenoma or Carcinoma | | | | | | Overall rate | 37/50 (74%) | 45/50 (90%) | 45/49 (92%) | 47/50 (94%) | | Adjusted rate | 78.0% | 96.5% | 96.8% | 100.0% | | Terminal rate | 28/35 (80%) | 28/28 (100%) | 34/34 (100%) | 35/35 (100%) | | First incidence (days) | 520 | 522 | 513 | 406 | | Poly-3 test | P<0.001 | P = 0.004 | P = 0.004 | P < 0.001 | | Liver: Hepatoblastoma | | | | | | Overall rate | 2/50 (4%) | 18/50 (36%) | 22/49 (45%) | 15/50 (30%) | | Adjusted rate | 4.5% | 41.2% | 49.8% | 34.4% | | erminal rate | 2/35 (6%) | 11/28 (39%) | 17/34 (50%) | 13/35 (37%) | | irst incidence (days) | 722 (T) | 549 | 514 | 624 | | oly-3 test | P = 0.005 | P<0.001 | P<0.001 | P<0.001 | | Liver: Hepatocellular Carcinoma or Hepatoblastoma | | | | | | Overall rate | 17/50 (34%) | 42/50 (84%) | 45/49 (92%) | 42/50 (84%) | | Adjusted rate | 36.7% | 91.3% | 96.8% | 89.4% | | Terminal rate | 11/35 (31%) | 26/28 (93%) | 34/34 (100%) | 30/35 (86%) | | First incidence (days) | 574 | 522 | 513 | 406 | | Poly-3 test | P < 0.001 | P<0.001 | P<0.001 | P<0.001 | TABLE D3 Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ррш | 250 ppm | 500 ppm | 1,000 ppm | |--|-------------------|--------------|-------------------|-------------------| | Liver: Hepatocellular Adenoma, Hepatocellular Carcin | noma, or Hepatobl | lastoma | | | | Overall rate | 38/50 (76%) | 47/50 (94%) | 46/49 (94%) | 47/50 (94%) | | Adjusted rate | 80.1% | 98.9% | 98.5% | 100.0% | | Terminal rate | 29/35 (83%) | 28/28 (100%) | 34/34 (100%) | 35/35 (100%) | | First incidence (days) | 520 | 522 | 513 | 406 | | Poly-3 test | P<0.001 | P = 0.002 | P = 0.003 | P<0.001 | | Lung: Alveolar/bronchiolar Adenoma | | | | | | Overall rate | 12/49 (24%) | 5/50 (10%) | 8/49 (16%) | 8/50 (16%) | | Adjusted rate | 27.0% | 11.9% | 18.5% | 18.3% | | Terminal rate | 9/35 (26%) | 4/28 (14%) | 6/34 (18%) | 6/35 (17%) | | First incidence (days) | 520 | 546 | 526 | 639 | | Poly-3 test | P = 0.303N | P = 0.065N | P = 0.245N | P = 0.239N | | Lung: Alveolar/bronchiolar Adenoma or Carcinoma | | | | | | Overall rate | 13/49 (27%) | 7/50 (14%) | 9/49 (18%) | 8/50 (16%) | | Adjusted rate | 29.1% | 16.6% | 20.8% | 18.3% | | Terminal rate | 9/35 (26%) | 6/28 (21%) | 7/34 (21%) | 6/35 (17%) | | First incidence (days) | 520 | 546 | 526 | 639 | | Poly-3 test | P = 0.197N | P = 0.130N | P = 0.258N | P = 0.174N | | Spleen: Hemangiosarcoma | | | | | | Overall rate | 1/49 (2%) | 3/50 (6%) | 1/47 (2%) | 1/49 (2%) | | Adjusted rate | 2.3% | 7.1% | 2.4% | 2.4% | | Terminal rate | 1/35 (3%) | 2/28 (7%) | 1/34 (3%) | 1/35 (3%) | | First incidence (days) | 722 (T) | 532 | 722 (T) | 722 (T) | | Poly-3 test | P=0.459N | P=0.292 | P=0.748 | P=0.755 | | All Organs: Hemangioma | | | | | | Overall rate | 0/50 (0%) | 3/50 (6%) | 2/49 (4%) | 1/50 (2%) | | Adjusted rate | 0.0% | 7.2% | 4.7% | 2.3% | | Terminal rate | 0/35 (0%) | 1/28 (4%) | 2/34 (6%) | 1/35 (3%) | | First incidence (days) | (***) | 680 | 722 (T) | 722 (T) | | Poly-3 test | P = 0.536 | P = 0.107 | P=0.225 | P=0.493 | | All Organs: Hemangiosarcoma | | | | | | Overall rate | 2/50 (4%) | 4/50 (8%) | 2/49 (4%) | 1/50 (2%) | | Adjusted rate | 4.5% | 9.4% | 4.7% | 2.3% | | Terminal rate | 1/35 (3%) | 2/28 (7%) | 1/34 (3%) | 1/35 (3%) | | First incidence (days) | 706 | 532 | 630 | 722 (T) | | Poly-3 test | P=0.276N | P=0.313 | P=0.678 | P=0.512N | | All Organs: Hemangioma or Hemangiosarcoma | | | | | | Overall rate | 2/50 (4%) | 7/50 (14%) | 4/49 (8%) | 1/50 (2%) | | Adjusted rate | 4.5% | 16.4% | 9.4% | 2.3% | | Terminal rate | 1/35 (3%) | 3/28 (11%) | 3/34 (9%) | 1/35 (3%) | | First incidence (days) | 706 | 532 | 630 | 722 (T) | | Poly-3 test | P=0.215N | P=0.067 | P=0.316 | P=0.512N | | All Organs: Malignant Lymphoma | | | | | | Overall rate | 3/50 (6%) | 3/50 (6%) | 3/49 (6%) | 1/50 (2%) | | Adjusted rate | 5/50 (6%)
6.6% | 7.1% | 3/49 (6%)
6.9% | 2.3% | | Terminal rate | 0.0%
2/35 (6%) | 0/28 (0%) | 6.9%
2/34 (6%) | 2.3%
1/35 (3%) | | First incidence (days) | 542 | 595 | 226 | 722 (T) | | Poly-3 test | P=0.233N | P=0.632 | P=0.643 | P=0.322N | | - y - ···- | | | | | D-30 Pyridine, NTP TR 470 TABLE D3 Statistical Analysis of Primary Neoplasms in Male Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ррт | 250 ppm | 500 ppm | 1,000 ppm | |---|-------------|--------------|--------------|--------------| | All Organs: Benign Neoplasms | | | | | | Overall rate | 35/50 (70%) | 42/50 (84%) | 36/49 (73%) | 39/50 (78%) | | Adjusted rate | 74.7% | 91.2% | 79.1% | 84.9% | | Terminal rate | 27/35 (77%) | 27/28 (96%) | 28/34 (82%) | 31/35 (89%) | | First incidence (days) | 520 | 522 | 513 | 406 | | Poly-3 test | P = 0.275 | P = 0.023 | P = 0.398 | P=0.157 | | All Organs: Malignant Neoplasms | | | | | | Overall rate | 22/50 (44%) | 46/50 (92%) | 47/49 (96%) | 42/50 (84%) | | Adjusted rate | 46.5% | 94.8% | 98.4% | 89.4% | | Terminal rate | 13/35 (37%) | 26/28 (93%) | 34/34 (100%) | 30/35 (86%) | | First incidence (days) | 542 | 237 | 226 | 406 | | Poly-3 test | P<0.001 | P < 0.001 | P<0.001 | P<0.001 | | All Organs: Benign or Malignant Neoplasms | | | | | | Overall rate | 43/50 (86%) | 49/50 (98%) | 48/49 (98%) | 47/50 (94%) | | Adjusted rate | 88.7% | 100.0% | 100.0% | 100.0% | | Terminal rate | 31/35 (89%) | 28/28 (100%) | 34/34 (100%) | 35/35 (100%) | | First incidence (days) | 520 | 237 | 226 | 406 | | Poly-3 test | P = 0.009 | P = 0.018 | P = 0.019 | P = 0.021 | ## (T)Terminal sacrifice Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for adrenal gland, liver, lung, and spleen; for other tissues, denominator is number of animals necropsied. b Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality ^c Observed incidence at terminal kill d Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in an exposure group is indicated by N. Not
applicable; no neoplasms in animal group Table D4 Historical Incidence of Liver Neoplasms in Untreated Male $B6C3F_1$ Mice^a | | | Inci | dence in Controls | | |--------------------------------------|------------------------------------|------------------------------------|--------------------------------|---| | | Hepatocellular
Adenoma | Hepatocellular
Carcinoma | Hepatoblastoma | Hepatocellular Adenoma,
Hepatocellular Carcinoma,
or Hepatoblastoma | | Overall Historical Incidence | | | | | | Total
Standard deviation
Range | 179/289 (61.9%)
9.1%
47%-70% | 80/289 (27.7%)
11.7%
10%-42% | 9/289 (3.1%)
5.0%
0%-12% | 212/289 (73.4%)
11.7%
53%-81% | ^a Data as of 1 August 1997 D-32 Pyridine, NTP TR 470 TABLE D5 Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Drinking Water Study of Pyridine^a | | 0 ppm | 250 ppm | 500 ppm | 1,000 ppm | |---|------------------|-------------------|------------------|------------------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | | | | | | Accidental deaths | 2 | 1 | 1 | 3 | | Moribund | 2 | 3 | 3 | 1 | | Natural deaths | 11 | 18 | 11 | 11 | | Survivors | | | _ | | | Other | 25 | 20 | 1 | 25 | | Terminal sacrifice | 35 | 28 | 34 | 35 | | Animals examined microscopically | 50 | 50 | 49 | 50 | | Alimentary System | | | | | | Gallbladder | (43) | (33) | (30) | (36) | | Hyperplasia | | | | 1 (3%) | | Infiltration cellular, lymphocyte | 1 (2%) | | | | | Ulcer | (10) | (10) | 46 | 1 (3%) | | Intestine large, colon | (48) | (48) | (46) | (50) | | Inflammation, chronic active | 1 (2%) | (44) | (42) | (45) | | Intestine large, cecum | (47) | (44) | (42) | (45) | | Lymphoid tissue, hyperplasia
Lymphoid tissue, necrosis | | | 2 (5%)
1 (2%) | 1 (2%) | | Intestine small, jejunum | (40) | (46) | (42) | (44) | | Peyer s patch, hyperplasia, lymphoid | 1 (3%) | 1 (2%) | 3 (7%) | 1 (2%) | | Liver | (50) | (50) | (49) | (50) | | Angiectasis | 1 (2%) | 1 (2%) | (12) | (0.0) | | Basophilic focus | 3 (6%) | 1 (2%) | | | | Clear cell focus | 1 (2%) | 3 (6%) | 1 (2%) | 2 (4%) | | Cyst | | | 1 (2%) | | | Eosinophilic focus | 19 (38%) | 22 (44%) | 18 (37%) | 15 (30%) | | Hematopoietic cell proliferation | | 1 (2%) | 1 (2%) | | | Hemorrhage | 1 (2%) | | | 4 (2.01) | | Infiltration cellular, mixed cell | 1 (2%) | 1 (2%) | 1 (201) | 1 (2%) | | Mixed cell focus | 4 (8%) | 2 (4%) | 1 (2%) | 1 (2%) | | Necrosis Vacuolization cytoplasmic, diffuse | 3 (6%)
2 (4%) | 5 (10%)
1 (2%) | 7 (14%) | 6 (12%) | | Centrilobular, congestion | 1 (2%) | 1 (2%) | | | | Centrilobular, hypertrophy | 1 (270) | | | 1 (2%) | | Centrilobular, vacuolization cytoplasmic | 1 (2%) | 2 (4%) | | 6 (12%) | | Periportal, vacuolization cytoplasmic | 1 (2%) | _ (.,,, | | 2 (4%) | | Mesentery | (2) | (7) | (6) | (4) | | Fat, necrosis | 2 (100%) | 3 (43%) | 1 (17%) | 2 (50%) | | Oral mucosa | (1) | | | | | Ulcer | 1 (100%) | | | | | Pancreas | (49) | (50) | (48) | (50) | | Acinus, atrophy | 3 (6%) | 2 (4%) | 1 (2%) | 1 (2%) | | Acinus, cytoplasmic alteration | | | 1 (2%) | 1 (2%) | | Duct, cyst | (49) | (50) | 1 (2%) | 1 (2%) | | Salivary glands | (48) | (50) | (49) | (50) | | Infiltration cellular, lymphocyte
Stomach, forestomach | 31 (65%)
(49) | 33 (66%)
(50) | 26 (53%)
(48) | 34 (68%)
(49) | | Inflammation, chronic | (42) | (30) | (סד) | 1 (2%) | | Inflammation, chronic active | 1 (2%) | 1 (2%) | 2 (4%) | 2 (4%) | | Ulcer | - (=/0) | - (270) | - (170) | 1 (2%) | | Epithelium, hyperplasia | | 1 (2%) | 2 (4%) | 2 (4%) | ^a Number of animals examined microscopically at the site and the number of animals with lesion TABLE D5 Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Drinking Water Study of Pyridine | | 250 ppm | 500 ppm | 1,000 ppm | |--------------|--|--|---| | | | | | | (49) | (50) | (48) | (47) | | 2 (4%) | 2 (4%) | 4 (8%) | 1 (2%) | | | | | | | (42) | | (1) | (3) | | 42 (100%) | 10 (100%) | 1 (100%) | 3 (100%) | | | | | | | (50) | (49) | (47) | (49) | | | | | | | (50) | (50) | | (50) | | | 2 (6%) | 1 (2%) | | | | 3 (0%) | | 1 (2%) | | 2 (4%) | | | 1 (2%) | | 1 (2%) | | | | | | | | | | (49) | (49) | (49) | (49) | | 18 (37%) | 13 (27%) | 9 (18%) | 11 (22%) | | 2 (4%) | 1 (2%) | 2 (4%) | · · · / | | 2 (4%) | | | 1 (2%) | | 42 (86%) | 29 (59%) | 30 (61%) | 29 (59%) | | (49) | (50) | (48) | (50) | | (21) | | | (21) | | | | (40) | (31) | | | | (45) | (49) | | | | (43) | (47) | | 1 (2/0) | 1 (2/0) | 1 (2%) | | | (49) | (50) | | (50) | | \ - / | 1 (2%) | \ - / | ζ/ | | 1 (2%) | ` ' | | | | 8 (16%) | 14 (28%) | 20 (41%) | 12 (24%) | | | | | | | _ | _ | | | | (50) | (50) | (49) | (50) | | (50) | | (17) | (50) | | 1 (2%) | 4 (8%) | 4 (8%) | 4 (8%) | | 1 (2%) | 1 (2%) | ` ' | 3 (6%) | | • • | • • | (1) | , , | | | | 1 (100%) | | | (50) | | (49) | (49) | | | ` , | * * | 42 (86%) | | | | | 28 (57%) | | | ` , | | 12 (24%)
6 (12%) | | | (42) (42) (42) (42) (42) (100%) (50) 1 (2%) (50) 2 (4%) 1 (2%) (48) 2 (4%) 42 (86%) (49) (31) 1 (3%) (46) 1 (2%) (49) 1 (2%) (49) 1 (2%) (50) 1 (2%) (50) | (42) (100%) (10) (100%) (50) (49) (1 (2%) (50) (50) (31) (35) (46) (47) (1 (2%) (49) (1 (2%) (49) (49) (49) (50) (50) (50) (49) (49) (50) (50) (50) (50) (40) (40) (47) (1 (2%) (1 (2%) (2 (4%) (47) (1 (2%) (1 (2%) (49) (49) (50) (50) (50) (50) (50) (1 (2%) (49) (49) (50) (1 (2%) (49) (49) (50) (1 (2%) (49) (49) (50) (1 (2%) (49) (49) (50) (1 (2%) (49) (49) (50) (1 (2%) (49) (50) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (50) (50) (50) (50) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (49) (49) (49) (49) (50) (50) (50) (50) (50) (48
(96%) (45 (90%) (29 (58%) (25 (50%) (18 (36%) (| 2 (4%) 2 (4%) 4 (8%) (42) (10) (1) 42 (100%) 10 (100%) 1 (100%) (50) (50) (49) (49) (49) (49) (49) (49) (49) (49) (49) (49) (49) (49) (49) (48) (2 (4%) (42 (86%) (29 (59%) (30) (48) (49) (50) (48) (49) (50) (40) (1 (2%) (46) (47) (45) (1 (2%) (46) (47) (45) (1 (2%) (49) (1 (2%) (49) (1 (2%) (49) (1 (2%) (1 (2%) (1 (2%) (1 (2%) (1 (2%) (1 (2%) (1 (2%) (1 (2%) (1 (2%) (1 (2%) (1 (2%) (1 (2%) (1 (100%) (49) (48 (96%) (48 (96%) (45 (90%) (47 (96%) (47 (96%) (49 (96%) (48 (96%) (49 (| D-34 Pyridine, NTP TR 470 TABLE D5 Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 250 ppm | 500 ppm | 1,000 ppm | |--|------------|--------------------|--------------------|-----------| | Genital System (continued) | | | | | | Prostate | (50) | (48) | (48) | (49) | | Cyst | 1 (2%) | (- / | (- / | | | Hyperplasia | 1 (2%) | | | 1 (2%) | | Inflammation, chronic | 7 (14%) | 3 (6%) | 10 (21%) | 8 (16%) | | Inflammation, chronic active | 1 (2%) | | | 1 (2%) | | Γestes | (50) | (50) | (49) | (50) | | Atrophy | 2 (4%) | 1 (2%) | 1 (2%) | 1 (2%) | | Mineralization | 1 (2%) | | | | | Interstitial cell, hyperplasia | 1 (2%) | | | | | Hematopoietic System | | | | | | Bone marrow | (49) | (50) | (49) | (50) | | Atrophy | 2 (4%) | (50) | (17) | (00) | | Erythroid cell, hyperplasia | = (: /v) | 1 (2%) | | | | Myeloid cell, hyperplasia | 1 (2%) | 1 (2%) | | 1 (2%) | | Lymph node | (2) | (4) | (4) | (2) | | Iliac, hyperplasia, lymphoid | 1 (50%) | * * | . , | • • | | Mediastinal, congestion | 1 (50%) | | | | | Pancreatic, hyperplasia, lymphoid | • | 1 (25%) | | | | Renal, hemorrhage | | | 2 (50%) | 1 (50%) | | Renal, necrosis | | | 1 (25%) | | | Lymph node, mandibular | (48) | (47) | (48) | (50) | | Hyperplasia, lymphoid | 3 (6%) | | 1 (2%) | 1 (2%) | | Hyperplasia, plasma cell | 2 (4%) | | | | | Necrosis | | | 1 (2%) | | | Lymph node, mesenteric | (43) | (47) | (44) | (50) | | Angiectasis | | 2 (4%) | | , | | Atrophy | 2 (57) | 0 (5%) | , | 1 (2%) | | Hematopoietic cell proliferation | 2 (5%) | 3 (6%) | 6 (14%) | 1 (2%) | | Hemorrhage | 13 (30%) | 10 (21%) | 10 (23%) | 12 (24%) | | Hyperplasia, histocytic | 2 (5%) | E (118) | 1 (2%) | 4 (0.01) | | Hyperplasia, lymphoid | 1 (2%) | 5 (11%) | 3 (7%) | 4 (8%) | | Hyperplasia, plasma cell | 1 (2%) | 1 (2%) | 1 (201) | | | Necrosis
Splean | (40) | (50) | 1 (2%) | (40) | | Spleen | (49) | (50)
2 (4%) | (47) | (49) | | Atrophy Hematopoietic cell proliferation | 13 (27%) | 2 (4%)
30 (60%) | 3 (6%) | 23 (47%) | | Hyperplasia, lymphoid | 13 (2170) | 1 (2%) | 26 (55%)
1 (2%) | 1 (2%) | | Necrosis | | 1 (2/0) | 1 (2%) | 1 (2/0) | | Thymus | (46) | (46) | (39) | (47) | | Atrophy | 26 (57%) | 21 (46%) | 16 (41%) | 16 (34%) | | Cyst | 20 (3170) | 1 (2%) | 10 (71/0) | 10 (37/0) | | Necrosis | | - (= /v) | 1 (3%) | 1 (2%) | | | | | 2 (570) | 2 (270) | | Integumentary System | | | | | | Skin | (49) | (50) | (48) | (50) | | Inflammation, chronic active | 1 (2%) | | | | | Ulcer | 1 (2%) | 4 (2.01) | | | | Subcutaneous tissue, edema | 1 (2%) | 1 (2%) | | | | Subcutaneous tissue, inflammation, acute | | 1 (2%) | | | | Subcutaneous tissue, inflammation, chronic | 1 (2.01) | 1 (201) | | | | active | 1 (2%) | 1 (2%) | | | TABLE D5 Summary of the Incidence of Nonneoplastic Lesions in Male Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 250 ppm | 500 ppm | 1,000 ppm | |---|------------------|-----------------|------------------|-----------------| | Musculoskeletal System | | | | | | None | | | | | | Nervous System | | | | | | Brain | (50) | (50) | (49) | (50) | | Hemorrhage | | 1 (2%) | | | | Inflammation, chronic active | 1 (2%) | | | | | Mineralization | 41 (82%) | 27 (54%) | 30 (61%) | 35 (70%) | | Peripheral nerve Sciatic, degeneration | | (1) | (1) | | | Sciatic, degeneration | | 1 (100%) | | | | Respiratory System | | | | | | Lung | (49) | (50) | (49) | (50) | | Congestion | 1 (2%) | 1 (2%) | 1 (2%) | 2 (4%) | | Hemorrhage | | 1 (2%) | | | | Infiltration cellular, lymphocyte | 4 (0.6%) | 4 (8%) | 2 (4%) | 0 // 0 | | Alveolar epithelium, hyperplasia | 4 (8%) | 8 (16%) | 1 (2%) | 2 (4%) | | Alveolus, infiltration cellular, histiocyte Nose | 1 (2%)
(50) | 2 (4%)
(49) | 4 (8%)
(49) | 1 (2%)
(50) | | Foreign body | 1 (2%) | (49) | (49) | (30) | | Olfactory epithelium, degeneration, hyaline | 15 (30%) | 31 (63%) | 35 (71%) | 7 (14%) | | Olfactory epithelium, glands, hyperplasia | 1 (2%) | 21 (0270) | 22 (.1%) | , (21,70) | | Respiratory epithelium, degeneration, hyaline | 20 (40%) | 10 (20%) | 15 (31%) | 2 (4%) | | Respiratory epithelium, hyperplasia | 20 (40%) | 22 (45%) | 11 (22%) | 15 (30%) | | Respiratory epithelium, inflammation, | | | | | | chronic active | 2 (4%) | 1 (2%) | | 1 (2%) | | Special Senses System | | | | | | Eye | (1) | | | (1) | | Cataract | 1 (100%) | | | (1) | | Cornea, inflammation, chronic | 1 (100%) | | | | | Cornea, inflammation, chronic active | , | | | 1 (100%) | | W | | | | | | Urinary System
Kidney | (49) | (50) | (48) | (50) | | Atrophy | | | | 1 (2%) | | Cyst | 4 (8%) | 2 (4%) | 4 (8%) | | | Fibrosis | 1 (201) | 1 (2%) | | | | Hydronephrosis
Inforct | 1 (2%) | 1 (2%) | 2 (40/) | 6 (12%) | | Infarct Infiltration cellular, lymphocyte | 2 (4%)
3 (6%) | 1 (2%) 1 (2%) | 2 (4%)
2 (4%) | 6 (12%) | | Inflammation, chronic active | 2 (4%) | 1 (2/0) | 2 (4/0) | 0 (1270) | | Mineralization | 2 (4%) | 3 (6%) | | | | Nephropathy | 34 (69%) | 27 (54%) | 25 (52%) | 32 (64%) | | Artery, inflammation, chronic | 1 (2%) | . , | , , | , | | Artery, inflammation, chronic active | 1 (2%) | | | | | Renal tubule, accumulation, hyaline droplet | | 1 (2%) | <u> </u> | <u>.</u> | | Renal tubule, dilatation | 0. (6%) | 1 (2%) | 2 (4%) | 5 (10%) | | Renal tubule, hyperplasia | 3 (6%) | E (1001) | 1 (2%) | 1 (2%) | | Renal tubule, pigmentation | (18) | 5 (10%) | 3 (6%) | 2 (4%) | | Urinary bladder Infiltration cellular, lymphocyte | (48)
8 (17%) | (49)
7 (14%) | (44)
9 (20%) | (50)
8 (16%) | | minutation centular, tymphocyte | 0 (1770) | / (17/0) | 7 (20 /0) | 0 (1070) | D-36 Pyridine, NTP TR 470 ## APPENDIX E SUMMARY OF LESIONS IN FEMALE MICE IN THE 2-YEAR DRINKING WATER STUDY OF PYRIDINE | TABLE E1 | Summary of the Incidence of Neoplasms in Female Mice | | |----------|---|------| | | in the 2-Year Drinking Water Study of Pyridine | E-2 | | TABLE E2 | Individual Animal Tumor Pathology of Female Mice | | | | in the 2-Year Drinking Water Study of Pyridine | E-6 | | TABLE E3 | Statistical Analysis of Primary Neoplasms in Female Mice | | | | in the 2-Year Drinking Water Study of Pyridine | E-24 | | TABLE E4 | Historical Incidence of Liver Neoplasms in Untreated Female B6C3F ₁ Mice | E-27 | | TABLE E5 | Summary of the Incidence of Nonneoplastic Lesions in Female Mice | | | | in the 2-Year Drinking Water Study of Pyridine | E-28 | E-2 Pyridine, NTP TR 470 TABLE E1 Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Drinking Water Study of Pyridine^a | | 0 ррт | 125 ppm | 250 ppm | 500 ppm | |---|----------|----------------|----------------|----------------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | 30 |
30 | 50 | 30 | | Accidental deaths | 3 | 6 | 4 | 5 | | Moribund | 3 | 2 | 3 | 5 | | Natural deaths | 12 | 12 | 21 | 11 | | Survivors | | | | | | Terminal sacrifice | 32 | 30 | 22 | 29 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Esophagus | (50) | (50) | (50) | (50) | | Gallbladder | (37) | (40) | (33) | (34) | | Intestine large, rectum | (44) | (48) | (47) | (47) | | Intestine large, cecum | (44) | (49) | (40) | (45) | | Leiomyosarcoma | | | | 1 (2%) | | Intestine small, jejunum | (42) | (47) | (38) | (43) | | Intestine small, ileum | (43) | (48) | (37) | (41) | | Carcinoma | | | | 1 (2%) | | Liver | (49) | (50) | (50) | (50) | | Hemangioma | | | | 1 (2%) | | Hepatoblastoma | 1 (2%) | 2 (4%) | 6 (12%) | 12 (24%) | | Hepatoblastoma, multiple | | | 3 (6%) | 4 (8%) | | Hepatocellular carcinoma | 10 (20%) | 12 (24%) | 19 (38%) | 11 (22%) | | Hepatocellular carcinoma, multiple | 3 (6%) | 11 (22%) | 14 (28%) | 30 (60%) | | Hepatocellular adenoma | 13 (27%) | 5 (10%) | 6 (12%) | 4 (8%) | | Hepatocellular adenoma, multiple | 24 (49%) | 34 (68%) | 37 (74%) | 30 (60%) | | Histiocytic sarcoma | 1 (2%) | 1 (2%) | | | | Sarcoma, metastatic, skin | 1 (2%) | (19) | (12) | (12) | | Mesentery Hepatoblastoma, metastatic, liver | (17) | (18) | (13)
1 (8%) | (13)
1 (8%) | | Histiocytic sarcoma | | 2 (11%) | 1 (8%) | 1 (8%) | | Lipoma | | 1 (6%) | | | | Sarcoma | | 2 (11%) | | | | Pancreas | (49) | (49) | (47) | (48) | | Histiocytic sarcoma | (12) | 2 (4%) | (17) | (10) | | Sarcoma, metastatic, mesentery | | 1 (2%) | | | | Salivary glands | (50) | (50) | (49) | (50) | | Schwannoma malignant, metastatic, skin | (/ | 1 (2%) | | () | | Stomach, forestomach | (49) | (49) | (49) | (49) | | Squamous cell papilloma | | 1 (2%) | | | | Stomach, glandular | (48) | (49) | (48) | (49) | | Cardiovascular System | | | | | | Blood vessel | (48) | (47) | (47) | (47) | | Aorta, histiocytic sarcoma | (48) | * * | (47) | (47) | | Heart | (50) | 1 (2%) | (50) | (50) | | Histiocytic sarcoma | (30) | (50)
1 (2%) | (50) | (30) | | Sarcoma, metastatic, skin | | 1 (2/0) | 1 (2%) | | | oursonia, metastatic, skill | | | 1 (270) | | TABLE E1 Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 125 ppm | 250 ppm | 500 ppm | |--|----------|----------|---------|--------------| | Endocrine System | | | | | | Adrenal cortex | (49) | (50) | (48) | (50) | | Carcinoma, multiple | 1 (2%) | (5 0) | (10) | (0.0) | | Histiocytic sarcoma | 1 (2%) | 1 (2%) | | | | Sarcoma, metastatic, mesentery | , , | 1 (2%) | | | | Capsule, adenoma | 1 (2%) | . , | | | | Islets, pancreatic | (49) | (50) | (47) | (49) | | Adenoma | 1 (2%) | 2 (4%) | | | | Pituitary gland | (47) | (44) | (42) | (46) | | Pars distalis, adenoma | 8 (17%) | 9 (20%) | 6 (14%) | 2 (4%) | | Thyroid gland | (50) | (50) | (50) | (50) | | Follicular cell, adenoma | 3 (6%) | 2 (4%) | 3 (6%) | 3 (6%) | | General Body System | | | | | | Peritoneum | | | (2) | | | Hepatoblastoma, metastatic, liver | | | 1 (50%) | | | Tissue NOS | | | (2) | | | Alveolar/bronchiolar carcinoma, metastatic, | | | * * | | | lung | | | 1 (50%) | | | Hepatoblastoma, metastatic, liver | | | 1 (50%) | | | | | | | | | Genital System | | 440 | (40) | . | | Clitoral gland | (47) | (48) | (48) | (45) | | Ovary | (47) | (49) | (46) | (49) | | Cystadenoma | 4 (9%) | 3 (6%) | 1 (2%) | | | Granulosa cell tumor benign | 1 (2%) | | 1 (2%) | 1 (25) | | Hemangioma | 1 (2.01) | 1 (2.6) | | 1 (2%) | | Histiocytic sarcoma | 1 (2%) | 1 (2%) | | | | Sarcoma, metastatic, mesentery | | 1 (2%) | | | | Oviduct Sahayanama malianant, matastatia akin | | (1) | | | | Schwannoma malignant, metastatic, skin | (40) | 1 (100%) | (47) | (50) | | Uterus | (48) | (50) | (47) | (50) | | Adenoma
Histografia sarragma | 1 (2%) | 1 (2%) | | | | Histiocytic sarcoma | 2 (401) | 1 (2%) | | | | Polyp stromal | 2 (4%) | 1 (2%) | | | | Hematopoietic System | | | | | | Bone marrow | (49) | (50) | (49) | (50) | | Histiocytic sarcoma | 1 (2%) | 1 (2%) | ` ' | ` ' | | Lymph node | (10) | (10) | (7) | (7) | | Iliac, histiocytic sarcoma | 1 (10%) | 1 (10%) | | | | Iliac, rhabdomyosarcoma, metastatic, | • • | • | | | | skeletal muscle | | 1 (10%) | | | | Mediastinal, sarcoma, metastatic, mesentery | | 1 (10%) | | | | Mediastinal, sarcoma, metastatic, skin | 1 (10%) | | | | | Pancreatic, hepatoblastoma, metastatic, liver | | | 1 (14%) | | | Pancreatic, sarcoma, metastatic, mesentery | | 1 (10%) | | | | Lymph node, mandibular | (48) | (50) | (49) | (47) | | Histiocytic sarcoma | 2 (4%) | 1 (2%) | | | | Sarcoma, metastatic, skin | | | 1 (2%) | | | Schwannoma malignant, metastatic, skin | | 1 (2%) | | | E-4 Pyridine, NTP TR 470 TABLE E1 Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 125 ppm | 250 ppm | 500 ppm | |--|------------------|------------------|----------|----------------| | Hematopoietic System (continued) | | | | | | Lymph node, mesenteric | (48) | (47) | (43) | (45) | | Hemangioma | | | | 1 (2%) | | Hepatoblastoma, metastatic, liver | | | 1 (2%) | 1 (2%) | | Histiocytic sarcoma | 1 (2%) | 2 (4%) | (40) | (40) | | Spleen Histiocytic sarcoma | (49)
1 (2%) | (50)
1 (2%) | (48) | (49) | | Thymus | (45) | (44) | (46) | (39) | | Alveolar/bronchiolar carcinoma, metastatic, | (13) | (, | (10) | (35) | | lung | | | 1 (2%) | | | Histiocytic sarcoma | | 1 (2%) | | | | Integumentary System | | | | | | Skin | (49) | (50) | (50) | (50) | | Squamous cell papilloma | 1 (2%) | 1 (2%) | . / | ` / | | Subcutaneous tissue, hemangioma | | | 1 (2%) | | | Subcutaneous tissue, hemangiosarcoma | | | 1 (2%) | | | Subcutaneous tissue, sarcoma | 2 (4%) | 2 (4%) | 3 (6%) | 4 (8%) | | Subcutaneous tissue, schwannoma malignant | 1 (2%) | 1 (2%) | 1 (2%) | 1 (2%) | | Musculoskeletal System | | | | | | Skeletal muscle | | (1) | (1) | (1) | | Hepatoblastoma, metastatic, liver | | 1 (100%) | 1 (100%) | | | Rhabdomyosarcoma | | 1 (100%) | | | | Nervous System | | | | | | Brain | (50) | (50) | (50) | (50) | | Respiratory System | | | | | | Lung | (50) | (50) | (50) | (50) | | Alveolar/bronchiolar adenoma | 1 (2%) | 3 (6%) | | 3 (6%) | | Alveolar/bronchiolar adenoma, multiple | 1 (2%) | 1 (201) | 2 (49) | 2 ((#) | | Alveolar/bronchiolar carcinoma Carcinoma, metastatic, harderian gland | 2 (4%)
1 (2%) | 1 (2%) | 2 (4%) | 3 (6%) | | Hepatoblastoma, metastatic, liver | 1 (270) | | 1 (2%) | 3 (6%) | | Hepatocellular carcinoma, metastatic, liver | 2 (4%) | | 6 (12%) | 10 (20%) | | Histiocytic sarcoma | 1 (2%) | 1 (2%) | , , | , , | | Rhabdomyosarcoma, metastatic, skeletal muscle | | 1 (2%) | | | | Sarcoma, metastatic, mesentery | | 1 (2%) | | | | Sarcoma, metastatic, skin | | المحاجب والمحاجب | 2 (4%) | | | Schwannoma malignant, metastatic, skin | | 1 (2%) | | | | Mediastinum, alveolar/bronchiolar carcinoma, | | | 1 (2%) | | | Mediastinum, alveolar/bronchiolar carcinoma, metastatic, lung | | | | | | Mediastinum, alveolar/bronchiolar carcinoma,
metastatic, lung
Mediastinum, sarcoma, metastatic, skin | | | 1 (2%) | | | Mediastinum, alveolar/bronchiolar carcinoma,
metastatic, lung
Mediastinum, sarcoma, metastatic, skin
Mediastinum, schwannoma malignant, | | 1 (25) | | | | Mediastinum, alveolar/bronchiolar carcinoma,
metastatic, lung
Mediastinum, sarcoma, metastatic, skin
Mediastinum, schwannoma malignant,
metastatic, skin | (50) | 1 (2%) | 1 (2%) | (50) | | Mediastinum, alveolar/bronchiolar carcinoma, metastatic, lung Mediastinum, sarcoma, metastatic, skin Mediastinum, schwannoma malignant, metastatic, skin Nose | (50) | 1 (2%)
(50) | | (50) | | Mediastinum, alveolar/bronchiolar carcinoma,
metastatic, lung
Mediastinum, sarcoma, metastatic, skin
Mediastinum, schwannoma malignant,
metastatic, skin | (50)
1 (2%) | | 1 (2%) | (50)
1 (2%) | TABLE E1 Summary of the Incidence of Neoplasms in Female Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 125 ppm | 250 ppm | 500 ppm | |---|----------|----------|---------|----------| | Special Senses System | | | | | | Harderian gland | (1) | (1) | | (1) | | Adenoma | | 1 (100%) | | | | Carcinoma | 1 (100%) | | | 1 (100%) | | Urinary System | | | | | | Kidney | (49) | (50) | (49) | (49) | | Histiocytic sarcoma | 1 (2%) | 1 (2%) | ` ' | . / | | Schwannoma malignant, metastatic, skin | ` ' | 1 (2%) | | | | Urinary bladder | (45) | (49) | (44) | (43) | | Histiocytic sarcoma | | 1 (2%) | | | | Systemic Lesions | | | | | | Multiple organs ^b | (50) | (50) | (50) | (50) | | Histiocytic sarcoma | 2 (4%) | 2 (4%) | | | | Leukemia granulocytic | | 1 (2%) | | | | Lymphoma malignant | 6 (12%) | 7 (14%) | 4 (8%) | 6 (12%) | | Mesothelioma malignant | | | | 2 (4%) | | Neoplasm Summary | | | | | | Total animals with primary neoplasms ^c | 47 | 45 | 45 | 45 | | Total primary neoplasms | 90 | 105 | 108 | 122 | | Total animals with benign neoplasms | 40 | 41 | 43 | 36 | | Total benign neoplasms | 61 | 63 | 55 | 45 | | Total animals with malignant neoplasms | 26 | 30 | 40 | 44 | | Total malignant neoplasms | 29 | 42 | 53 | 77 | | Total animals with metastatic neoplasms | 5 | 3 | 10 | 12 | | Total metastatic neoplasms | 6 | 14 | 21 | 15 | Number of animals examined microscopically at the site and the number of animals with neoplasm Number of animals with any tissue examined microscopically Primary neoplasms: all neoplasms except metastatic neoplasms E-6 Pyridine, NTP TR 470 TABLE E2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Drinking Water Study of Pyridine: 0 ppm | 0 | 1 | 2 | 1 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | |----
---|---|--|---|---|---|--|--|---|---|--|--|--|--|--|--|---|--|--|---|---|---|---|---|---| | | | | | | | | | | | | | | | | | | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | _ | | | | | | 4 | 1 | 3 | O | 4 | 3 | 0 | 3 | 4 | 4 | 2 | U | / | 1 | / | 1 | 4 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | 2. | 2. | 2 | 2. | 2. | 2. | 2. | 2 | 2. | 2 | 2. | 2 | 2. | 2. | 2. | 2 | 2. | 2. | 2. | 2 | 2. | 2 | 2. | 2 | 2. | _ | 0 | , | 0 | 0 | _ | U | 0 | | , | 0 | , | | 0 | 7 | ′ | | 0 | 0 | _ | 0 | 1 | + | | | A | + | + | + | | | | | | | | | | | | | | | | | + | + | + | + | + | | | + | + | + | + | + | + | Α | + | + | + | Α | + | + | + | + | + | A | + | + | + | + | + | + | + | + | | | A | + | + | + | + | + | + | + | + | + | Α | + | Α | Α | + | + | A | M | + | + | + | + | + | + | + | | | A | + | + | + | + | A | + | + | + | + | Α | + | A | Α | + | + | A | + | + | + | + | + | + | + | + | | | A | + | + | Α | + | + | + | + | + | + | Α | + | Α | + | + | A | A | + | + | + | + | + | + | + | + | | | A | + | + | A | + | A | A | + | | | | | | | | | | | + | | + | + | + | + | + | | | A | + | + | + | + | A | | | | | | | | | | | | | | + | + | + | + | + | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + . | A | + | + | + | + | + | + | + | + | | | | | | 17 | 37 | | | | | 37 | | | | v | | | | | | | 37 | | | | | | | | | | X | X | | | | | Х | | | | X | | | | v | | | X | | | | | | | | | | | | v | v | | | | | | v | | | | | Λ | | v | | | | v | | | | | | | | v | Λ | | v | | v | | | | v | Y | v | | | | Λ | | | v | Λ | Y | | | | | | | Λ | | | | | Λ | | Λ | | Λ. | Λ. | Λ | | | Λ | | | | Λ | | Λ | | | | | | | | | | /1 | + | + | + | | | + | | | + | + | + | | + | | | + | | | | + | | | + | + | + | + | + | + | | | + | + | | + | + | | | | | | + | + | + | + | + | + | | | | + | + | + | + | + | + | + | | | | | | | | | | | | | | | + | + | + | + | | | + | + | + | + | + | + | + | + | + | | | | | | | | | | | | + | + | + | + | | | | + | + | + | + | + | + | + | + | + | | | | | | | | | | | | + | + | + | + | + | M | + | + | + | + | + | + | + | + | | A | + | + | + | + | + | + | + | + | + | + | + | + | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + | + | + | + | + | + | + | + | + | + | + | .1 | | | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | Δ | _ | _ | _ | _ | _ | _ | | _ | | | + | | | - | _ | _ | Τ' | т | Τ* | Τ' | Т | т | | | г | г. | ^1 | Г | Τ' | Τ' | Τ* | 7 | 7 | - | Г | | | | | X | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | 1 | X | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + | + | Α | + | + | + | + | + | + | | + | | | + | + | | + | + | + | + | + | + | + | + | + | + | + . | + | + . | A | + | + | + | + | + | + | | | | | | • | • | • | X | | • | | • | • | • | • | | • | • | | - | • | • | | • | • | | • | • | | | M | + | + | + | | M | + | M | + | + | + | M | + | + 3 | M | M | M | M | M | + | M | M | + | + | M | | | + | + | + | | | | | | | | | | | | | | | | | | + | X | | | | | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + | + | + | + | + | + | + | + | + | + | + | X | _ | | | | | | | | | _ | , | | , | , | | | | | т | | | | | | | , | | | | | | + | + | + | + | + | | | | | | +
M | | | + | | | +
A | | + | + | + | _ | _ | + | +
- | | | 1 | + | + | + | + | + | IVI | т | _ | _ | 1V1 | т | т | т | - | Τ. | ^1 | - | т | т | _ | _ | + | + | - | | | + | + | | | | | | | | | | | | | | | | | | x | | | | | | | | | + | | Y | | | | | | | | | | | | | | | | X | | | | | | | | | + | + | X
+ | + | + | + | + | + | + | + | A | + | + | + | + | + | A | | | + | + | + | + | + | + | | | + | + | X
+ | + | + | + | + | + | + | + | A | + | + | + | + | + . | A | | | + | + | + | + | + | + | | | | 6 4 4 2 2 6 6 4 4 4 A A A A A A A A A A A A A A A | 6 5 4 1 2 2 2 6 2 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 6 5 7
4 1 5
2 2 2 2
6 2 5
4 7 8
+ + + +
A + +
A + +
A + +
A + +
A + +
+ + + +
M + + +
X + + + +
M + | 6 5 7 7 7 4 1 5 6 2 2 2 2 2 6 2 5 3 4 7 8 5 + + + + + + + + + + + + + + + + + + | 6 5 7 7 5 4 1 5 6 4 2 2 2 2 2 2 6 2 5 3 3 4 7 8 5 0 + + + + + + + + + + + + + + + + + + | 6 5 7 7 5 6 4 1 5 6 4 5 2 2 2 2 2 2 2 2 6 2 5 3 3 4 4 7 8 5 0 8 + + + + + + + + A + + + + + + A + + + + | 6 5 7 7 5 6 6
4 1 5 6 4 5 8
2 2 2 2 2 2 2 2 2
6 2 5 3 3 4 4
4 7 8 5 0 8 4
+ + + + + + + + + + + + + + + + + + + | 6 5 7 7 5 6 6 2 4 1 5 6 4 5 8 5 2 2 2 2 2 2 2 2 2 2 2 6 2 5 3 3 4 4 2 4 7 8 5 0 8 4 6 + + + + + + + + + + + A + + + + + + + | 6 5 7 7 7 5 6 6 2 4 4 1 5 6 4 5 8 5 4 2 2 2 2 2 2 2 2 2 2 2 2 2 6 2 5 3 3 4 4 2 5 5 4 7 8 5 0 8 4 6 0 + + + + + + + + + + + + A + + + + + A A + + A + + + + | 6 5 7 7 7 5 6 6 2 4 4 4 1 5 6 4 5 8 5 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 2 5 3 3 4 4 2 5 5 4 7 8 5 0 8 4 6 0 3 + + + + + + + + + + + + + A + + + + + | 6 5 7 7 5 6 6 2 4 4 6 4 1 5 6 4 5 8 5 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6 5 7 7 5 6 6 2 4 4 6 7 4 1 5 6 4 5 8 5 4 4 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 2 5 3 3 4 4 2 5 5 1 2 4 7 8 5 0 8 4 6 0 3 7 8 + + + + + + + + + + + + + + + + + + | 6 5 7 7 5 6 6 2 4 4 4 6 7 8 4 1 5 6 4 5 8 5 4 4 2 0 7
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 6 2 5 3 3 4 4 2 5 5 1 2 4 4 7 8 5 0 8 4 6 0 3 7 8 5 + + + + + + + + + + + + + + + + + + | 6 5 7 7 5 6 6 2 4 4 6 7 8 9 4 1 5 6 4 5 8 5 4 4 2 0 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6 5 7 7 5 6 6 6 2 4 4 6 7 8 9 9 4 1 5 6 4 5 8 5 4 4 2 0 7 1 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6 5 7 7 5 6 6 6 2 4 4 6 7 8 9 9 1 4 1 5 6 4 5 8 5 4 4 2 0 7 1 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6 5 7 7 5 6 6 6 2 4 4 6 7 8 9 9 1 1 4 1 5 6 4 5 8 5 4 4 2 0 7 1 7 1 4 4 1 5 6 4 5 8 5 4 4 2 0 7 1 7 1 7 1 4 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6 5 7 7 5 6 6 2 4 4 6 7 8 9 9 1 1 1 1 4 1 5 6 4 5 8 5 4 4 2 0 7 7 1 7 1 4 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6 5 7 7 7 5 6 6 6 2 4 4 6 7 8 9 9 1 1 1 1 2 2 4 1 5 6 4 5 8 5 4 4 2 0 7 1 7 1 7 1 4 9 9 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6 5 7 7 7 5 6 6 6 2 4 4 6 7 8 9 9 1 1 1 1 2 2 2 4 1 5 6 4 5 8 5 4 4 2 0 7 1 7 1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 6 5 7 7 7 5 6 6 2 4 4 4 6 7 8 9 9 1 1 1 1 2 2 2 2 4 1 5 6 4 5 8 5 4 4 2 0 7 1 7 1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 6 5 7 7 5 6 6 2 4 4 6 7 8 9 9 1 1 1 1 2 2 2 2 2 4 1 5 6 4 5 8 5 4 4 2 0 7 1 7 1 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 6 5 7 7 7 5 6 6 6 2 4 4 6 7 8 9 9 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6 5 7 7 5 6 6 6 2 4 4 6 7 8 9 9 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6 5 7 7 7 5 6 6 2 4 4 6 7 8 9 9 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | +: Tissue examined microscopically A: Autolysis precludes examination M: Missing tissueI: Insufficient tissue X: Lesion present Blank: Not examined TABLE E2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Drinking Water Study of Pyridine: 0 ppm | Number of Days on Study | 7
2
9 | | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | 7 2
2 2
9 9 | | 2 2 | 7
2
9 | 7
2
9 | 7
2
9 | 2 | 2 | 2 | 2 | 2 | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | 7
2
9 | 2 | 7
2
9 | | |---|-------------|----|-------------|-------------|-------------|-------------|-------------------|-------------------|-----|-------------|-------------|-------------|------------|-----|-----|-----|---|-------------|-------------|-------------|-------------|-------------|----|-------------|-----------------------------| | Carcass ID Number | 2
2
5 | 2 | 2
3
1 | 2
3
2 | 2
3
3 | 3 | | 2 2
3 3
7 8 | 3 | 2
4
0 | 2
4
1 | 2
4
2 | 4 | 4 | | 5 | 5 | 2
5
4 | 2
5
5 | 2
5
9 | 2
6
0 | 2
6
1 | | 2
6
5 | Total
Tissues/
Tumors | | Alimentary System | Esophagus | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Gallbladder | + | M | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | 37 | | Intestine large, colon | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Intestine large, rectum | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 44 | | ntestine large, cecum | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 44 | | Intestine small, duodenum | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 44 | | Intestine small, jejunum | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 42 | | intestine small, ileum | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | | | + | + | + | + | + | + | + | + | 43 | | Liver | | | · | · | ÷ | ÷ | + - | | | <u>.</u> | + | + | | | | | + | į. | <u>.</u> | <u>.</u> | <u>.</u> | <u>.</u> | | + | 49 | | Hepatoblastoma | ' | | | | | ' | | K ' | | ' | | ' | ' | | | | | | | | | | | ' | 1 | | Hepatocellular carcinoma | | | X | | | v | X | | | | | | | | | | | | | | | | X | | 10 | | | | | Λ | | | Λ | Λ / | 7 | | | | | v | | | | | | v | | | | А | | | | Hepatocellular carcinoma, multiple | | | | | 37 | | | • | , | | | X | X | | X | | | | X | v | | 37 | | v | 3 | | Hepatocellular adenoma | ** | 37 | 37 | 37 | X | | v · | ,) | | 37 | 37 | Å | 3 7 | | Λ | | | X | 37 | X | 37 | X | 37 | X | 13 | | Hepatocellular adenoma, multiple | X | X | X | X | | | X X | X | X | X | X | | X | | | | X | | X | | X | | X | | 24 | | Histiocytic sarcoma | 1 | | Sarcoma, metastatic, skin | | | | | | | | | | | | | | | | X | | | | | | | | | 1 | | Mesentery | + | + | | | | | - | + | | | + | + | + | + | | | | | | | | | | | 17 | | Pancreas | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Salivary glands | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Stomach, forestomach | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Stomach, glandular | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Γooth | | | | | | | | | | | | | | | | | | + | | | | | + | | 2 | | Cardiovascular System | Blood vessel | 40 | | | | + | + | + | + | + | + - | | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Heart | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Endocrine System | Adrenal cortex | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Carcinoma, multiple | 1 | | Histiocytic sarcoma | 1 | | Capsule, adenoma | 1 | | Adrenal medulla | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | slets, pancreatic | + | + | + | + | + | + | + - | | | + | + | + | | | | | | | + | + | + | + | | + | 49 | | Adenoma | | | | | | | | | • | | | | | | | | | | | | | • | • | | 1 | | Parathyroid gland | + | + | М | + | + | М | М - | + 4 | + + | + | + | M | + | + | + | + | + | + | + | М | м | + | M | + | 31 | | Pituitary gland | + | | | | + | | | | · · | | | + | | | | | | + | | | + | + | + | | 47 | | Pars distalis, adenoma | | 1 | 1. | | X | ' | ' ' | . 7 | | , | X | ' | | 111 | ' | ' | | X | | 1 | X | ' | X | ' | 8 | | | | , | .1 | | | _ | _ | | + + | .1 | | _ | _ | _ | _ | _ | | | | _ | | J | + | _ | 50 | | Гhyroid gland
Follicular cell, adenoma | + | + | +
X | + | + | + | т - | r † | _ + | + | + | + | т | т | т | т . | т | + | | +
X | + | + | + | т | 30 | | General Body System None | <u> </u> | | G'4-1 G4 | Genital System | _ | | | | | | Clitoral gland | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + 1 | M | + | + | + | + | I | + | + | + | 47 | | Ovary | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Cystadenoma | | | | | | | | | X | | | | X | | | | | | | | | X | | X | 4 | | Granulosa cell tumor benign | 1 | | Histiocytic sarcoma | 1 | | Uterus | + | + | + | + | + | + | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | | | | | | X | 1 | | Adenoma | | | | | 21 | E-8 Pyridine, NTP TR 470 | TABLE E2 Individual Animal Tumor Pathology of | Fema | le] | Mi | ce i | n t | he | 2-5 | Yea | ır l | Dri | nki | ing | w | ate | er S | Stu | dy | of | Рy | rid | line | : : | 0 p | pn | 1 | | |---|-------------|-------------|-------------|-------------|-----|-------------|-------------|-------------|------|-------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|---| | Number of Days on Study | 0
6
4 | 1
5
1 | | 4
7
6 | 5 | 5
6
5 | 6 | 2 | 4 | 4 | 6 | 6
7
0 | 8 | 9 | 6
9
7 | 7
1
1 | 7
1
4 | 7
1
9 | 7
2
9 | 7
2
9 | | 7
2
9 | 7
2
9 | 7
2
9 | | | | Carcass ID Number | 2
6
4 | 2
2
7 | | | 3 | 2
4
8 | 2
4
4 | | 5 | 2
5
3 | 1 | 2 | 2
4
5 | 2
4
7 | | 2
2
4 | | 2
6
3 | 2
1
6 | 2
1
8 | 1 | | 2 | 2 | | | | Hematopoietic System Bone marrow Histiocytic sarcoma Lymph node Iliac, histiocytic sarcoma | + | + | +
X | + | + | + | + | +
+
X | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | + | + | | | Mediastinal, sarcoma, metastatic, skin Lymph node, mandibular Histiocytic sarcoma Lymph node, mesenteric Histiocytic sarcoma Spleen Histiocytic sarcoma | + + + | + + | +
X
+ | + + + | + + | | + | X
+
X | + | + | A | + | + + + | + | + | + | A
A
+ | + | + | + + + | + | ++++ | ++++ | +++++ | + + + | | | Thymus Integumentary System | + | + | + | + | + | + | + | | M | | | | | | | + | A | + | + | + | + | + | + | + | + | _ | | Mammary gland Skin Squamous cell papilloma Subcutaneous tissue, sarcoma Subcutaneous tissue, schwannoma malignant | + | + | + | + | + | + | + | + | + | | | | + | | | + + | + | + | + | + + | +
+
X | | + | + | + | | | Musculoskeletal
System
Bone | + | | | Nervous System Brain Peripheral nerve | + | | | Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar adenoma, multiple Alveolar/bronchiolar carcinoma | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Carcinoma, metastatic, harderian gland Hepatocellular carcinoma, metastatic, liver Histiocytic sarcoma Nose Sarcoma, metastatic, skin Trachea | + | + | X
+ | X
+ | + | + | + | + | + | X
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Special Senses System Harderian gland Carcinoma | · | | | | • | • | | | • | | | • | | | • | | | • | | | | | | | | | | Urinary System
Kidney
Histiocytic sarcoma
Urinary bladder | + | + | X | | + | +
A | + | + | + | +
A | +
A | + | +
A | + | + | + | | + | + | + | + | + | + | + | + | | | Systemic Lesions Multiple organs Histiocytic sarcoma Lymphoma malignant | + | + | +
X | | + | + | + | +
X | | + | + | + | +
X | + | +
X | +
X | +
X | + | + | + | + | + | +
X | | + | | | Number of Days on Study | 7
2
9 | 7 7
2 2
9 9 | 7 2 9 | 7
2
9 2 | | |--|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|-------------------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---|-----------------------------| | Carcass ID Number | 2
2
5 | 2 | 3 | 2
3
2 | 2
3
3 | 2
3
4 | 3 | | 2 2
3 3
8 9 | 4 | 2
4
1 | 2
4
2 | 2
4
3 | 4 | 4 | 5 | 5 | 5 | 2
5
5 | 2
5
9 | 2
6
0 | 2
6
1 | 2
6
2 | 6 | Total
Tissues/
Tumors | | Hematopoietic System | Bone marrow | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Histiocytic sarcoma | | | | | | | | | + | - | + | | | | | | | | | | | | | + | 10 | | Iliac, histiocytic sarcoma
Mediastinal, sarcoma, metastatic, skin | | | | | | | | | Х | (| | | | | | | | | | | | | | | 1 | | Lymph node, mandibular | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Histiocytic sarcoma Lymph node, mesenteric | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 2
48 | | Histiocytic sarcoma | 1 | | Spleen Histiocytic sarcoma | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49
1 | | Гһутиѕ | + | + | + | + | + | + | + | + - | + N | 1 + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | 45 | | Integumentary System | Mammary gland | + | + | + | + | + | + | + | + - | + + | - + | M | + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Skin
Squamous cell papilloma | + | + | + | + | + | + | + | + - | + +
X | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49
1 | | Subcutaneous tissue, sarcoma | | | | | | | | | Х | | | | | | | X | | | | | | | | | 2 | | Subcutaneous tissue, schwannoma malignant | _ | | | 1 | | Musculoskeletal System
Bone | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Nervous System | Brain
Peripheral nerve | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50
1 | | Respiratory System | Lung | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Alveolar/bronchiolar adenoma | | | | | | | | | | | X | | | | | | | | X | | | | | | 1 | | Alveolar/bronchiolar adenoma, multiple
Alveolar/bronchiolar carcinoma | | | | X | | | | | | | Λ | | | | | | | | | | | | | | 1 2 | | Carcinoma, metastatic, harderian gland | | | | | | | | | | X | | | | | | | | | | | | | | | 1 | | Hepatocellular carcinoma, metastatic, liver
Histiocytic sarcoma | 2 | | Nose | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Sarcoma, metastatic, skin
Frachea | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | | X
+ | + | + | + | + | + | + | + | + | 1
50 | | Special Senses System | Harderian gland | | | | | | | | | | + | | | | | | | | | | | | | | | 1 | | Carcinoma | | | | | | | | | | X | | | | | | | | | | | | | | | 1 | | Urinary System | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49
1 | | | | | | | | | | | | | | | | + | + | + | + | + | + | + | _ | | | | 45 | | Histiocytic sarcoma | + | + | + | + | + | + | + | + - | + + | - + | + | + | _ | | | | | | | | , | т | + | _ | 7.5 | | Histiocytic sarcoma
Jrinary bladder | + | + | + | + | + | + | + | + - | + + | - + | + | + | Т | | | _ | | _ | _ | _ | | _ | _ | | 13 | | Kidney Histiocytic sarcoma Urinary bladder Systemic Lesions Multiple organs Histiocytic sarcoma | + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 2 | E-10 Pyridine, NTP TR 470 TABLE E2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Drinking Water Study of Pyridine: 125 ppm | Number of Days on Study | 0
0
4 | 0
1
6 | 0
2
0 | 1
7
2 | 3
7
2 | 4
1
9 | 5
5
5 | 5
7
3 | 5
9
9 | 6
0
5 | 6
0
8 | 6
4
2 | 6
4
9 | 7 | 7 | 8 | 9 | 7
1
1 | 7
1
3 | 7
2
4 | 7
2
9 | 7
2
9 | 7
2
9 | 2 | 7
2
9 | |--|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---|---|---|---|-------------|-------------|-------------|-------------|-------------|-------------|---|-------------| | Carcass ID Number | 2
7
0 | 2
8
4 | 2
7
9 | 3
0
5 | 2
8
1 | 3
1
1 | 2
9
5 | 2
8
9 | 2
6
9 | 2
7
7 | 2
9
1 | 3
0
1 | 2
7
1 | | | 8 | | 3
0
6 | 2
7
5 | 3
0
7 | 2
6
6 | 2
6
7 | 2
7
2 | 7 | | | Alimentary System | Esophagus | + | | Gallbladder | Α | + | + | Α | + | + | A | + | Α | + | Α | + | Α | + | + | A | + | Α | Α | + | + | + | + | + | + | | Intestine large, colon | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | A | + | + | + | + | + | + | | Intestine large, rectum | A | + | | Intestine large, cecum | A | + | | Intestine small, duodenum | A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | A | A | + | + | + | + | + | + | | Intestine small, jejunum | A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | A | + | + | + | + | + | + | + | + | | Intestine small, ileum | A | + | + | + | + | + | A | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | Liver | + | | Hepatoblastoma | | | | | | | | | X | | | | v | | | | | | | | | | X | | 37 | | Hepatocellular carcinoma
Hepatocellular carcinoma, multiple | | | | | | | | X | X | | | | X | | | | | X | | X | | X | X | | X | | Hepatocellular adenoma | | | | | | | | Λ | X | | | | | v | | v | | | X | Λ | | Λ | | | | | Hepatocellular adenoma, multiple | | | | | | v | X | v | Λ | X | | | X | X | X | X | X | | Λ | | v | v | v | X | v | | Histiocytic sarcoma | | | | | | Λ | Λ | Λ | | Л | | | Λ | | Λ | | Λ | Λ | | | Λ | Λ | Λ | Λ | Λ | | Mesentery | | | | | | | + | + | + | | + | | | | + | + | | + | | + | | | | | + | | Histiocytic sarcoma | | | | | | | ' | ' | ' | | ' | | | | ' | ' | | ' | | ' | | | | | | | Lipoma | | | | | | | | | | | | | | | X | | | | | | | | | | | | Sarcoma | | | | | | | | | X | | | | | | X | | | | | | | | | | | | Pancreas | + | + | + | + | + | + | + | + | | + | М | + | + | | | + | + | + | + | + | + | + | + | + | + | | Histiocytic sarcoma | | · | | | • | · | • | • | · | | | | | | • | · | | • | | • | · | • | • | | · | | Sarcoma, metastatic, mesentery | | | | | | | | | | | | | | | X | | | | | | | | | | | | Salivary glands | + | + | + | + | + | + | + | + | + | + | + | + | + | | | + | + | + | + | + | + | + | + | + | + | | Schwannoma malignant, metastatic, skin | | | | | | | | | | | | X | | | | | | | | | | | | | | | Stomach, forestomach | A | + | | Squamous cell papilloma | Stomach, glandular | A | + | | Cardiovascular System | Blood vessel | M | M | + | + | + | + | + | + | + | + | + | + | + | + | M | + | +
 + | + | + | + | + | + | + | + | | Aorta, histiocytic sarcoma | Heart | + | | Histiocytic sarcoma | Endocrine System | Adrenal cortex | + | | Histiocytic sarcoma | Sarcoma, metastatic, mesentery | | | | | | | | | | | | | | | X | | | | | | | | | | | | Adrenal medulla | + | + | + | + | + | + | + | + | + | + | + | + | + | + | I | + | + | + | + | + | + | + | + | + | + | | slets, pancreatic | + | | Adenoma | | | | | | | | | | | | | | | | | X | | | | | | | | | | arathyroid gland | + | + | + | + | + | + | + | M | + | + | M | M | + | M | + | M | M | + | M | + | + | M | M | M | M | | Pituitary gland | + | + | + | + | + | + | M | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | | Pars distalis, adenoma | | | | | | | | | | | X | | | X | | | X | | | | | X | | | | | Thyroid gland | + | | Follicular cell, adenoma | | | | | | | | | | | | | | X | | | | | | | | | | | | TABLE E2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Drinking Water Study of Pyridine: 125 ppm | Number of Days on Study | 7
2
9 | |--|-----------------------------| | Carcass ID Number | 2
7
6 | 2
7
8 | 2
8
0 | 2
8
3 | 2
8
5 | 2
8
6 | 2
8
7 | 2
8
8 | 2
9
0 | 2
9
2 | 2
9
3 | 2
9
6 | 2
9
8 | | 0 | 3
0
2 | 3
0
3 | 3
0
4 | 3
0
8 | 3
0
9 | 3
1
0 | 3
1
2 | 3
1
3 | 3
1
4 | 1 | Total
Tissues/
Tumors | | Alimentary System | Esophagus | + | 50 | | Gallbladder | + | + | M | + | 40 | | Intestine large, colon | + | 49 | | Intestine large, rectum | + | + | + | M | + | 48 | | Intestine large, cecum | + | 49 | | Intestine small, duodenum | + | 47 | | Intestine small, jejunum | + | 47 | | Intestine small, ileum | + | 48 | | Liver | + | 50 | | Hepatoblastoma | • | | | | | | | | | | | | | - | | | | | | | | | | | - | 2 | | Hepatocellular carcinoma | | X | | X | | X | | | | | | | X | | | | X | | | X | | | X | X | | 12 | | Hepatocellular carcinoma, multiple | | 21 | X | 41 | | 41 | | | | | X | | 41 | X | x | | 21 | | X | 21 | X | | 21 | 21 | X | 11 | | Hepatocellular adenoma | | | 21 | | | | | | | | 41 | | | 4 % | 41 | | | | -1 | | X | | | | 2. | 5 | | Hepatocellular adenoma, multiple | v | Y | Y | X | Y | y | | Y | Y | Y | v | Y | Y | X | x | x | x | Y | v | Y | 11 | X | | X | | 34 | | Histiocytic sarcoma | Λ | 71 | 1 | 21 | 21 | 1 | | 71 | 1 | 71 | 71 | 71 | 21 | A | 71 | 1 | 1 | 71 | 21 | 71 | X | 21 | | 21 | | 1 | | | | + | | | | | + | | + | | | | | | + | | | | + | | + | + | | + | + | 18 | | Mesentery Histiocytic sarcoma | | т | | | | | т | | _ | | | | | | т | | | | т | | X | т | | X | т | 2 | Λ | | | Λ | | | | Lipoma
Sarcoma | 1 | 2 | | Pancreas | + | | + | 49 | | Histiocytic sarcoma | X | | | X | | 2 | | Sarcoma, metastatic, mesentery | 1 | | Salivary glands | + | 50 | | Schwannoma malignant, metastatic, skin | 1 | | Stomach, forestomach | + | 49 | | Squamous cell papilloma | | | | | | | | | X | | | | | | | | | | | | | | | | | 1 | | Stomach, glandular | + | 49 | | Cardiovascular System | Blood vessel | + | 47 | | Aorta, histiocytic sarcoma | | | | | ٠ | | | | | | | | | | | | | | | | X | | | | | 1 | | Heart | + | 50 | | Histiocytic sarcoma | | • | • | • | • | • | | • | • | | | • | • | • | | • | | - | | | X | • | • | • | | 1 | | Endocrine System | Adrenal cortex | + | 50 | | Histiocytic sarcoma | | | | | | | • | | • | • | • | • | • | • | • | • | • | • | • | | X | | | | • | 1 | | Sarcoma, metastatic, mesentery | 1 | | Adrenal medulla | + | 49 | | Islets, pancreatic | + | + | <u> </u> | | + | + | + | + | + | + | + | + | + | + | + | | + | | - | | | + | + | + | + | 50 | | | + | т | _ | т | _ | + | 7 | 7 | 7 | - | _ | 7 | _ | Τ' | т. | т* | Υ | Τ* | ~ | + | _ | т | т | т | Τ' | 2 | | Adenoma | 3.4 | | 1.7 | | 3.4 | | , | | 1.1 | | | 1.1 | 1.1 | 1.1 | | , | | | | | | 1.7 | | 1.7 | M | | | Parathyroid gland | | | | | | | | | | | | | | M | | | | | | | | | | | | 29 | | Pituitary gland | M | IVI | + | + | | + | + | IVI | + | + | | + | + | M | + | + | | + | | + | + | + | + | + | + | 44 | | Pars distalis, adenoma | | | | | X | | | | | | X | | | | | | X | | X | | | | | | X | 9 | | Thyroid gland | + | + | + | + | | + | 50 | | Follicular cell, adenoma | | | | | X | 2 | None E-12 Pyridine, NTP TR 470 | | | | | | | | 5 5 | 5 | | | 6 | | | | | 5 7 | | | | 7 | | 7 | | |---|---|---|---|---|---|-----|------|-----|---|---|-----|---|-----|-----|-----|------------|-----|-----|-----|---|---|---|---| | Number of Days on Study | 0 | | 2 | 7 | | | 5 7 | 9 | | 0 | 4 | - | 7 | | 8 9 | | _ | 2 | 2 | 2 | 2 | 2 | 2 | | | 4 | 6 | 0 | 2 | 2 | 9 : | 5 3 | 9 | 5 | 8 | 2 | 9 | 4 | 7 | 0 6 | 5 1 | 3 | 4 | 9 | 9 | 9 | 9 | 9 | | | 2 | 2 | 2 | 3 | 2 | 3 2 | 2 2 | 2 | 2 | 2 | 3 | | 2 | 2 | 2 2 | 2 3 | | | 2 | 2 | 2 | 2 | 2 | | Carcass ID Number | 7 | 8 | 7 | 0 | 8 | 1 9 | 9 8 | 6 | 7 | 9 | 0 | 7 | 9 | 9 | 8 6 | 5 0 | 7 | 0 | 6 | 6 | 7 | 7 | 7 | | | 0 | 4 | 9 | | | | 5 9 | | | | 1 | 1 | | | | | 5 | 7 | | | 2 | 3 | 4 | | Constal Constant | Genital System | Clitoral gland | + | + | + | + | + | + N | VI + | + | + | + | + | + | + | + . | + + | + + | + | + | + | + | + | + | + | | Ovary | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | + + | | + | + | + | + | + | + | + | | Cystadenoma | | | | | | | | | | | | | | | Σ | • | | | | | | X | | | Histiocytic sarcoma | Sarcoma, metastatic, mesentery | | | | | | | | | | | | | | X | | | | | | | | | | | Oviduct | | | | | | | | | | | + | | | | | | | | | | | | | | Schwannoma malignant, metastatic, skin | | | | | | | | | | | X | | | | | | | | | | | | | | Uterus | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + . | + + | + | + | + | + | + | + | + | + | | Histiocytic sarcoma | Polyp stromal | Hematopoietic System | , | | , | | | | | | | | | | | | | | Bone marrow | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + . | + + | - + | + | + | + | + | + | + | + | | Histiocytic sarcoma | Lymph node | | | | | | | | + | | + | | | + | + | + | | + | | | | | | + | | Iliae, histiocytic sarcoma | Iliac, rhabdomyosarcoma, metastatic, | skeletal muscle | | | | | | | | | | | | | X | | | | | | | | | | | | Mediastinal, sarcoma, metastatic, mesentery | | | | | | | | | | | | | | X | | | | | | | | | | | Pancreatic, sarcoma, metastatic, mesentery | | | | | | | | | | | | | | X | |
| | | | | | | | | Lymph node, mandibular | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + . | + + | + | + | + | + | + | + | + | + | | Histiocytic sarcoma | Schwannoma malignant, metastatic, skin | | | | | | | | | | | X | | | | | | | | | | | | | | Lymph node, mesenteric | + | + | + | + | + | + - | + + | + | + | + | + | + | M | + | + + | + + | + | + | + | M | + | + | + | | Histiocytic sarcoma | Spleen | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | | Histiocytic sarcoma | - | | | | - | | | - | | • | | • | | | | | - | | | | | | • | | Thymus | + | + | + | + | + | + - | + + | М | + | + | м | + | м | + | + - | ⊢ + | . + | м | r + | + | + | + | + | | Histiocytic sarcoma | ' | ' | | | | | ' ' | 141 | | | 171 | | 171 | | | ' ' | | 141 | | ' | Integumentary System | Mammary gland | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Skin | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | | Squamous cell papilloma | Subcutaneous tissue, sarcoma | | | | | | | X | | | | | | | | | | | | | | | | X | | Subcutaneous tissue, schwannoma malignant | | | | | | | | | | | X | | | | | | | | | | | | | | Musculoskeletal System | , | | | | | | | Bone | + | + | + | + | + | + - | + + | + | + | + | + | + | | + . | + + | - + | + | + | + | + | + | + | + | | Skeletal muscle | | | | | | | | | | | | | + | | | | | | | | | | | | Rhabdomyosarcoma | | | | | | | | | | | | | X | | | | | | | | | | | | Nervous System | Brain | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + - | + + | - + | + | + | + | + | + | + | + | | ····· | Carcass ID Number 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | |--|----------| | Carcass ID Number 2 | | | Carcass ID Number | | | Genital System Clitoral gland Ovary | Total | | Clitoral gland | Tissues/ | | Clitoral gland | Tumors | | Clitoral gland | | | Ovary Cystadenoma Histiocytic sarcoma Sarcoma, metastatic, mesentery Oviduct Schwannoma malignant, metastatic, skin Uterus Histiocytic sarcoma Bone marrow Histiocytic sarcoma Histiocytic sarcoma Hematopoietic System Bone marrow Histiocytic sarcoma Histiocytic sarcoma Hematopoietic System Bone marrow Histiocytic sarcoma Histi | 48 | | Cystadenoma | 49 | | Histiocytic sarcoma Sarcoma, metastatic, mesentery Oviduet Schwannoma malignant, metastatic, skin Uterus Histiocytic sarcoma Polyp stromal Hematopoietic System Bone marrow Histiocytic sarcoma Iliac, rhabdomyosarcoma, metastatic, mesentery Pancreatic, sarcoma, metastatic, mesentery Pancreatic, sarcoma Musculoskeletal System | 3 | | Sarcoma, metastatic, mesentery Oviduct Schwannoma malignant, metastatic, skin Uterus | 1 | | Oviduet Schwannoma malignant, metastatic, skin Uterus | 1 | | Schwannoma malignant, metastatic, skin | 1 | | Uterus | 1 | | Histiocytic sarcoma Polyp stromal Hematopoietic System Bone marrow | 50 | | Polyp stromal | | | Hematopictic System Bone marrow | 1 | | Bone marrow | 1 | | Sone marrow | | | Histiocytic sarcoma Lymph node | 50 | | Lymph node Iliac, histiocytic sarcoma | 1 | | Tiliac, histiocytic sarcoma | 10 | | Iliac, rhabdomyosarcoma, metastatic, skeletal muscle Mediastinal, sarcoma, metastatic, mesentery Pancreatic, sarcoma, metastatic, mesentery Pancreatic, sarcoma, metastatic, mesentery Pancreatic, sarcoma, metastatic, mesentery Pancreatic, sarcoma Schwannoma malignant, metastatic, skin Lymph node, mandibular + + + + + + + + + + + + + + + + + + | 1 | | skeletal muscle Mediastinal, sarcoma, metastatic, mesentery Pancreatic, sarcoma, metastatic, mesentery Lymph node, mandibular Histiocytic sarcoma Schwannoma malignant, metastatic, skin Lymph node, mesenteric Histiocytic sarcoma Spleen Histiocytic sarcoma Spleen Histiocytic sarcoma Thymus Hymph made, metastatic, skin Lymph node, mesenteric Histiocytic sarcoma Spleen Histiocytic sarcoma Thymus Histiocytic sarcoma Thymus Histiocytic sarcoma Thymus Histiocytic sarcoma Subcutaneous tissue, sarcoma Subcutaneous tissue, schwannoma malignant Musculoskeletal System Musculoskeletal System Bone H + + + + + + + + + + + + + + + + + + | | | Mediastinal, sarcoma, metastatic, mesentery Pancreatic, sarcoma, metastatic, mesentery Lymph node, mandibular | 1 | | Pancreatic, sarcoma, metastatic, mesentery Lymph node, mandibular | 1 | | Lymph node, mandibular | 1 | | Histiocytic sarcoma Schwannoma malignant, metastatic, skin Lymph node, mesenteric Histiocytic sarcoma Spleen Histiocytic sarcoma Thymus Histiocytic sarcoma Subcutaneous tissue, sarcoma Subcutaneous tissue, schwannoma malignant Musculoskeletal System Musculoskeletal System Subcutaneous tissue, schwannoma malignant X X X X X X X X X X X X X | 50 | | Schwannoma malignant, metastatic, skin Lymph node, mesenteric Histiocytic sarcoma Spleen Histiocytic sarcoma Thymus Histiocytic sarcoma Subcutaneous tissue, schwannoma malignant Musculoskeletal System Bone + + + + + + + + + + + + + + + + + + + | 1 | | Lymph node, mesenteric Histocytic sarcoma Spleen Histocytic sarcoma Mammary System Mammary gland Histocytic sarcoma Subcutaneous tissue, sarcoma Subcutaneous tissue, sarcoma Subcutaneous tissue, sarcoma Subcutaneous tissue, schwannoma malignant Musculoskeletal System Bone Histocytic sarcoma Histocytic sarcoma X X X X X X X X X X X X X | 1 | | Histiocytic sarcoma Spleen | 47 | | + + + + + + + + + + + + + + + + + + + | 2 | | Histiocytic sarcoma Thymus Histiocytic sarcoma System Mammary System Histiocytic sarcoma System Histiocytic sarcoma Historytic sarcoma System Histiocytic sarcoma Historytic sarcoma System Histiocytic sarcoma Historytic sarcoma System Historytic sarcoma Historytic sarcoma System Historytic sarcoma Historytic sarcoma System Historytic sarcoma Hi | 50 | | Thymus | 1 | | Histiocytic sarcoma Integumentary System Mammary gland | 44 | | Integumentary System Mammary gland + + + + + + + + + + + + + + + + + + + | 1 | | Mammary gland | 1 | | Skin | | | Squamous cell papilloma X Subcutaneous tissue, sarcoma Subcutaneous tissue, schwannoma malignant Musculoskeletal System Bone + + + + + + + + + + + + + + + + + + + | 50 | | Squamous cell papilloma X Subcutaneous tissue, sarcoma Subcutaneous tissue, schwannoma malignant Musculoskeletal System Bone + + + + + + + + + + + + + + + + + + + | 50 | | Subcutaneous tissue, sarcoma Subcutaneous tissue, schwannoma malignant Musculoskeletal System Bone + + + + + + + + + + + + + + + + + + + | 1 | | Subcutaneous tissue, schwannoma malignant Musculoskeletal System Bone + + + + + + + + + + + + + + + + + + + | 2 | | Bone + + + + + + + + + + + + + + + + + + + | 1 | | Bone + + + + + + + + + + + + + + + + + + + | | | | . | | Skeletal muscle | 50 | | The state of s | 1 | | Rhabdomyosarcoma | 1 | | Nervous System | | | Prain + + + + + + + + + + + + + + + + + + + | 50 | | Number of Davis on Canda | - | 0 | - | _ | | 4 | 5 | 5 | | - | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | |--|-------------|-------------|-------------|-------------|-------------|-------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|--| | Number of Days on Study | 0
4 | 6 | 0 | 7
2 | 7
2 | 1
9 | - |
7
3 | | 0
5 | 0
8 | 4 | 4
9 | 7
4 | 7
7 | 8 | 9
6 | 1 | 3 | 2
4 | 9 | 9 | 9 | 2
9 | 2
9 | | | Carcass ID Number | 2
7
0 | 2
8
4 | 2
7
9 | 3
0
5 | 2
8
1 | 3
1
1 | 9 | 2
8
9 | 2
6
9 | 2
7
7 | 2
9
1 | 3
0
1 | 2
7
1 | 2
9
4 | 2
9
7 | 2
8
2 | 2
6
8 | 3
0
6 | 2
7
5 | 3
0
7 | 2
6
6 | 2
6
7 | 2
7
2 | 2
7
3 | 7 | | | Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Histiocytic sarcoma | + | + | + | + | + | + | +
X | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Rhabdomyosarcoma, metastatic,
skeletal muscle
Sarcoma, metastatic, mesentery
Schwannoma malignant, metastatic, skin
Mediastinum, schwannoma malignant, | | | | | | | | | | | | X | | X | X | | | | | | | | | | | | | metastatic, skin
Nose
Trachea | + | + | + | + | + | ++ | ++ | + | ++ | ++ | + | X
+
+ | ++ | + | ++ | + | ++ | + | + | + | + | + | + | + | ++ | | | Special Senses System
Harderian gland
Adenoma | Urinary System
Kidney
Histiocytic sarcoma | + | | | Schwannoma malignant, metastatic, skin
Urinary bladder
Histiocytic sarcoma | A | + | + | + | + | + | + | + | + | + | + | X
+ | + | + | + | + | + | + | + | + | + | + | + | + | + | | | Systemic Lesions Multiple organs Histiocytic sarcoma | + | | | Leukemia granulocytic Lymphoma malignant | | | | | | | | | X | | X | | | | | | | | X | | X | | | | X | | | Individual Animal Tumor Pathology of l | Femal | le N | Лic | e i | n t | he | 2-Տ | Zea | r I |)riı | nki | ng | W | ate | r S | tu | dy | of | Py | rid | ine | : | 125 | p | pm | | |--|-------|------|-----|-----|-----|----|-----|-----|-----|------|-----|----|---|-----|-----|----|----|----|----|-----|-----|---|-----|---|----|--| | | 7 | | | Number of Dave on Study | 2 | | | Number of Days on Study | 2 | | | 2 | | |--|-------------|---|---------------|--------|-------------|-----------------------------| | Carcass ID Number | 2
7
6 | - | 2 :
7
8 | 2
8
0 | 2
8
3 | 2
8
5 | 2
8
6 | 2
8
7 | 2
8
8 | 2
9
0 | 2
9
2 | 2
9
3 | 2
9
6 | 2
9
8 | 2
9
9 | 3
0
0 | 3
0
2 | 3
0
3 | 3
0
4 | 3
0
8 | 3
0
9 | 3
1
0 | 3
1
2 | 3
1
3 | - | 3
1
5 | Total
Tissues/
Tumors | | Respiratory System Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Histiocytic sarcoma Rhabdomyosarcoma, metastatic, skeletal muscle Sarcoma, metastatic, mesentery | + | | + - | + | + | + | +
X | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | +
X | + | + | 50
3
1
1 | | Schwannoma malignant, metastatic, skin
Mediastinum, schwannoma malignant,
metastatic, skin
Nose
Trachea | + | | + - | + | +++ | ++ | +++ | ++ | +++ | +++ | ++ | +++ | ++ | ++ | ++ | ++ | ++ | +++ | +++ | +++ | +++ | +++ | +++ | ++ | ++ | +++ | 1
1
50
50 | | Special Senses System
Harderian gland
Adenoma | | | | | | | | | | +
X | | | | | | | | | | | | | | | | | 1
1 | | Urinary System Kidney Histiocytic sarcoma Schwannoma malignant, metastatic, skin | + | | + - | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | 50
1
1 | | Urinary bladder
Histiocytic sarcoma | + | - | + - | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | 49
1 | | Systemic Lesions Multiple organs Histiocytic sarcoma Leukemia granulocytic Lymphoma malignant | + | | + : | +
X | + | + | + | +
X | + | + | + | + | + | + | + | + | + | +
X | + | + | + | +
X | + | + | +
X | + | 50
2
1
7 | E-16 Pyridine, NTP TR 470 | | 0 | 0 | 0 | 1 | 4 | 5 | 5 | 5 | 5 | 6 6 | 6 | 6 | | 6 | 6 (| 6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 | |--|------------|-----|-----|----|---|---|--------|-----|-----|------------|--------|----|--------|-----|----------|------------|-----|-----|-----|-----|---|-----|----------| | Number of Days on Study | 0 | 3 | 4 | 7 | 1 | | | 6 | | 2 3 | 3 | 4 | | | | 8 9 | | 9 | 9 | 0 | | 0 | | | | 3 | 3 | 0 | 5 | 7 | 9 | 6 | 4 : | 3 | 4 2 | 3 | 2 | 8 | 9 | 8 4 | 4 2 | 6 | 7 | 9 | 0 | 0 | 8 | 2 | | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 : | 3 | 3 3 | 3 | 3 | 3 | 3 | 3 : | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | Carcass ID Number | 2 | 3 | 1 | 1 | 6 | | | | | 5 4 | 2 | 3 | | | | 2 4 | | | 3 | 2 | 4 | 4 | | | | 9 | 7 | 6 | 8 | 0 | 4 | 2 | | | 5 8 | | | | 7 | 4 ′ | | | | 6 | 6 | 3 | 1 | 9 | | Alimentary System | Esophagus | + | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | | Gallbladder | Α | A | A | + | Α | Α | Α | A | A I | M + | + | + | A | + | + , | A + | - A | . A | Α | + | Α | Α | + | | Intestine large, colon | + | · A | + | + | + | + | + | + - | + - | + + | + | + | A | + | + - | + + | + | + | + | + | + | + | + | | Intestine large, rectum | A | | | | + | + | + | + - | | + + | | | A | | | + + | | | | + | + | + | + | | Intestine large, cecum | Α | | | | | | | Α . | | + + | | | | | | | | | | | | A | + | | Intestine small, duodenum | A | | A | | | M | | | | | + | | | Α | | A | | | | | Α | + | + | | Intestine small, jejunum | A | A | | | | | | | | + + | | | | | | | | | | | | | | | Intestine small, ileum | Α | | A | | | | + | | | | | | | Α | | | | | . A | | | | | | Liver | + | + | + | + | + | + | + | | | + +
v | | | + | | | + + | + | + | + | + | + | + | + | | Hepatoblastoma | | | | | | | | | X | X | X | | | | X | | | | | | X | | | | Hepatoblastoma, multiple | | | | | | | X | X | | v | | | | v | v | | v | v | | v | | v | | | Hepatocellular carcinoma
Hepatocellular carcinoma, multiple | | | | | | | Λ | Λ | | X | | | | Χ . | Λ | | А | X | | X | X | X | X | | Hepatocellular carcinoma, multiple
Hepatocellular adenoma | | | | | | | X | | | | | X | | X | | | | | | | Λ | | Λ | | Hepatocellular adenoma, multiple | | | | | | X | Λ | | , | ХХ | v | | X | | v | X X | · v | v | v | v | v | v | v | | Mesentery | | | | | | Λ | | | | лл
+ + | | | Λ | | Λ / | Λ Λ | . A | | Λ | Λ | Λ | Λ | Λ | | Hepatoblastoma, metastatic, liver | | | | | | | | | Τ. | т т | X | | | | | | т | | | | | | | | Pancreas | _ | · A | _ | _ | _ | + | + | + - | + | + + | | + | Α | + | + - | + + | + | Α | _ | _ | _ | _ | + | | Salivary glands | | · M | | + | + | + | + | + - | · · |
+ + | | + | + | | |
+ + | | A. | + | + | + | + | + | | Stomach, forestomach | 4 | . + | + | + | + | + | + | + - | • |
+ + | | + | A | | • |
+ + | | + | + | + | + | + | + | | Stomach, glandular | + | · Å | + | + | + | + | + | + - | • | + + | | + | | • | • | | | | + | + | + | + | + | | Cardiovascular System | Blood vessel | x . | I M | 1 | .1 | J | _ | _ | _ | _ | | | J. | ٨ | _ | _ | | | | .1 | Ji. | ر | _ | _ | | Heart | IV. | | | | + | + | т
Т | Τ. | T . | + +
+ + | | + | | + + | | + +
+ + | | + | + | + | + | + | → | | Sarcoma, metastatic, skin | + | + | + | _ | т | - | 7 | т - | г. | г + | + | _ | +
X | Τ. | г - | r + | + | + | _ | т | т | + | Г | | Salcollia, liiciasiatic, Skill | | | | | | | | | | | | | Λ | | | | | | | | | | | | Endocrine System | | | | | | | | | | | | | , | | | | | | | | | | | | Adrenal cortex | + | + | + | + | + | + | | | | + + | | | | | | + + | | | + | + | + | + | | | Adrenal medulla | + | + | | | + | | | | | + + | | | | | | + + | | | | | A | | | | Islets, pancreatic | + | · A | | | + | | | | | + + | | | | | | + + | | | | | | + | | | Parathyroid gland | + | _ | | M | | | | | | + M | | | | | | | | | | | | | | | Pituitary gland | + | · I | M | + | + | + | + | + - | + | I M | . 1 | + | + | + | + - | + + | + | + | + | | M | IVI | + | | Pars distalis, adenoma | | , | | | , | | | | | | | | | | | | | | | X | | | 1 | | Thyroid gland
Follicular cell, adenoma | + | + | + | + | + | + | + | + - | т . | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | т | | General Body System | Peritoneum | | | | | , | Hepatoblastoma, metastatic, liver | | | | | + | | | | | | +
X | | | | | | | | | | | | | | Tissue NOS | | | | | | | | | | | Λ
+ | | | | | | | | | | | | | | Alveolar/bronchiolar carcinoma, | | | | | | | | | | | _ | | | | | | | | | | | | | | metastatic, lung | Hepatoblastoma, metastatic, liver | | | | | | | | | | | X | | | | | | | | | | | | | | Genital System | Clitoral gland | + | . М | [+ | + | + | + | + | + - | + - | + + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | | Ovary | + | . + | + | + | + | + | M | + - | + . | + + | + | + | À | + | ·
+ · |

+ + | . + | Å | + | + | + | + | + | | Cystadenoma | | • | • | • | | • | | • | | | • | • | | • | • | | | | • | • | • | • | | | Granulosa cell tumor benign | X | | | | | Uterus | + | · A | | | | | | | | | | | | | | + + | | | | | | | | TABLE E2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Drinking Water Study of Pyridine: 250 ppm | Individual Animal Tumor Pathology | of Fem | are | 1411 | ce i | III t | ne . | 2- 1 | ea | ר ד | rm | IKII | ıg ' | vv ai | ler i | Stu | uy | UI . | Гуі | Iu | ше | • 4 | 230 | Υŀ |)III | | |--|--------|----------|------|------|-------|------|-------------|----|-----|----|------|------------|----------|-------|-----|----|------|-----|----|----|-----|-----|----|--------|----------| | | | 7 | | 7 | 7 | 7 | 7 | 7 | | | | 7 | 7 7 | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | 7 | | | Number of Days on Study | 2 | | | 2 | 2 | 2 | 2 | 2 | | | | | 2 2 | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 2 | 2 3 | 7 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | Total | | Carcass ID Number | (| | | | 1 | 2 | 2 | 2 | | | | | 3 3 | | | 4 | 4 | 5 | 5 | 5 | 5 | 5 | | 6 | Tissues/ | | | 1 | . 8 | | | | 1 | | | 0 | | | | 5 9 | | | | 9 | | | | | | 2 | | Tumors | | Alimondon Chaton | Alimentary System
Esophagus | _ | | | _ | _ | _ | _ | _ | _ | | т. | т. | | | _ | _ | | _ | _ | _ | _ | _ | _ | | 50 | | Gallbladder | | - + | + | M | + | + | + | + | + | + | + | + | + - |
 | + | + | + | + | + | + | + | + | + | + | 33 | | Intestine large, colon | - | - + | A | + | + | + | + | + | + | + | + | + | ·
+ - | + + | + | + | + | + | + | + | + | + | + | + | 47 | | Intestine large, rectum | - | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | 47 | | Intestine large, cecum | - | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | 40 | | Intestine small, duodenum | - | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | 39 | | Intestine small, jejunum | - | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | 38 | | Intestine small, ileum | - | - + | + | + | + | + | + | + | + | + | | | + + | + + | + | + | + | + | + | + | + | + | + | + | 37 | | Liver | - | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Hepatoblastoma | | | | | | 37 | | | | | | | | | | | | | | | | | X | 37 | 6 | | Hepatoblastoma, multiple | | | | v | | X | | | v | | v | | , | X | v | | | | v | X | | | v | X
X | 3
19 | | Hepatocellular carcinoma
Hepatocellular carcinoma, multiple | | v | X | X | | v | X | v | X | X | X | X : | | ιΛ | Λ | | | X | Λ | Λ | X | v | Λ | Λ | 19 | | Hepatocellular adenoma | | Λ | . Л | | Λ | Λ | Λ | Λ | | Λ | | X | | | | | | Λ | X | | Λ | Λ | | | 6 | | Hepatocellular adenoma, multiple | 7 | X | x | X | X | X | X | X | X | X | | A . | | X | X | X | X | X | 21 | x | X | X | X | X | 37 | | Mesentery | • | | + | | | + | | | + | | | | • | | + | | | | | | | + | | | 13 | | Hepatoblastoma, metastatic, liver | 1 | | Pancreas | _ | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | 47 | | Salivary glands | - | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | 49 | | Stomach, forestomach | - | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | 49 | | Stomach, glandular | - | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | 48 | | Cardiovascular System | Blood vessel | - | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | 47 | | Heart | - | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Sarcoma, metastatic, skin | 1 | | Endocrine System | Adrenal cortex | _ | | | _ | _ | _ | _ | _ | _ | _ | Τ. | + | + + | | _ | + | _ | _ | _ | _ | _ | _ | _ | + | 48 | | Adrenal medulla | _ | ·
- + | . + | + | + | + | + | + | + | + | | | + + | · · | + | + | + | + | + | + | + | + | + | + | 45 | | Islets, pancreatic | _ | - + | + | + | + | + | + | + | + | + | | | + + | - + | + | + | + | + | + | + | + | + | + | + | 47 | | Parathyroid gland | - | - M | | + | + | M | | | M | M | | | | + M | | | M | | M | + | + | + | + | | 30 | | Pituitary gland | _ | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | M | + | + | 42 | | Pars distalis, adenoma | | | | X | | | | X | | | | | X | | | X | | X | | | | | | | 6 | | Thyroid gland | - | - + | + | + | + | + | + | + | + | + | + | + | + + | + + | + | + | + | + | + | + | + | + | + | + | 50 | | Follicular cell, adenoma | | | | X | | | | | | | | | | | | | | | | | X | | | X | 3 | | General Body System | Peritoneum | 2 | | Hepatoblastoma, metastatic, liver | 1 | | Tissue NOS | | | + | 2 | | Alveolar/bronchiolar carcinoma, | metastatic, lung | | | X | 1 | | Hepatoblastoma, metastatic, liver | 1 | | Genital System | Clitoral gland | - | - + | + | + | + | + | + | + | + | + | + | +] | М - | + + | + | + | + | + | + | + | + | + | + | + | 48 | | Ovary | - | - + | + | M | + | + | + | + | + | + | + | + | + - | + + | + | + | + | + | + | + | + | + | + | + | 46 | | Cystadenoma | | | | | | | | | | | X | | | | | | | | | | | | | | 1 | | Granulosa cell tumor benign | 1 | 47 | E-18 Pyridine, NTP TR 470 | Table E2
Individual Animal Tumor Pathology of | f Fema | le I | Mio | ce i | n tl | he 2 | 2-Y | 'ea | r I |)ri | nki | ng | W | ate | er S | Stu | dy | of : | Pyı | rid | ine | : 2 | 25(|) p | pn | 1 | |---|-------------|-------------|---------|------|-------------|---------|-------------|-------------|---------|--------|--------|-------------|---------|-------------|--------|--------|--------|------|--------|--------|-------------|-----|---------|-------------|----------|--------------| | Number of Days on Study | 0
0
3 | 0
3
3 | | 7 | 4
1
7 | 0 | | 5
6
4 | 8 | | 3 | 3 | | 4 | 5 | 7 | | 9 | 9 | 9 | 6
9
9 | 0 | 0 | | 1 | | | Carcass ID Number | 3
2
9 | 3
3
7 | 1 | 1 | 6 | 5 | 3
4
2 | 6 | 5 | 5 | 4 | 2 | 3 | 5 | 4 | 6 | 2 | 4 | 2 | 2 | | 2 | 4 | 4 | 5 | i | | Hematopoietic System Bone marrow Lymph node Pancreatic, hepatoblastoma, | + | + | + | + | A | + | + | + | + | + | + | + | +++ | + | + | + | + | + | + | + | + | + | + | + | - 4 | - | | metastatic, liver Lymph node, mandibular Sarcoma, metastatic, skin Lymph node, mesenteric Hepatoblastoma, metastatic, liver Spleen Thymus Alveolar/bronchiolar carcinoma, | M
+ | A
+ | + + + + | + | + + + + | + + + + | + + + + | + + + + | + + + + | + | A
+ | +
X
+ | + + + + | X
A
A | + | M
+ | + | + | + | A
A | + | | + + + + | + |
 | - | | metastatic, lung Integumentary System Mammary gland Skin Subcutaneous tissue, hemangioma Subcutaneous tissue, hemangiosarcoma Subcutaneous tissue, sarcoma Subcutaneous tissue, schwannoma malignant | +++ | + + | + + | + + | + + | + + | +
+
X | + + | + + | + + | +++ | + + | +
+ | A
+ | +++ | +++ | + + | + + | +++ | + + | + + | + + | + + | +
+
X | 4 | - | | Musculoskeletal System one keletal muscle Hepatoblastoma, metastatic, liver | + | + | + | + | + | + | + | + | + | + | + | +
+
X | + | + | + | + | + | + | + | + | + | + | + | + | + | - | | Nervous System
Brain | + | 4 | - | | Alveolar/bronchiolar carcinoma Hepatoblastoma, metastatic, liver Hepatocellular carcinoma, metastatic, liver Sarcoma, metastatic, skin Mediastinum, alveolar/bronchiolar | + | + | + | + | + | + | + | + | + | + | + | +
X | + | +
X | + | +
X | + | + | + | + | + | + | + | +
X | Y | | | carcinoma, metastatic, lung Mediastinum, sarcoma, metastatic, skin Nose Frachea | ++ | A
+ | +++ | ++ | +++ | +++ | ++ | A
+ | +++ | +++ | ++ | +++ | ++ | X
A
+ | ++ | ++ | ++ | +++ | +++ | +++ | ++ | ++ | ++ | + | | - | | Special Senses System
None | J rinary System
Cidney
Jrinary bladder | ++ | +
A | ++ | ++ | +
M | ++ | ++ | +
A | ++ | ++ | ++ | +++ | ++ | +
A | +++ | +++ | + + | + + | +
A | +
A | + | + | + | A
+ | . + | -
+ | | Systemic Lesions
Multiple organs
Lymphoma malignant | + | + | + | + | + | + | + | + | + | +
X | + | + | + | + | +
X | + | +
X | | + | + | + | + | + | + | + | - | | | 7 | | |--|--------|----
-----|----|---|---|---|---|---|----|--------|----|---|---|--------|--------|---|---|---|----|--------|--------|----|--------|---|---------| | Number of Days on Study | 2 | 2 | 7 | 7 | 7 | 2 | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | itumber of Days on Study | 2 | 3 | 7 | 9 | _ | 9 | | | | 3 | Tota | | Carcass ID Number | 6 | 3 | 2 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 6 | 6 | Tissues | | | 1 | 8 | 3 | 7 | 9 | 1 | 5 | 8 | 0 | 1 | 2 | 3 | 5 | 9 | 0 | 4 | 6 | 9 | 0 | 1 | 3 | 6 | 8 | 2 | 3 | Tumors | | Hematopoietic System | Bone marrow | + | 49 | | Lymph node | + | | | | + | • | | Pancreatic, hepatoblastoma, metastatic, liver | 1 | | Lymph node, mandibular | + | 49 | | Sarcoma, metastatic, skin | 1 | | Lymph node, mesenteric | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | 43 | | Hepatoblastoma, metastatic, liver | 48 | | Spleen
Fhymus | т
М | + | 46 | | Alveolar/bronchiolar carcinoma, | 111 | | | | • | • | | | | | • | • | • | | | | | | | | Ċ | | • | | • | | | metastatic, lung | | | X | 1 | | ntegumentary System | Mammary gland | + | 49 | | Skin | + | 50 | | Subcutaneous tissue, hemangioma | | 37 | | X | 1
1 | | Subcutaneous tissue, hemangiosarcoma
Subcutaneous tissue, sarcoma | | X | 3 | | Subcutaneous tissue, schwannoma malignant | 1 | | Musculoskeletal System | Bone | + | 50 | | Skeletal muscle | 1 | | Hepatoblastoma, metastatic, liver | 1 | | Nervous System | Brain | + | 50 | | Respiratory System | Lung | + | + | | + | 50 | | Alveolar/bronchiolar carcinoma | | | X | | | X | 2 | | Hepatoblastoma, metastatic, liver
Hepatocellular carcinoma, metastatic, liver | | | | | | | | | | X | | X | | | | | | | | X | | X | | | | 1
(| | Sarcoma, metastatic, skin | | | | | | | | | | 21 | | 21 | | | | | | | | 21 | | 21 | | | | 2 | | Mediastinum, alveolar/bronchiolar | carcinoma, metastatic, lung | | | X | 1 | | Mediastinum, sarcoma, metastatic, skin | 1
47 | | Nose
Frachea | + | 50 | | Special Senses System None | Huinaur Criston | Urinary System
Kidney | | .1 | | | J | J | _ | _ | _ | Т | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | J | J | J. | _1 | _ | 49 | | Kidney
Urinary bladder | + | 45 | | • | | | | | | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | | • | | • | | | Systemic Lesions Multiple organs | | .1 | . 1 | ,i | J | J | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | _ | _ | J | , | J. | J | _ | 50 | | Multiple organs
Lymphoma malignant | + | + | + | + | т | т | - | т | т | т | \top | т | т | т | \top | \top | - | т | T | - | \top | τ | _ | \top | + | 30 | E-20 Pyridine, NTP TR 470 | Individual Animal Tumor Pathology | of Female Mice in the 2-Year Drinking Water Study of Pyridine: 500 ppm | | |---|---|--| | Number of Days on Study | 0 0 0 1 2 3 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 1 1 1 8 9 6 3 7 1 2 7 9 1 2 7 8 8 9 9 0 0 2 2 2 2 2 2 4 5 8 9 6 0 9 0 6 1 5 5 6 7 0 6 0 0 0 3 9 9 9 | | | Carcass ID Number | 4 4 3 4 3 3 4 3 3 3 4 3 3 3 4 4 3 3 3 3 | | | Alimentary System | | | | Esophagus | + | | | Gallbladder | + M + + + + + + A + + + + + A A A A M M A M A | | | Intestine large, colon | A + + + + + + + + + + + + + A A + + + + | | | Intestine large, rectum | + + + + + + + + + + + + + + + A A + + A + + + + + + | | | Intestine large, cecum | A + + + + + + + + + + + + + A + A A + A + + + + + + | | | Leiomyosarcoma | | | | Intestine small, duodenum | A + + + + + + + A + + + + + A A A A A + A A + + + + + | | | Intestine small, jejunum | A A + + + + + + + + + + + + A + M + A A A + + + + | | | Intestine small, ileum | A + + A + + + + + + + + + + + + + + + + | | | Carcinoma | | | | Liver | + | | | Hemangioma | X | | | Hepatoblastoma | $\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$ | | | Hepatoblastoma, multiple | | | | Hepatocellular carcinoma | X X X X X X X X | | | Hepatocellular carcinoma, multiple | X X X X X X X X X X | | | Hepatocellular adenoma | X X X X | | | Hepatocellular adenoma, multiple | X XXXX XXX | | | Mesentery | + + + + + + × | | | Hepatoblastoma, metastatic, liver | X | | | Pancreas | + + + + + + + + + + + + + + + + + A + + A + | | | Salivary glands
Stomach, forestomach | | | | Stomach, glandular | + + + + + + + + + + + + + + + + + + + | | | Cardiovascular System | | | | Blood vessel | M + + + + + + + + + + + + + + + + + + + | | | Heart | + | | | Endocrine System | | | | Adrenal cortex | + | | | Adrenal medulla | + + + + + + + + + + + + + + + + M + + + + + + + + + | | | Islets, pancreatic | + + + + + + + + + + + + + + + + + + + | | | Parathyroid gland | + M + + + + + + + M + + + + M + M + | | | Pituitary gland | + + + + + + + + + + + + + + + + + + + | | | Pars distalis, adenoma | | | | Thyroid gland | + | | | Follicular cell, adenoma | X X | | | General Body System None | | | | Genital System | | | | Clitoral gland | + M M + + + + + + + + + + + + + + + + + | | | Ovary | + + + + + + + + + + + + + + + + + + + | | | Hemangioma | | | | Uterus | + | | | - | | | TABLE E2 Individual Animal Tumor Pathology of Female Mice in the 2-Year Drinking Water Study of Pyridine: 500 ppm | | ~ | _ | | | | | | 7 1 | 7 7 | 7 | ~ | ~ | ~ | ~ | 7 | 7 | 7 | 7 | 7 | ~ | 7 | ~ | 7 | 7 | | |--------------------------------------|--------|-----|---|---|--------|---|-----|------------|------------|-----|---|------|-----|---|-----|-----|---|---|-----|---|---|--------|--------|----|---------| | V 1 05 C 1 | 7 | | 7 | 7 | 7 | 7 | 7 | / | 77 | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | Number of Days on Study | 2 | 2 | 2 | 2 | 2 | 2 | | | 2 2 | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 9 | 9 | 9 | 9 | 9 | 9 | 9 9 | 9 9 | 9 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | | | 3 | 3 | 3 | 3 | 3 | 3 | 3 3 | 3 : | 3 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | Total | | Carcass ID Number | 7 | 7 | 7 | 7 | 7 | 7 | | | 8 8 | | 8 | 8 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 1 | | 1 | Tissues | | Curcuss ID I (united) | 0 | 3 | 5 | 6 | 8 | 9 | 0 | | | 5 | 7 | | | 2 | 6 | 7 | | 1 | | 7 | 8 | 0 | 1 | | Tumors | | | | | | 0 | - | _ | 0 . | | | | | _ | 0 | | 0 | , | • | - | | | - | 0 | | | Tuniors | | Alimentary System | Esophagus | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Gallbladder | M | [+ | M | + | + | + | + 1 | M · | + + | | M | + | + | + | + | + | + | + | + | + | + | + | + | + | 34 | | Intestine large, colon | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 45 | | Intestine large, rectum | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Intestine large, cecum | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 45 | | Leiomyosarcoma | | | | | | X | | | | | | | | | | | | | | | | | | | 1 | | Intestine small, duodenum | + | + | + | + | + | + | + - | + - | + + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 42 | | Intestine small, jejunum | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 43 | | Intestine
small, ileum | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 41 | | Carcinoma | | | | | | | | | | | | | | | | | | | X | | | | | | 1 | | Liver | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Hemangioma | | | | | | | | | | | | | | | | | | _ | _ | | | _ | | | 1 | | Hepatoblastoma | X | | | | | | | | Х | | | | | | | | | X | X | | | X | | | 12 | | Hepatoblastoma, multiple | | | | | | | 2 | X 2 | X | X | | | | | | X | | | | | | | | | 4 | | Hepatocellular carcinoma | | | | X | | X | | | | | | X | | X | | | | | | | | | X | | 11 | | Hepatocellular carcinoma, multiple | X | X | X | | X | | X Z | X 2 | X X | X | X | | X | | X | X | X | X | X | X | X | X | | X | 30 | | Hepatocellular adenoma | 4 | | Hepatocellular adenoma, multiple | X | X | | X | X | X | X Z | | | X | X | | X | X | | | X | | X | X | X | X | X | X | 30 | | Mesentery | | + | + | | | | | | + + | + | | | | | + | + | | | | | | | + | | 13 | | Hepatoblastoma, metastatic, liver | 1 | | Pancreas | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 48 | | Salivary glands | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | Stomach, forestomach | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Stomach, glandular | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Cardiovascular System | Blood vessel | + | + | + | M | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Heart | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | En de cuine Cuestons | Endocrine System Adrenal cortex | | | _ | _ | _ | _ | | | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | + | 50 | | Adrenal medulla | | _ T | | | T | T | | г - | T T | · T | T | T | T . | T | T . | T . | T | T | T | T | T | T | | + | 49 | | Islets, pancreatic | T | _ T | | | T | | T - | г -
L - |
+ + | | + | + | + | + | + | T | + | + | + | T | | T | + | + | 49 | | Parathyroid gland | T | _ T | M | | т
Т | T | т - | г -
⊥ . | T T | | | | M | | | M | | | | T | T | T
_ | | | 36 | | Parathyroid gland
Pituitary gland | + | | M | | ± | + | M - | F. | r d
L J | | + | _LVI | + | + | + | M | + | M | 141 | + | + | + | т
М | + | 46 | | Pars distalis, adenoma | X | | _ | т | Т | 7 | т - | | - + | _ | т | - | - | 7 | 7 | 7 | 7 | 7 | _ | _ | _ | X | 171 | 7- | 2 | | Thyroid gland | Λ
+ | | _ | + | + | _ | + - | L | | | + | + | + | + | _ | _ | _ | _ | _ | + | + | Λ
+ | + | + | 50 | | Follicular cell, adenoma | + | | _ | т | Т | + | т - | + - | + +
X | | т | - | - | 7 | + | 7 | 7 | 7 | _ | _ | _ | т | т | 7" | 30 | | i omediai cen, adenoma | | | | | | | | | Δ | • | | | | | | | | | | | | | | | 3 | | General Body System | None | Genital System | Clitoral gland | + | + | + | + | + | + | + - | + - | + + | . 1 | + | + | + | + | + | + | + | M | + | + | + | + | + | + | 45 | | Ovary | + | + | + | + | + | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 49 | | Hemangioma | | | • | | X | | • | | | • | • | | • | | • | • | • | • | • | • | | • | • | • | 1 | | Uterus | + | + | + | + | | + | + - | + - | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 50 | | | | | | | | * | | | | | | | | | | | | | | | | | | | 50 | E-22 Pyridine, NTP TR 470 | Fema | ile . | VII | ce 1 | n t | ne . | 2- Y | eai | · D | rın | Kin | g v | vat | er : | Stu | ay | 01 | Py | rıa | ıne | : : | 500 | pp | om
——— | | |--------|---|--|---|--|--|--|--|--|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--| - | | | | | | | | | | | | | - | - | | | _ | _ | | | | | 4 | 3 | 0 | 9 | U | U | 9 | U | U | 1 . | , . | , 0 | , | U | 0 | U | U | U | 3 | 9 | 9 | 9 | 9 | 3 | 3 | 3 | 0 | 1 | 1 | 4 | 9 | 4 | 1 | 3 | 0 - | + 0 | | 4 | | 0 | 3 | 4 | 9 | 0 | / | ٥ | 9 | + | + | + | + | + | + | + | + | + | + - | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | | | | | | _ |
_ | _ | _ | + | М. | ш. | | | | _ | | _ | _ | _ | _ | _ | м | м | _ | | | т
М | T
M | + | + | + | + | + | | | | | | | | | | | | + | | | | | | | | 141 | . 171 | . ' | | | | ' | ' | | | | | ' ' | 11 | | 11 | | | | 21 | | | | ' | | | | | | | | | | | | | | | | | X | | | | | | | | | | | | M | | | | + | + | + | + | + | + | + | + | + | + | + | M · | + - | + - | + N | 1 M | + | M | M | A | M | M | + | I | + | I | + | + | + | + | + | + | + | + | + | + - | + - | + + | + + | - + | + | + | + | + | M | + | + | + | + | + | | | + | + | + | + | + | + | + | + | + | + - | + - | + + | + + | + | + | + | + | + | + | | + | + | + | + | | | | | | | X | | | X | | | | | | | | | | X | + | + | + | + | + | + | + | + | + | + - | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | | | | | | | | | | | | | - | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + + | - + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + - | + + | + | + | + | + | + | + | | + | + | + | + | | | | | | | | | | | | | , | X | | X | • | * | | 71 | | | | | | Λ | X | X | | X | | X | | | | | | | | + | + | + | + | + | + | | | + | + - | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + - | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | Δ | + | + | + | + | + | + | + | + | + - | + - | + - | + + | - + | + | + | + | + | + | + | + | + | + | + | | | + | + | + | + | + | + | + | + | + | + . | + - | + + |
+ + | - À | | | À | À | À | À | + | + | + | + | + | + | + | + | + | + | + | | | + - | + - | + + | + + | + | + | + | + | + | + | + | + | + | + | + | | | | | | | | | | | Λ | | | | | | | | | | | | | | | | | | | 0
1
2
4
1
3
3
+
+
M
M
+
+
+
+
+
+
+
+
+
+
+
+
+
+ | 0 0
1 1
2 4
4 4
1 0
3 5
+ +
M M | 0 0 0 0 1 1 1 1 2 4 5 4 5 4 4 3 1 0 9 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0 0 0 1 1 1 1 8 2 4 5 8 4 4 3 4 1 0 9 0 3 5 5 6 + + + + + M M + | 0 0 0 1 2 1 1 1 8 9 2 4 5 8 9 4 4 3 4 3 1 0 9 0 9 3 5 5 6 1 + + + + + M + + + + + + + + + X + + + + + + + + + + + + + + + + + | 0 0 0 1 2 3 1 1 1 8 9 6 2 4 5 8 9 6 4 4 3 4 3 3 1 0 9 0 9 7 3 5 5 6 1 1 + + + + + + M + + + + + + + + + + + + + + + | 0 0 0 1 2 3 4 1 1 1 8 9 6 3 2 4 5 8 9 6 0 4 4 3 4 3 3 3 4 1 0 9 0 9 7 1 3 5 5 6 1 1 4 + + + + + + + + M + + + + + + + + + + | 0 0 0 1 2 3 4 4 1 1 1 8 9 6 3 7 2 4 5 8 9 6 0 9 4 4 3 4 3 3 3 4 3 1 0 9 0 9 7 1 9 3 5 5 6 1 1 4 9 + + + + + + + + + + M + + + + + + + + | 0 0 0 1 2 3 4 4 5 1 1 1 8 9 6 3 7 1 2 4 5 8 9 6 0 9 0 4 4 3 4 3 3 4 3 3 1 0 9 0 9 7 1 9 9 3 5 5 6 1 1 4 9 4 + + + + + + + + + + + + + + + + + + | 0 0 0 1 2 3 4 4 5 5 1 1 1 8 9 6 3 7 1 2 2 4 5 8 9 6 0 9 0 6 4 4 3 4 3 3 4 3 3 3 1 0 9 0 9 7 1 9 9 7 3 5 5 6 1 1 4 9 4 7 + + + + + + + + + + + + + + + + + + | 0 0 0 1 2 3 4 4 5 5 5 5 1 1 1 1 8 9 6 3 7 1 2 7 9 2 4 5 8 9 6 0 9 0 6 1 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0 0 0 1 2 3 4 4 5 5 5 5 6 1 1 1 8 9 6 3 7 1 2 7 9 9 2 4 5 8 9 6 0 9 0 6 1 5 3 4 4 5 5 5 5 5 6 1 1 1 8 9 6 3 7 1 2 7 9 9 7 2 4 5 8 9 6 0 9 0 6 1 5 5 5 5 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 4 9 4 7 5 8 6 6 1 1 1 1 4 9 4 7 5 8 6 6 1 1 1 1 4 9 4 7 5 8 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 0 0 1 2 3 4 4 5 5 5 5 6 6 1 1 1 8 9 6 3 7 1 2 7 9 1 2 2 4 5 8 9 6 0 9 0 6 1 5 5 6 4 4 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 1 0 9 0 9 7 1 9 9 7 1 8 8 9 3 5 5 6 1 1 4 9 4 7 5 8 4 8 + + + + + + + + + + + + + + + + + + | 0 0 0 1 2 3 4 4 5 5 5 5 6 6 6 6 1 1 1 1 8 9 6 3 7 1 2 7 9 1 2 7 2 4 5 8 9 6 0 9 0 6 1 5 5 6 7 4 4 3 3 4 3 3 3 4 3 3 3 4 3 3 3 3 4 1 0 9 0 9 7 1 9 9 7 1 8 8 9 9 0 3 5 5 6 1 1 4 9 9 4 7 5 8 4 8 2 + + + + + + + + + + + + + + + + + + | 0 0 0 1 2 3 4 4 5 5 5 5 6 6 6 6 6 6 1 1 1 1 8 9 6 3 7 1 2 7 9 1 2 7 8 2 4 5 8 9 6 0 9 0 6 1 5 5 6 7 0 4 4 4 3 4 3 3 3 4 3 3 3 3 4 3 3 3 3 4 4 1 0 9 0 9 7 1 9 9 7 1 8 8 9 0 0 3 5 5 6 1 1 4 9 9 4 7 5 8 4 8 2 4 8 2 4 8 8 4 8 2 4 8 8 4 8 8 8 8 | 0 0 0 1 2 3 4 4 5 5 5 5 6 6 6 6 6 6 6 6 1 1 1 1 8 9 6 3 7 1 2 7 9 1 2 7 8 8 8 2 4 5 8 9 6 0 9 0 6 1 5 5 6 7 0 6 6 4 4 3 3 3 3 4 3 3 3 3 4 3 3 3 3 4 4 3 3 1 0 9 0 9 7 1 9 9 7 1 8 8 9 0 0 7 3 5 5 6 1 1 4 9 4 7 5 8 4 8 2 4 2 4 2 4 2 4 4 5 5 5 6 7 6 7 6 6 7 7 7 7 7 7 7 7 7 7 7 | 0 0 0 1 2 3 4 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 1 1 1 1 8 9 6 3 7 1 2 7 9 1 2 7 8 8 9 9 2 4 5 8 9 6 0 9 0 6 1 5 5 6 7 0 6 0 9 0 6 1 5 5 6 7 0 6 0 9 0 6 1 5 5 6 7 0 6 0 9 0 6 1 5 5 6 7 0 6 0 9 0 6 1 5 5 6 7 0 6 0 9 0 6 1 5 5 6 7 0 6 0 9 0 6 1 5 5 6 7 0 6 0 9 0 6 1 5 5 6 7 0 6 0 9 0 6 1 5 5 6 7 0 6 0 9 0 6 1 5 5 6 7 0 6 0 9 0 6 1 5 5 6 7 0 6 0 9 7 1 9 9 7 1 8 8 9 9 0 0 7 8 3 5 5 6 1 1 1 4 9 4 7 5 8 4 8 2 4 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0 0 0 1 2 3 4 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 1 1 1 1 8 9 6 3 7 1 2 7 9 1 2 7 8 8 9 9 9 2 4 5 8 9 6 0 9 0 6 1 5 5 5 6 7 0 6 0 0 0 4 4 3 3 4 3 3 3 4 3 3 3 3 4 3 3 3 3 | 0 0 0 1 2 3 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 7 1 1 1 8 9 6 3 7 1 2 7 9 1 2 7 8 8 9 9 9 0 2 4 5 8 9 6 0 9 0 6 1 5 5 5 6 7 0 6 0 0 0 0 0 4 4 3 3 4 3 3 3 4 3 3 3 3 4 3 3 3 3 | 0 0 0 1 2 3 4 4 5 5 5 5 6 6 6 6 6 6 6 7 7 1 1 1 1 8 9 6 3 7 1 2 7 9 1 2 7 8 8 9 9 0 0 2 4 5 8 9 6 0 9 0 6 1 5 5 6 7 0 6 0 0 0 3 4 4 3 3 4 3 3 4 3 3 3 4 3 3 3 3 4 4 3 3 3 3 4 4 3 3 3 3 3 4 1 0 9 0 9 7 1 9 9 7 1 8 8 9 0 0 7 8 9 7 0 3 5 5 6 1 1 4 9 4 7 5 8 4 8 2 4 2 6 3 4 9 + + + + + + + + + + + + + + + + + + | 0 0 0 1 2 3 4 4 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 1 1 1 1 8 9 6 3 7 1 2 7 9 1 2 7 8 8 9 9 0 0 2 2 4 5 8 9 6 0 9 0 6 1 5 5 6 7 0 6 0 0 0 3 9 4 4 3 3 4 3 3 3 4 3 3 3 3 4 4 3 3 3 3 | 0 0 0 1 2 3 4 4 5 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 1 1 1 1 8 9 6 3 7 1 2 7 9 1 2 7 8 8 9 9 0 0 2 2 2 2 4 5 8 9 6 0 9 0 6 1 5 5 6 7 0 6 0 0 0 3 3 9 9 4 4 3 3 4 3 3 3 4 3 3 3 4 4 3 3 3 3 | 0 0 0 1 2 3 4 4 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 | 2 4 5 8 9 6 0 9 0 6 1 5 5 6 7 0 6 0 0 0 3 9 9 9 9 4 4 3 3 4 3 3 4 3 3 3 4 3 3 3 4 4 3 3 3 3 4 4 3 | | | _ | _ | _ | | | _ | | _ | _ | _ | _ | _ | _ | | _ | | _ | _ | | _ | _ | _ | | | _ | | |---|---|---|---|---|--------|---|---|---|---|---|---|---|---|---|---|---|----|---|---|---|---|---|----|---|---|----------| | | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | 7 | 7 | 7 | 7 | | | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | | | | Number of Days on Study | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | | | 9 | | | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | Total | | Carcass ID Number | 7 | 7 | 7 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | Tissues/ | | | 0 | 3 | 5 | 6 | | | | | | | | | | 0 | | | | | | | | | | | | Tumors | | Hamatanaistia Evatam | Hematopoietic System Bone marrow | 50 | | | + | 50 | | Lymph node | | | | + | | | | | | | | | | | + | | + | | | | | + | + | | | 7 | | Lymph node, mandibular | + | + | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | 47 | | Lymph node, mesenteric | + | + | + | + | + | + | + | + | + | | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | 45 | | Hemangioma | | | | | | | | | | | X | | | | | | | | | | | | | | | 1 | | Hepatoblastoma, metastatic, liver | 1 | | Spleen | + | 49 | | Thymus | + | + | + | + | + | + | + | + | + | + | + | + | M | + | + | + | + | + | + | + | + | + | + | + | + | 39 | | Integumentary System | • • | 40 | | Mammary gland | + | + | + | M | + | 48 | | Skin | + | + | + |
+ | 50 | | Subcutaneous tissue, sarcoma | | | | | X | 4 | | Subcutaneous tissue, schwannoma malignant | X | | 1 | | Musculoskeletal System | Bone | + | 50 | | | ' | ' | ' | | ' | ' | ' | ' | ' | ' | ' | | ' | ' | | ' | | ' | ' | ' | ' | ' | , | ' | ' | 1 | | Skeletal muscle | 1 | | Nervous System | Brain | + | 50 | | Respiratory System | Lung | + | 50 | | Alveolar/bronchiolar adenoma | X | | | X | ' | ' | | | | ' | | | ' | | | | | | • | | | | | ' | ' | 3 | | | Λ | | | Λ | Alveolar/bronchiolar carcinoma | | | | | | | | | | | | | | | | | 37 | | | | | | ٠, | | | 3 | | Hepatoblastoma, metastatic, liver | | _ | | | | | | | | | | | | | | | X | | | _ | | | X | | | 3 | | Hepatocellular carcinoma, metastatic, liver | X | X | | | | | | | | | | | | X | | | | | X | X | | | X | | X | 10 | | Nose | + | 50 | | Sarcoma | 1 | | Trachea | + | 50 | | Special Senses System | 1 | | Harderian gland | | | | | +
X | Carcinoma | | | | | X | 1 | | Urinary System | Kidney | + | 49 | | Urinary bladder | + | 43 | | Systemic Lesions | Multiple organs | + | 50 | Lymphoma malignant | | X | | | | | | | | | | | | | X | | X | | | | | X | X | | | 6 | E-24 Pyridine, NTP TR 470 TABLE E3 Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ррт | 125 ppm | 250 ppm | 500 ppm | |--|-----------------------|-------------|--------------|--------------| | Liver: Hepatocellular Adenoma | | | | | | Overall rate ^a | 37/49 (76%) | 39/50 (78%) | 43/50 (86%) | 34/50 (68%) | | Adjusted rate ^b | 82.5% | 87.9% | 97.3% | 79.1% | | Γerminal rate ^c | 27/32 (84%) | 27/30 (90%) | 22/22 (100%) | 23/29 (79%) | | First incidence (days) | 554 | 419 | 509 | 430 | | Poly-3 test ^d | P = 0.372N | P = 0.336 | P = 0.015 | P = 0.442N | | Liver: Hepatocellular Carcinoma | | | | | | Overall rate | 13/49 (27%) | 23/50 (46%) | 33/50 (66%) | 41/50 (82%) | | Adjusted rate | 29.8% | 55.0% | 78.1% | 97.1% | | Terminal rate | 8/32 (25%) | 18/30 (60%) | 20/22 (91%) | 29/29 (100%) | | First incidence (days) | 476 | 573 | 556 | 479 | | Poly-3 test | P<0.001 | P = 0.014 | P<0.001 | P<0.001 | | iver: Hepatocellular Adenoma or Carcinoma | | | | | | Overall rate Towns of the Control | 41/49 (84%) | 42/50 (84%) | 44/50 (88%) | 44/50 (88%) | | Adjusted rate | 89.9% | 94.6% | 98.4% | 99.5% | | Terminal rate | 29/32 (91%) | 29/30 (97%) | 22/22 (100%) | 29/29 (100%) | | First incidence (days) | 476 | 419 | 509 | 430 | | Poly-3 test | P=0.011 | P = 0.323 | P = 0.081 | P = 0.045 | | Liver: Hepatoblastoma | | | | | | Overall rate | 1/49 (2%) | 2/50 (4%) | 9/50 (18%) | 16/50 (32%) | | Adjusted rate | 2.4% | 4.9% | 21.6% | 39.6% | | Cerminal rate | 1/32 (3%) | 1/30 (3%) | 3/22 (14%) | 12/29 (41%) | | First incidence (days) | 729 (T) | 599 | 564 | 510 | | Poly-3 test | P<0.001 | P = 0.493 | P = 0.007 | P<0.001 | | Liver: Hepatocellular Carcinoma or Hepatoblast | toma | | | | | Overall rate | 13/49 (27%) | 23/50 (46%) | 36/50 (72%) | 43/50 (86%) | | Adjusted rate | 29.8% | 55.0% | 82.8% | 99.0% | | Terminal rate | 8/32 (25%) | 18/30 (60%) | 20/22 (91%) | 29/29 (100%) | | First incidence (days) | 476 | 573 | 556 | 479 | | Poly-3 test | P<0.001 | P = 0.014 | P<0.001 | P<0.001 | | iver: Hepatocellular Adenoma, Hepatocellular | Carcinoma, or Hepatol | blastoma | | | | Overall rate | 41/49 (84%) | 42/50 (84%) | 45/50 (90%) | 44/50 (88%) | | Adjusted rate | 89.9% | 94.6% | 99.6% | 99.5% | | Cerminal rate | 29/32 (91%) | 29/30 (97%) | 22/22 (100%) | 29/29 (100%) | | First incidence (days) | 476 | 419 | 509 | 430 | | Poly-3 test | P = 0.009 | P = 0.323 | P = 0.042 | P = 0.045 | | Lung: Alveolar/bronchiolar Adenoma | | | | | | Overall rate | 2/50 (4%) | 3/50 (6%) | 0/50 (0%) | 3/50 (6%) | | Adjusted rate | 4.7% | 7.2% | 0.0% | 7.8% | | Ferminal rate | 2/32 (6%) | 1/30 (3%) | 0/22 (0%) | 2/29 (7%) | | First incidence (days) | 729 (T) | 555 | e | 703 | | oly-3 test | P = 0.463 | P = 0.486 | P = 0.254N | P=0.455 | | Lung: Alveolar/bronchiolar Carcinoma | | | | | | Overall rate | 2/50 (4%) | 1/50 (2%) | 2/50 (4%) | 3/50 (6%) | | Adjusted rate | 4.7% | 2.5% | 5.0% | 7.6% | | Cerminal rate | 1/32 (3%) | 1/30 (3%) | 1/22 (5%) | 0/29 (0%) | | First incidence (days) | 662 | 729 (T) | 727 | 595 | | Poly-3 test | P = 0.287 | P = 0.521N | P = 0.665 | P=0.460 | TABLE E3 Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ррт | 125 ppm | 250 ppm | 500 ppm | |---|---------------------|-----------------|---------------------|---------------------| | Lung: Alveolar/bronchiolar Adenoma or Carcinoma | | | | | | Overall rate | 4/50 (8%) | 4/50 (8%) | 2/50 (4%) | 5/50 (10%) | | Adjusted rate | 9.3% | 9.6% | 5.0% | 12.7% | | Terminal rate | 3/32 (9%) | 2/30 (7%) | 1/22 (5%) | 2/29 (7%) | | First incidence (days) Poly-3 test | 662
P=0.399 | 555
P=0.624 | 727
P=0.374N | 595
P=0.445 | | Tory 5 test | 1 -0.377 | 1 -0.024 | 1 -0.57411 | 1 -0.443 | | Ovary: Cystadenoma | | | | | | Overall rate | 4/47 (9%) | 3/49 (6%) | 1/46 (2%) | 0/49 (0%) | | Adjusted rate | 9.9% | 7.6% | 2.7% | 0.0% | | Terminal rate | 4/32 (13%) | 2/29 (7%) | 1/21 (5%) | 0/29 (0%) | | First incidence (days) Poly-3 test | 729 (T)
P=0.029N | 696
P=0.513N | 729 (T)
P=0.210N | P=0.069N | | Tory 5 test | 1 -0.02511 | 1 -0.31314 | 1 -0.21014 | 1 -0.00514 | | Pituitary Gland (Pars Distalis): Adenoma | | | | | | Overall rate | 8/47 (17%) | 9/44 (20%) | 6/42 (14%) | 2/46 (4%) | | Adjusted rate | 19.7% | 25.0% | 17.1% | 5.7% | | Terminal rate | 8/31 (26%) | 6/26 (23%) | 5/21 (24%) | 2/27 (7%) | | First incidence (days) Poly-3 test | 729 (T)
P=0.041N | 608
P=0.391 | 700
P=0.502N | 729 (T)
P=0.071N | | roly-3 test | r =0.0411V | 1 -0.391 | F -0.3021V | I -0.0711N | | Skin (Subcutaneous Tissue): Sarcoma | | | | | | Overall rate | 2/50 (4%) | 2/50 (4%) | 3/50 (6%) | 4/50 (8%) | | Adjusted rate | 4.7% | 4.9% | 7.4% | 9.9% | | Terminal rate | 2/32 (6%) | 1/30 (3%) | 0/22 (0%) | 1/29 (3%) | | First incidence (days) | 729 (T)
P=0.197 | 573
P=0.679 | 556
P=0.477 | 299
P=0 211 | | Poly-3 test | P=0.197 | P=0.079 | P=0.477 | P=0.311 | | Thyroid Gland (Follicular Cell): Adenoma | | | | | | Overall rate | 3/50 (6%) | 2/50 (4%) | 3/50 (6%) | 3/50 (6%) | | Adjusted rate | 7.0% | 4.9% | 7.6% | 7.8% | | Terminal
rate | 3/32 (9%) | 1/30 (3%) | 3/22 (14%) | 3/29 (10%) | | First incidence (days) | 729 (T) | 674 | 729 (T) | 729 (T) | | Poly-3 test | P = 0.472 | P = 0.522N | P = 0.628 | P=0.615 | | All Organs: Hemangioma | | | | | | Overall rate | 0/50 (0%) | 0/50 (0%) | 1/50 (2%) | 3/50 (6%) | | Adjusted rate | 0.0% | 0.0% | 2.5% | 7.7% | | Terminal rate | 0/32 (0%) | 0/30 (0%) | 1/22 (5%) | 2/29 (7%) | | First incidence (days) | D 0.015 | | 729 (T) | 615 | | Poly-3 test | P = 0.017 | | P = 0.485 | P = 0.103 | | All Organs: Hemangioma or Hemangiosarcoma | | | | | | Overall rate | 0/50 (0%) | 0/50 (0%) | 2/50 (4%) | 3/50 (6%) | | Adjusted rate | 0.0% | 0.0% | 5.0% | 7.7% | | Terminal rate | 0/32 (0%) | 0/30 (0%) | 1/22 (5%) | 2/29 (7%) | | First incidence (days) | T. 0.0 | | 723 | 615 | | Poly-3 test | P = 0.022 | | P = 0.221 | P = 0.103 | | All Organs: Malignant Lymphoma | | | | | | Overall rate | 6/50 (12%) | 7/50 (14%) | 4/50 (8%) | 6/50 (12%) | | Adjusted rate | 13.9% | 17.1% | 9.8% | 15.3% | | Terminal rate | 2/32 (6%) | 5/30 (17%) | 0/22 (0%) | 5/29 (17%) | | First incidence (days) | 687 | 599 | 624 | 510 | | Poly-3 test | P = 0.546N | P = 0.460 | P = 0.407N | P = 0.554 | | | | | | | E-26 Pyridine, NTP TR 470 TABLE E3 Statistical Analysis of Primary Neoplasms in Female Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 125 ppm | 250 ppm | 500 ppm | |---|-------------|--------------|--------------|--------------| | All Organs: Benign Neoplasms | | | | | | Overall rate | 40/50 (80%) | 41/50 (82%) | 43/50 (86%) | 36/50 (72%) | | Adjusted rate | 85.5% | 91.5% | 97.3% | 83.7% | | Terminal rate | 28/32 (88%) | 28/30 (93%) | 22/22 (100%) | 25/29 (86%) | | First incidence (days) | 151 | 419 | 509 | 430 | | Poly-3 test | P = 0.445N | P = 0.275 | P = 0.035 | P=0.527N | | All Organs: Malignant Neoplasms | | | | | | Overall rate | 26/50 (52%) | 30/50 (60%) | 40/50 (80%) | 44/50 (88%) | | Adjusted rate | 56.0% | 69.7% | 90.1% | 99.2% | | Terminal rate | 14/32 (44%) | 20/30 (67%) | 20/22 (91%) | 29/29 (100%) | | First incidence (days) | 375 | 573 | 556 | 299 | | Poly-3 test | P<0.001 | P = 0.128 | P<0.001 | P<0.001 | | All Organs: Benign or Malignant Neoplasms | | | | | | Overall rate | 47/50 (94%) | 45/50 (90%) | 45/50 (90%) | 45/50 (90%) | | Adjusted rate | 96.5% | 99.7% | 99.6% | 99.7% | | Terminal rate | 31/32 (97%) | 30/30 (100%) | 22/22 (100%) | 29/29 (100%) | | First incidence (days) | 151 | 419 | 509 | 299 | | Poly-3 test | P = 0.174 | P = 0.348 | P = 0.366 | P=0.347 | | | | | | | ## (T)Terminal sacrifice ^a Number of neoplasm-bearing animals/number of animals examined. Denominator is number of animals examined microscopically for liver, lung, ovary, pituitary gland, and thyroid gland; for other tissues, denominator is number of animals necropsied. b Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality c Observed incidence at terminal kill d Beneath the control incidence are the P values associated with the trend test. Beneath the exposed group incidence are the P values corresponding to pairwise comparisons between the controls and that exposed group. The Poly-3 test accounts for differential mortality in animals that do not reach terminal sacrifice. A negative trend or a lower incidence in an exposure group is indicated by N. Not applicable; no neoplasms in animal group Table E4 Historical Incidence of Liver Neoplasms in Untreated Female $B6C3F_1$ Mice^a | | | Inci | dence in Controls | | |--------------------------------------|-------------------------------------|-----------------------------------|-------------------|---| | | Hepatocellular
Adenoma | Hepatocellular
Carcinoma | Hepatoblastoma | Hepatocellular Adenoma,
Hepatocellular Carcinoma,
or Hepatoblastoma | | Overall Historical Incidence | | | | | | Total
Standard deviation
Range | 150/289 (51.9%)
20.8%
26%-80% | 55/289 (19.0%)
13.7%
8%-42% | 0/289 | 173/289 (59.9%)
21.3%
32%-82% | ^a Data as of 1 August 1997 E-28 Pyridine, NTP TR 470 TABLE E5 Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Drinking Water Study of Pyridine^a | | 0 ppm | 125 ppm | 250 ppm | 500 ppm | |---------------------------------------|----------|----------|----------|----------| | Disposition Summary | | | | | | Animals initially in study | 50 | 50 | 50 | 50 | | Early deaths | 30 | 50 | 50 | 50 | | Accidental deaths | 3 | 6 | 4 | 5 | | Moribund | 3 | 2 | 3 | 5 | | Natural deaths | 12 | 12 | 21 | 11 | | Survivors | 12 | 12 | 21 | 11 | | Terminal sacrifice | 32 | 30 | 22 | 29 | | Terminal sacrince | 32 | 30 | 22 | 29 | | Animals examined microscopically | 50 | 50 | 50 | 50 | | Alimentary System | | | | | | Gallbladder | (37) | (40) | (33) | (34) | | Hyperplasia | | | | 1 (3%) | | Intestine large, rectum | (44) | (48) | (47) | (47) | | Artery, necrosis | | | | 1 (2%) | | Intestine large, cecum | (44) | (49) | (40) | (45) | | Edema | | | 1 (3%) | | | Intestine small, jejunum | (42) | (47) | (38) | (43) | | Peyer s patch, hyperplasia, lymphoid | 1 (2%) | | | | | Intestine small, ileum | (43) | (48) | (37) | (41) | | Peyer s patch, hyperplasia, lymphoid | | 1 (2%) | | | | Liver | (49) | (50) | (50) | (50) | | Basophilic focus | 1 (2%) | | | | | Clear cell focus | 1 (2%) | 5 (10%) | 1 (2%) | 2 (4%) | | Cyst | | | 1 (2%) | | | Eosinophilic focus | 17 (35%) | 12 (24%) | 14 (28%) | 9 (18%) | | Hematopoietic cell proliferation | 2 (4%) | 1 (2%) | 1 (2%) | 1 (2%) | | Hemorrhage | 1 (2%) | | | | | Infiltration cellular, lymphocyte | 4 (8%) | | | | | Mixed cell focus | 5 (10%) | 4 (8%) | 3 (6%) | | | Necrosis | 5 (10%) | 2 (4%) | 5 (10%) | 7 (14%) | | Vacuolization cytoplasmic, diffuse | 1 (2%) | | | 1 (2%) | | Centrilobular, congestion | | | | 1 (2%) | | Centrilobular, degeneration | | | 1 (2%) | 1 (2%) | | Midzonal, vacuolization cytoplasmic | | | 1 (2%) | | | Periportal, vacuolization cytoplasmic | | 2 (4%) | 1 (2%) | | | Mesentery | (17) | (18) | (13) | (13) | | Infiltration cellular, lymphocyte | 1 (6%) | | | | | Inflammation, chronic active | 2 (12%) | | | | | Fat, necrosis | 12 (71%) | 13 (72%) | 11 (85%) | 9 (69%) | | Pancreas | (49) | (49) | (47) | (48) | | Infiltration cellular, lymphocyte | 1 (2%) | 1 (2%) | | | | Inflammation, chronic active | 1 (2%) | | | 2 (4%) | | Acinus, atrophy | | 2 (4%) | 1 (2%) | 2 (4%) | | Artery, inflammation, chronic | | | 1 (2%) | | | Duct, cyst | | 1 (2%) | 2 (4%) | 2 (4%) | | Salivary glands | (50) | (50) | (49) | (50) | | Infiltration cellular, lymphocyte | 33 (66%) | 35 (70%) | 36 (73%) | 29 (58%) | | Stomach, forestomach | (49) | (49) | (49) | (49) | | Ulcer | 1 (2%) | | | | | Epithelium, hyperplasia | 1 (2%) | | | | | Stomach, glandular | (48) | (49) | (48) | (49) | | Necrosis | 3 (6%) | 3 (6%) | 4 (8%) | 3 (6%) | | Tooth | (2) | | | | | Developmental malformation | 2 (100%) | | | | ^a Number of animals examined microscopically at the site and the number of animals with lesion TABLE E5 Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 125 ppm | 250 ppm | 500 ppm | |--|------------------|----------|------------------|----------------| | Cardiovascular System | | | | | | Blood vessel | (48) | (47) | (47) | (47) | | Aorta, inflammation, chronic active | 1 (2%) | (47) | (47) | (47) | | Heart | (50) | (50) | (50) | (50) | | Cardiomyopathy | 1 (2%) | (5 0) | (0.0) | (= 4) | | Inflammation, chronic active | 1 (2%) | | | | | Mineralization | | | 1 (2%) | | | Atrium, thrombosis | | | | 1 (2%) | | Endocrine System | | | | | | Adrenal cortex | (49) | (50) | (48) | (50) | | Cytoplasmic alteration | 2 (4%) | (50) | (10) | 2 (4%) | | Hematopoietic cell proliferation | · · · / | 1 (2%) | 1 (2%) | · · · / | | Hemorrhage | 1 (2%) | * * | ` ' | 2 (4%) | | Hyperplasia | 1 (2%) | | | | | Capsule, hyperplasia | 41 (84%) | 35 (70%) | 39 (81%) | 37 (74%) | | Adrenal medulla | (49) | (49) | (45) | (49) | | Hyperplasia | 1 (2%) | 2 (4%) | (47) | (40) | | slets, pancreatic | (49) | (50) | (47) | (49) | | Hyperplasia
Parathyroid gland | (31) | (29) | 2 (4%) | 3 (6%) | | Infiltration cellular, lymphocyte | (31) | (49) | (30) | (36)
1 (3%) | | Pituitary gland | (47) | (44) | (42) | (46) | | Hemorrhage | (11) | (11) | (12) | 1 (2%) | | Pars distalis, angiectasis | | 1 (2%) | | 1 (2%) | | Pars distalis, hyperplasia | 5 (11%) | 4 (9%) | 6 (14%) | 8 (17%) | | Pars intermedia, hyperplasia | 1 (2%) | . / | ` ' | ` ' | | Γhyroid gland | (50) | (50) | (50) | (50) | | Infiltration cellular, lymphocyte | | 3 (6%) | | 3 (6%) | | C-cell, hyperplasia | 1 (2%) | | , | | | Follicle, cyst | 4 (8%) | 21 (12%) | 1 (2%) | 22 (46%) | | Follicular cell, hyperplasia | 14 (28%) | 21 (42%) | 22 (44%) | 23 (46%) | | General Body System | | | | | | Peritoneum | | | (2) | | | Inflammation, chronic active | | | 1 (50%) | | | Genital System | | | | | | Clitoral gland | (47) | (48) | (48) | (45) | | Atrophy | 45 (96%) | 43 (90%) | 45 (94%) | 43 (96%) | | Cyst
Inflammation abrania | 3 (6%)
2 (4%) | 2 (40) | 1 (201) | 4 (9%) | | Inflammation, chronic Inflammation, chronic active | 2 (4%) 2 (4%) | 2 (4%) | 1 (2%)
3 (6%) | 4 (9%) | | Pigmentation | 2 (4%) | | 1 (2%) | 3 (7%) | | Ovary | (47) | (49) | (46) | (49) | | Angiectasis | (**) | 1 (2%) | (. ~ / | () | | Cyst | 14 (30%) | 9 (18%) | 11 (24%) | 11 (22%) | | Periovarian tissue, hyperplasia, lymphoid | ` ' | 1 (2%) | ` ' | ` ' | | Uterus | (48) | (50) | (47) | (50) | | Congestion | 1 (2%) | | | | | Cyst | 3 (6%) | 3 (6%) | 5 (11%) | 2 (4%) | | Hyperplasia, cystic | 44 (92%) | 43 (86%) | 38 (81%) | 39 (78%) | | Inflammation, chronic active | 1 (2%) | | | 1 (2%) | | Pigmentation | | | | 1 (2%) | E-30 Pyridine, NTP TR 470 TABLE E5 Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Drinking
Water Study of Pyridine | | 0 ppm | 125 ppm | 250 ppm | 500 ppm | |---|----------|----------|----------|----------| | Hematopoietic System | | | | | | Bone marrow | (49) | (50) | (49) | (50) | | Atrophy | 1 (2%) | 1 (2%) | . , | . , | | Myeloid cell, hyperplasia | 1 (2%) | | | 2 (4%) | | ymph node | (10) | (10) | (7) | (7) | | Iliac, hemorrhage | 1 (10%) | | | | | Iliac, hyperplasia, lymphoid | 3 (30%) | | 2 (29%) | | | Iliac, inflammation, chronic active | | | | 1 (14%) | | Iliac, pigmentation | 1 (10%) | | | | | Inguinal, hyperplasia, lymphoid | | | 1 (14%) | | | Mediastinal, hemorrhage | 1 (10%) | | 1 (14%) | | | Mediastinal, hyperplasia, plasma cell | | 1 (10%) | | | | Mediastinal, inflammation, chronic active | 1 (10%) | | | | | Mediastinal, pigmentation | | | 1 (14%) | | | Renal, hemorrhage | | | 1 (14%) | | | Renal, hyperplasia, lymphoid | 1 (10%) | | | | | ymph node, mandibular | (48) | (50) | (49) | (47) | | Hemorrhage | 3 (6%) | | 1 (2%) | 1 (2%) | | Hyperplasia, lymphoid | 2 (4%) | 2 (4%) | | | | ymph node, mesenteric | (48) | (47) | (43) | (45) | | Angiectasis | | | 1 (2%) | 2 (4%) | | Ectasia | | 1 (2%) | | | | Hematopoietic cell proliferation | 1 (2%) | | | 1 (2%) | | Hemorrhage | 4 (8%) | 2 (4%) | 3 (7%) | 2 (4%) | | Hyperplasia, lymphoid | 1 (2%) | 1 (2%) | | | | Artery, necrosis | | | | 1 (2%) | | pleen | (49) | (50) | (48) | (49) | | Atrophy | | 1 (2%) | 1 (2%) | | | Hematopoietic cell proliferation | 29 (59%) | 27 (54%) | 32 (67%) | 39 (80%) | | Hemorrhage | | 1 (2%) | 1 (2%) | | | Hyperplasia, lymphoid | 2 (4%) | 5 (10%) | 4 (8%) | 2 (4%) | | Inflammation, chronic active | 1 (2%) | | | | | Pigmentation | 1 (2%) | | | 1 (2%) | | hymus | (45) | (44) | (46) | (39) | | Atrophy | 11 (24%) | 11 (25%) | 13 (28%) | 10 (26%) | | Ectopic parathyroid gland | 1 (2%) | | 2 (4%) | | | Hyperplasia, lymphoid | 1 (2%) | | 1 (2%) | | | Inflammation, acute | 1 (2%) | | | | | Necrosis | 2 (4%) | 4 (9%) | 3 (7%) | 3 (8%) | | ntegumentary System | | | | | | fammary gland | (47) | (50) | (49) | (48) | | Hyperplasia | 2 (4%) | 1 (2%) | ` / | . , | | kin | (49) | (50) | (50) | (50) | | Inflammation, chronic active | 1 (2%) | 1 (2%) | 1 (2%) | 1 (2%) | | Subcutaneous tissue, necrosis | | 1 (2%) | . , | , , | | Ausculoskeletal System | | | | | | one System | (50) | (50) | (50) | (50) | | Fibrous osteodystrophy | (30) | 5 (10%) | 2 (4%) | (30) | | | 1 (201) | 3 (10%) | 2 (470) | | | Hyperostosis | 1 (2%) | | | | TABLE E5 Summary of the Incidence of Nonneoplastic Lesions in Female Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | 125 ppm | 250 ppm | 500 ppm | |---|--------------------|-----------|--------------------------|----------| | Nervous System | | | | | | Brain | (50) | (50) | (50) | (50) | | Cyst epithelial inclusion | (50) | (20) | (20) | 1 (2%) | | Hemorrhage | 1 (2%) | 1 (2%) | | 1 (270) | | Infiltration cellular, histiocyte | 1 (270) | 1 (2%) | | | | Mineralization | 25 (50%) | 27 (54%) | 18 (36%) | 19 (38%) | | Meninges, inflammation, chronic active | 1 (2%) | 27 (3470) | 10 (50%) | 15 (30%) | | Respiratory System | | | | | | Lung | (50) | (50) | (50) | (50) | | Congestion | (30) | 2 (4%) | 4 (8%) | 3 (6%) | | Hemorrhage | 1 (2%) | 2 (7/0) | + (0 <i>/</i> 0 <i>)</i> | 1 (2%) | | Infiltration cellular, lymphocyte | 4 (8%) | 2 (4%) | | 1 (2%) | | Inflammation, chronic active | 1 (2%) | 2 (4%) | | 1 (270) | | Alveolar epithelium, hyperplasia | 5 (10%) | 3 (6%) | 1 (2%) | | | Alveolus, infiltration cellular, histiocyte | | 3 (0%) | 1 (270) | 2 (4%) | | Nose | 2 (4%)
(50) | (50) | (47) | (50) | | Foreign body | 1 (2%) | (30) | (47) | (30) | | Olfactory epithelium, degeneration, hyaline | ` / | 27 (54%) | 35 (74%) | 36 (72%) | | | 19 (38%) | 27 (54%) | 35 (74%) | 36 (72%) | | Olfactory epithelium, inflammation, | | | | 1 (201) | | chronic active | | 1 (20) | | 1 (2%) | | Olfactory epithelium, necrosis | 26 (52.01) | 1 (2%) | 12 (2(%) | 12 (26%) | | Respiratory epithelium, degeneration, hyaline | 26 (52%) | 16 (32%) | 12 (26%) | 13 (26%) | | Respiratory epithelium, hyperplasia | 12 (24%) | 8 (16%) | 12 (26%) | 4 (8%) | | Respiratory epithelium, inflammation, | 2 (6%) | | | 1 (2.51) | | chronic active | 3 (6%) | 4 (2.01) | | 1 (2%) | | Respiratory epithelium, necrosis | | 1 (2%) | | | | Special Senses System None | | | | | | Urinary System
Kidney | (49) | (50) | (49) | (49) | | Infarct | 1 (2%) | | 1 (2%) | (49) | | Infarct Infiltration cellular, plasma cell | 1 (4%) | 2 (4%) | 1 (2%) | 1 (2%) | | Infiltration cellular, plasma cell
Infiltration cellular, lymphocyte | 4 (8%) | 2 (4%) | 5 (10%) | 2 (4%) | | | | | | ` , | | Nephropathy | 5 (10%) | 10 (20%) | 7 (14%) | 8 (16%) | | Glomerulus, amyloid deposition | | 1 (2.6) | 1 (2%) | 0 (401) | | Renal tubule, dilatation | | 1 (2%) | 2 (4%) | 2 (4%) | | Renal tubule, pigmentation | | | 3 (6%) | 2 (4%) | | Renal tubule, regeneration | (4 - 5 | 1 (2%) | | 1 (2%) | | Urinary bladder | (45) | (49) | (44) | (43) | | Infiltration cellular, lymphocyte | 16 (36%) | 16 (33%) | 17 (39%) | 22 (51%) | E-32 Pyridine, NTP TR 470 ## APPENDIX F GENETIC TOXICOLOGY | SALMONELLA | MUTAGENICITY TEST PROTOCOL | F-2 | |------------|--|------| | Mouse Lym | PHOMA MUTAGENICITY TEST PROTOCOL | F-2 | | CHINESE HA | MSTER OVARY CELL CYTOGENETICS PROTOCOLS | F-3 | | DROSOPHILA | MELANOGASTER TEST PROTOCOLS | F-4 | | Mouse Boni | E MARROW CYTOGENETIC TEST PROTOCOLS | F-5 | | RESULTS | | F-6 | | TABLE F1 | Mutagenicity of Pyridine in Salmonella typhimurium | F-7 | | TABLE F2 | Induction of Trifluorothymidine Resistance in L5178Y Mouse Lymphoma Cells | | | | by Pyridine | F-8 | | TABLE F3 | Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells | | | | by Pyridine | F-10 | | TABLE F4 | Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells by Pyridine | F-11 | | TABLE F5 | Induction of Sex-Linked Recessive Lethal Mutations in Drosophila melanogaster | | | | by Pyridine | F-12 | | TABLE F6 | Induction of Reciprocal Translocations in <i>Drosophila melanogaster</i> by Pyridine | F-13 | | TABLE F7 | Induction of Chromosomal Aberrations in Mouse Bone Marrow Cells by Pyridine | F-13 | | TABLE F8 | Induction of Micronuclei in Bone Marrow Polychromatic Erythrocytes of Mice | | | | Treated with Pyridine by Intraperitoneal Injection | F-14 | F-2 Pyridine, NTP TR 470 ### GENETIC TOXICOLOGY ### SALMONELLA MUTAGENICITY TEST PROTOCOL Testing was performed as reported by Haworth *et al.* (1983). Pyridine was sent to the laboratory as a coded aliquot from Radian Corporation (Austin, TX). It was incubated with the *Salmonella typhimurium* tester strains TA98, TA100, TA1535, and TA1537 either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague-Dawley rat or Syrian hamster liver) for 20 minutes at 37° C. Top agar supplemented with L-histidine and d-biotin was added, and the contents of the tubes were mixed and poured onto the surfaces of minimal glucose agar plates. Histidine-independent mutant colonies arising on these plates were counted following incubation for 2 days at 37° C. Each trial consisted of triplicate plates of concurrent positive and negative controls and five doses of pyridine; $10,000 \mu g/p$ late was selected as the high dose. All trials were repeated. In this assay, a positive response is defined as a reproducible, dose-related increase in histidine-independent (revertant) colonies in any one strain/activation combination. An equivocal response is defined as an increase in revertants that is not dose-related, is not reproducible, or is not of sufficient magnitude to support a determination of mutagenicity. A negative response is obtained when no increase in revertant colonies is observed following chemical treatment. There is no minimum percentage or fold increase required for a chemical to be judged positive or weakly positive. ### MOUSE LYMPHOMA MUTAGENICITY TEST PROTOCOL The experimental protocol is presented in detail by McGregor *et al.* (1988). Pyridine was supplied as a coded aliquot by Radian Corporation. The high dose of pyridine did not exceed 5,000 μ g/mL in the absence of toxicity. L5178Y mouse lymphoma cells were maintained at 37° C as suspension cultures in supplemented Fischer's medium; normal cycling time was approximately 10 hours. To reduce the number of spontaneously occurring cells resistant to trifluorothymidine (TFT), subcultures were exposed to medium containing thymidine, hypoxanthine, methotrexate, and glycine for 1 day; to medium containing thymidine, hypoxanthine, and glycine for 1 day; and to normal medium for 3 to 5 days. For cloning, the horse serum content was increased and Noble agar was added. All treatment levels within an experiment, including concurrent positive and solvent controls, were replicated. Treated cultures contained 6×10^6 cells in 10 mL medium. This volume included the S9 fraction in those experiments performed with metabolic activation. Incubation with pyridine continued for 4 hours, at which time the medium plus pyridine was removed, and the cells were resuspended in fresh medium and incubated for an additional 2 days to express the mutant phenotype. Cell density was monitored so that log phase growth was maintained. After the 48-hour expression period, cells were plated in medium and soft agar supplemented with TFT for selection of TFT-resistant cells, and cells were plated in nonselective medium and soft agar to determine cloning efficiency. Plates were incubated at 37° C in 5% CO₂ for 10 to 12 days. The test was initially performed without S9. Because a clearly positive response was not obtained, the test was repeated using freshly prepared S9 from the livers of Aroclor 1254-induced male 344 rats. Minimum criteria for accepting
an experiment as valid and a detailed description of the statistical analysis and data evaluation are presented in Caspary *et al.* (1988). All data were evaluated statistically for trend and peak responses. Both responses had to be significant ($P \le 0.05$) for pyridine to be considered positive, i.e., capable of inducing TFT resistance. A single significant response led to a questionable conclusion, and the absence of both a trend and a peak response resulted in a negative call. ### CHINESE HAMSTER OVARY CELL CYTOGENETICS PROTOCOLS Testing was performed as reported by Galloway et al. (1987). Pyridine was sent to the laboratory as a coded aliquot by Radian Corporation. It was tested in cultured Chinese hamster ovary (CHO) cells for Pyridine, NTP TR 470 F-3 induction of sister chromatid exchanges (SCEs) and chromosomal aberrations (Abs), both in the presence and absence of Aroclor 1254-induced male Sprague-Dawley rat liver S9 and cofactor mix. Cultures were handled under gold lights to prevent photolysis of bromodeoxyuridine-substituted DNA. Each test consisted of concurrent solvent and positive controls and of at least three doses of pyridine; the high dose was limited by toxicity or, in the absence of toxicity, $5,000 \mu g/mL$ was selected as the high dose. A single flask per dose was used, and tests yielding equivocal or positive results were repeated. Sister Chromatid Exchange Test: In the SCE test without S9, CHO cells were incubated for 26 hours with pyridine in supplemented McCoy s 5A medium. Bromodeoxyuridine (BrdU) was added 2 hours after culture initiation. After 26 hours, the medium containing pyridine was removed and replaced with fresh medium plus BrdU and Colcemid, and incubation was continued for 2 hours. Cells were then harvested by mitotic shake-off, fixed, and stained with Hoechst 33258 and Giemsa. In the SCE test with S9, cells were incubated with pyridine, serum-free medium, and S9 for 2 hours. The medium was then removed and replaced with medium containing serum and BrdU and no pyridine. Incubation proceeded for an additional 26 hours, with Colcemid present for the final 2 hours. Harvesting and staining were the same as for cells treated without S9. All slides were scored blind, and those from a single test were read by the same person. Fifty second-division metaphase cells were scored for frequency of SCEs/cell from each dose level. Because significant chemical-induced cell cycle delay was seen, incubation time was lengthened to ensure a sufficient number of scorable (second-division metaphase) cells. Statistical analyses were conducted on the slopes of the dose-response curves and the individual dose points (Galloway *et al.*, 1987). An SCE frequency 20% above the concurrent solvent control value was chosen as a statistically conservative positive response. The probability of this level of difference occurring by chance at one dose point is less than 0.01; the probability for such a chance occurrence at two dose points is less than 0.001. An increase of 20% or greater at any single dose was considered weak evidence of activity; increases at two or more doses resulted in a determination that the trial was positive. A statistically significant trend (P < 0.005) in the absence of any responses reaching 20% above background led to a call of equivocal. Chromosomal Aberrations Test: In the Abs test without S9, cells were incubated in McCoy s 5A medium with pyridine for 11.5 hours; Colcemid was added and incubation continued for 2 hours. The cells were then harvested by mitotic shake-off, fixed, and stained with Giemsa. For the Abs test with S9, cells were treated with pyridine and S9 for 2 hours, after which the treatment medium was removed and the cells were incubated for 11.5 hours in fresh medium, with Colcemid present for the final 2 hours. Cells were harvested in the same manner as for the treatment without S9. The harvest time for the Abs test was based on the cell cycle information obtained in the SCE test. Cells were selected for scoring on the basis of good morphology and completeness of karyotype $(21 \pm 2 \text{ chromosomes})$. All slides were scored blind, and those from a single test were read by the same person. Two-hundred first-division metaphase cells were scored at each dose level. Classes of aberrations included simple (breaks and terminal deletions), complex (rearrangements and translocations), and other (pulverized cells, despiralized chromosomes, and cells containing 10 or more aberrations). Chromosomal aberration data are presented as percentage of cells with aberrations. To arrive at a statistical call for a trial, analyses were conducted on both the dose response curve and individual dose points. For a single trial, a statistically significant ($P \le 0.05$) difference for one dose point and a significant trend ($P \le 0.015$) were considered weak evidence for a positive response; significant differences for two or more doses indicated the trial was positive. A positive trend test in the absence of a statistically significant increase at any one dose resulted in an equivocal call (Galloway *et al.*, 1987). Ultimately, the trial calls were based on a consideration of the statistical analyses as well as the biological information available to the reviewers. ### DROSOPHILA MELANOGASTER TEST PROTOCOLS F-4 Pyridine, NTP TR 470 The assays for induction sex-linked recessive lethal (SLRL) mutations and chromosomal reciprocal translocations (RTs) were performed with adult flies as described by Valencia *et al.* (1985) and Mason *et al.* (1992). Pyridine was supplied as a coded aliquot by Radian Corporation. **Sex-Linked Recessive Lethal Mutation Test:** Pyridine was assayed in the SLRL test by feeding for 3 days to adult Canton-S wild-type males no more than 24 hours old at the beginning of treatment. Because no clearly positive response was obtained in the feeding experiments, it was retested by injection into adult males. To administer pyridine by injection, a glass Pasteur pipette was drawn out in a flame to a microfine filament, and the tip was broken off to allow delivery of the test solution. Injection was performed either manually, by attaching a rubber bulb to the other end of the pipette and forcing through sufficient solution $(0.2\text{-}0.3~\mu\text{L})$ to slightly distend the abdomen of the fly, or by attaching the pipette to a microinjector that automatically delivered a calibrated volume. Flies were anesthetized with ether and immobilized on a strip of tape. Injection into the thorax, under the wing, was performed with the aid of a dissecting microscope. Toxicity tests were performed to set concentrations of pyridine at a level that would induce 30% mortality after 72 hours of feeding or 24 hours after injection, while keeping induced sterility at an acceptable level. Canton-S males were allowed to feed for 72 hours on a solution of pyridine in 5% sucrose. In the injection experiments, 24- to 72-hour old Canton-S males were treated with a solution of pyridine dissolved in saline and allowed to recover for 24 hours. A concurrent saline control group was also included. In the adult exposures, treated males were mated to three *Basc* females for 3 days and were given fresh females at 2-day intervals to produce three matings of 3, 2, and 2 days (in each case, sample sperm from successive matings were treated at successively earlier postmeiotic stages). F₁ heterozygous females were mated with their siblings and then placed in individual vials. F₁ daughters from the same parental male were kept together to identify clusters. (A cluster occurs when a number of mutants from a given male result from a single spontaneous premeiotic mutation event and is identified when the number of mutants from that male exceeds the number predicted by a Poisson distribution.) If a cluster was identified, all data from the male in question were discarded. Presumptive lethal mutations were identified as vials containing fewer than 5% of the expected number of wild-type males after 17 days; these were retested to confirm the response. SLRL data were analyzed by simultaneous comparison with the concurrent and historical controls (Mason *et al.*, 1992) using a normal approximation to the binomial test (Margolin *et al.*, 1983). A test result was considered positive if the P value was less or equal to 0.01 and the mutation frequency in the tested group was greater than 0.10% or if the P value was less than or equal to 0.05 and the frequency in the treatment group was greater than 0.15%. A test was considered to be inconclusive if the P value was between 0.05 and 0.01 but the frequency in the treatment group was between 0.10% and 0.15% or if the P value was between 0.10 and 0.05 but the frequency in the treatment group was greater than 0.10%. A test was considered negative if the P value was greater than or equal to 0.10 or if the frequency in the treatment group was less than 0.10%. **Reciprocal Translocation Test:** Because one of the injection experiments (Mason *et al.*, 1992) produced a positive result in the SLRL test, pyridine was assayed for induction of RTs using the same exposure method. The treatment regimen was essentially the same as that for the SLRL test, except that Canton-S males were mated *en masse* to marker (*bw;st* or *bw;e*) females. The females were transferred to fresh medium every 3 to 4 days for a period of about 3 weeks to produce a total of six broods. The results of the SLRL test were used to determine the germ cell stages most likely to be affected by pyridine. F₁ heterozygous males were backcrossed individually to *bw;st* females, and the F₂ progeny were screened for pseudolinkage, which results from the induction of a translocation in a germ cell of the parental male. Flies suspected of carrying RTs were retested to confirm the findings. The translocation data were analyzed according to the conditional binomial response test of Kastenbaum and Bowman
(1970). ### MOUSE BONE MARROW CYTOGENETIC TEST PROTOCOLS Pyridine, NTP TR 470 *Chromosomal Aberrations Test:* A dose range-finding study was performed in the absence of adequate toxicity information from the literature, and the highest dose was limited by toxicity. Pyridine was tested for induction of Abs in mouse bone marrow by two different protocols. The first protocol used a standard harvest time of 17 hours, and the second protocol used a delayed harvest time of 36 hours. Male B6C3F₁ mice (10 animals per dose group) were injected intraperitoneally with pyridine dissolved in phosphate-buffered saline (PBS) (injection volume=0.4 mL.). Solvent control mice received equivalent injections of PBS alone. The positive control was mitomycin C. The mice were subcutaneously implanted with a BrdU tablet (McFee *et al.*, 1983) 18 hours before the scheduled harvest. (For the standard protocol, this required BrdU implantation to precede injection with pyridine by 1 hour). The use of BrdU allowed selection of the appropriate cell population for scoring. (Abs induced by chemical administration are present in maximum number at the first metaphase following treatment; they decline in number during subsequent nuclear divisions due to cell death.) Two hours before sacrifice, the mice received an intraperitoneal injection of colchicine in saline. The animals were killed 17 or 36 hours after pyridine injection (18 hours after BrdU dosing). One or both femurs were removed, and the marrow was flushed out with PBS (pH 7.0). Cells were treated with a hypotonic salt solution, fixed, and dropped onto chilled slides. After a 24-hour drying period, the slides were stained and scored. Fifty first-division metaphase cells were scored from each of eight animals per group. Responses were evaluated as the percentage of aberrant metaphase cells, excluding gaps. The data were analyzed by a trend test (Margolin *et al.*, 1986). *Micronucleus Test:* Preliminary range-finding studies were performed. Factors affecting dose selection included chemical solubility and toxicity and the extent of cell cycle delay induced by pyridine exposure. The standard three-exposure protocol is described in detail by Shelby *et al.* (1993). Male B6C3F₁ mice were injected intraperitoneally three times at 24-hour intervals with pyridine dissolved in PBS; the total dosing volume was 0.4 mL. Solvent control animals were injected with 0.4 mL of PBS only. The positive control animals received injections of cyclophosphamide. The animals were killed 24 hours after the third injection, and blood smears were prepared from bone marrow cells obtained from the femurs. Air-dried smears were fixed and stained; 2,000 polychromatic erythrocytes (PCEs) were scored for the frequency of micronucleated cells in each of five animals per dose group. In addition, the percentage of PCEs among the total erythrocyte population in the bone marrow was scored for each dose group as a measure of toxicity. The results were tabulated as the mean of the pooled results from all animals within a treatment group plus or minus the standard error of the mean. The frequency of micronucleated cells among PCEs was analyzed by a statistical software package that tested for increasing trend over dose groups using a one-tailed Cochran-Armitage trend test, followed by pairwise comparisons between each dosed group and the control group (Margolin *et al.*, 1990). In the presence of excess binomial variation, as detected by a binomial dispersion test, the binomial variance of the Cochran-Armitage test was adjusted upward in proportion to the excess variation. In the micronucleus test, an individual trial is considered positive if the trend test P value is less than or equal to 0.025 or if the P value for any single dose group is less than or equal to 0.025 divided by the number of dose groups. A final call of positive for micronucleus induction is preferably based on reproducibly positive trials (as noted above). Ultimately, the final call is determined by the scientific staff after considering the results of statistical analyses, the reproducibility of any effects observed, and the magnitude of those effects. #### RESULTS Pyridine (100-10,000 μ g/plate) was not mutagenic in *S. typhimurium* strain TA98, TA100, TA1535, or TA1537, with or without S9 metabolic activation enzymes (Haworth *et al.*, 1983; Table F1). Further, no significant increase in mutant frequencies was observed in L5178Y mouse lymphoma cells, tested with and without S9 metabolic activation (McGregor *et al.*, 1988; Table F2). In cytogenetic tests with cultured CHO cells, pyridine did not induce SCEs (Table F3) or Abs (Table F4), with or without S9. At the highest viable dose (1,673 μ g/mL) tested for SCE induction in the absence of S9, pyridine induced marked cell F-6 Pyridine, NTP TR 470 cycle delay, and an extended culture time (31 hours) was used to allow sufficient cells to accumulate for analysis. Pyridine was tested on three separate occasions in two different laboratories for induction of SLRL mutations in adult male D. melanogaster (Valencia et~al., 1985; Mason et~al., 1992; Table F5), and mixed results were obtained. In the first experiment (Valencia et~al., 1985), administration of pyridine by injection (7,000 ppm in aqueous 0.7% saline solution) gave negative (P=0.225) results, but feeding (700 ppm pyridine in aqueous 5% sucrose) produced an increase in recessive lethal mutations that was considered to be equivocal (P=0.043). A second experiment performed in the same laboratory using both injection (500 ppm) and feeding (729 ppm) yielded negative results. In the third experiment (Mason et~al., 1992) performed in a second laboratory, results of a feeding (500 ppm) experiment were negative (P=0.998), but administration of pyridine by injection (4,300 ppm) induced a significant increase in the frequency of SLRL mutations (P=0.008). This positive result in the SLRL test led to the performance of a test for induction of RTs in germ cells of treated male D. melanogaster (Mason et~al., 1992; Table F6); results of this test were negative. *In vivo* assays for chromosomal effects were conducted with male mice. No induction of Abs (Table F7) was noted in bone marrow cells at either of two sampling times (400-600 mg/kg pyridine; single injection), and no increase in the frequency of micronucleated PCEs (Table F8) was noted in bone marrow after intraperitoneal injection of pyridine (up to 500 mg/kg administered three times at 24-hour intervals). In summary, with the exception of the single positive result obtained in a *D. melanogaster* SLRL assay, no indication of mutagenic activity was seen with pyridine in a variety of *in vitro* and *in vivo* assays for gene mutation and chromosomal damage. Pyridine, NTP TR 470 F-7 TABLE F1 Mutagenicity of Pyridine in Salmonella typhimurium^a | | | | | Reverta | nts/plate ^b | | | |-------------|----------------------|-----------------|----------------|-------------------|------------------------|------------------|----------------| | Strain | Dose (μg/plate) | | S9 | +10% h | amster S9 | +10% | rat S9 | | | (μg/plate) | Trial 1 | Trial 2 | Trial 1 | Trial 2 | Trial 1 | Trial 2 | | TA100 | 0 | 115 ± 8.3 | 105 ± 3.5 | 116 ± 9.8 | 107 ± 14.4 | 113 ± 2.4 | 105 ± 8.0 | | | 100 | 106 ± 6.4 | 113 ± 1.5 | 116 ± 5.4 | 131 ± 10.5 | 119 ± 6.4 | 107 ± 17.0 | | | 333.3 | 93 ± 3.6 | 114 ± 5.5 | 103 ± 1.7 | 131 ± 8.6 | 129 ± 3.1 | 112 ± 15.1 | | | 1,000 | 96 ± 5.2 | 114 ± 16.5 | 94 ± 2.3 | 115 ± 5.8 | 127 ± 1.3 | 117 ± 3.0 | | | 3,333.3 | 93 ± 0.0 | 105 ± 4.6 | 121 ± 6.9 | 135 ± 12.2 | 122 ± 8.3 | 114 ± 3.9 | | | 10,000 | 96 ± 10.7 | 117 ± 8.4 | 94 ± 2.8 | 148 ± 4.8 | 112 ± 8.1 | 119 ± 10.7 | | Trial sum | nmary | Negative | Negative | Negative | Equivocal | Negative | Negative | | Positive of | control ^c | 483 ± 7.2 | 416 ± 11.3 | $1,119 \pm 119.8$ | $2,115 \pm 14.6$ | $1,075 \pm 30.0$ | 549 ± 71.3 | | TA1535 | 0 | 31 ± 0.7 | 21 ± 5.6 | 12 ± 2.3 | 12 ± 1.9 | 11 ± 1.8 | 14 ± 0.9 | | | 100 | 34 ± 1.3 | 21 ± 4.8 | 9 ± 1.5 | 13 ± 2.3 | 14 ± 0.6 | 15 ± 3.7 | | | 333.3 | 29 ± 5.6 | 18 ± 1.2 | 11 ± 2.1 | 11 ± 2.3 | 12 ± 1.3 | 12 ± 0.6 | | | 1,000 | 27 ± 4.0 | 18 ± 1.5 | 10 ± 2.5 | 12 ± 1.8 | 14 ± 2.3 | 11 ± 1.2 | | | 3,333.3 | 32 ± 3.8 | 17 ± 2.0 | 14 ± 1.9 | 11 ± 1.8 | 11 ± 1.7 | 12 ± 0.9 | | | 10,000 | 33 ± 7.1 | 17 ± 4.0 | 14 ± 5.3 | 14 ± 1.2 | 13 ± 4.1 | 15 ± 1.9 | | Trial sum | nmary | Negative | Negative | Negative | Negative | Negative | Negative | | Positive of | control | 412 ± 9.4 | 346 ± 14.4 | 257 ± 13.8 | 266 ± 9.5 | 314 ± 14.9 | 167 ± 4.9 | | TA1537 | 0 | 9 ± 1.3 | 5 ± 1.5 | 18 ± 3.5 | 10 ± 0.7 | 23 ± 2.1 | 6 ± 1.0 | | | 100 | 13 ± 5.7 | 6 ± 1.2 | 20 ± 1.9 | 7 ± 0.6 | 20 ± 1.0 | 7 ± 0.7 | | | 333.3 | 9 ± 0.6 | 6 ± 0.9 | 18 ± 4.9 | 8 ± 2.3 | 17 ± 2.2 | 4 ± 1.5 | | | 1,000 | 14 ± 1.2 | 7 ± 1.0 | 18 ± 3.8 | 10 ± 2.2 | 22 ± 3.0 | 6 ± 1.0 | | | 3,333 | 10 ± 3.0 | 5 ± 0.3 | 20 ± 4.7 | 9 ± 1.7 | 17 ± 2.7 | 5 ± 0.6 | | | 10,000 | 14 ± 0.3 | 6 ± 0.9 | 17 ± 4.2 | 5 ± 1.8 | 18 ± 1.2 | 6 ± 1.5 | | Trial sum | nmary | Negative | Negative | Negative | Negative | Negative | Negative | | Positive of | control | 329 ± 159.1 | 847 ± 54.3 | 459 ± 52.4 | 411 ± 10.3 | 495 ± 52.6 | 239 ± 24.6 | | TA98 | 0 | 35 ± 4.7 | 37 ± 3.5 | 49 ± 5.6 | 35 ± 2.3 | 31 ± 5.2 | 34 ± 3.2 | | | 100 | 35 ± 4.9 | 33 ± 3.5 | 45 ± 2.0 | 39 ± 0.3 | 41 ± 2.4 | 40 ± 0.3 | | | 333.3 | 35 ± 2.3 | 31 ± 5.9 | 39 ± 5.7 | 40 ± 0.9 | $36
\pm 3.2$ | 32 ± 5.1 | | | 1,000 | 33 ± 4.9 | 29 ± 2.3 | 46 ± 7.5 | 37 ± 2.6 | 34 ± 1.5 | 38 ± 0.3 | | | 3,333 | 25 ± 0.7 | 29 ± 3.4 | 50 ± 14.2 | 30 ± 4.7 | 33 ± 3.5 | 28 ± 1.8 | | | 10,000 | 22 ± 3.5 | 27 ± 3.8 | 43 ± 6.4 | 43 ± 7.8 | 30 ± 5.6 | 26 ± 5.6 | | Trial sum | nmary | Negative | Negative | Negative | Negative | Negative | Negative | | Positive of | control | 691 ± 10.1 | 671 ± 57.5 | 570 ± 57.5 | $1,271 \pm 7.8$ | 574 ± 22.3 | 365 ± 22.9 | ^a Study was performed at SRI International. The detailed protocol and these data are presented in Haworth *et al.* (1983). $0 \mu g/plate$ was the solvent control. b Revertants are presented as mean \pm standard error from three plates. The positive controls in the absence of metabolic activation were sodium azide (TA100 and TA1535), 9-aminoacridine (TA1537), and 4-nitro-o-phenylenediamine (TA98). The positive control for metabolic activation with all strains was 2-aminoanthracene. F-8 Pyridine, NTP TR 470 TABLE F2 Induction of Trifluorothymidine Resistance in L5178Y Mouse Lymphoma Cells by Pyridine^a | Compound | Concentration (µg/mL) | Cloning
Efficiency
(%) | Relative
Total Growth
(%) | Mutant
Count | Mutant
Fraction ^b | Average
Mutant
Fraction | |--------------------------------------|-----------------------|------------------------------|---------------------------------|-----------------|---------------------------------|-------------------------------| | S9 | | | | | | | | Trial 1 | | | | | | | | Medium ^c | | 112 | 102 | 95 | 28 | | | | | 99
108 | 106
103 | 86
100 | 29
31 | | | | | 101 | 89 | 92 | 31 | 30 | | Methyl methanesulfonate ^d | 15 | 43 | 26 | 239 | 186 | | | | | 49 | 26 | 195 | 133 | 160* | | Pyridine | 625 | 89 | 100 | 99 | 37 | | | | 1.250 | 105 | 102 | 95
47 | 30 | 34 | | | 1,250 | 73
86 | 88
101 | 47
80 | 21
31 | 26 | | | 2,500 | 94 | 69 | 81 | 29 | 20 | | | _,-,- | 78 | 71 | 56 | 24 | 26 | | | 5,000 | 82 | 70 | 60 | 24 | | | | | 88 | 77 | 113 | 43 | 34 | | Trial 2 | | | | | | | | Medium | | 76 | 98 | 89 | 39 | | | | | 99
84 | 102
97 | 136
122 | 46
49 | | | | | 65 | 102 | 120 | 62 | 49 | | Methyl methanesulfonate | 15 | 27 | 23 | 440 | 550 | | | • | | 24 | 20 | 473 | 671 | 610* | | Pyridine | 1,000 | 82 | 101 | 160 | 65 | | | | 2 000 | 58 | 90 | 106 | 61 | 63 | | | 2,000 | 74
68 | 77
78 | 154
167 | 69
81 | 75 | | | 3,000 | 78 | 68 | 182 | 78 | 73 | | | 2,000 | 71 | 76 | 161 | 76 | 77* | | | 4,000 | 47 | 68 | 97 | 68 | | | | | 55 | 76 | 154 | 94 | 81* | | | 5,000 | 48
69 | 57
66 | 138
151 | 97
73 | 85* | | Trial 3 | | 09 | 00 | 131 | 73 | 65 | | Medium | | 98 | 100 | 60 | 20 | | | | | 108 | 110 | 67 | 21 | | | | | 71
102 | 84
106 | 70
85 | 33
28 | 25 | | | | | | | | 23 | | Methyl methanesulfonate | 15 | 25
23 | 14
13 | 126
103 | 166
151 | 159* | | | | 23 | 13 | 103 | 131 | 139 | | Pyridine | 2,000 | 90 | 87 | 68 | 25 | | | | 2.000 | 79 | 85 | 53 | 22 | 24 | | | 3,000 | 116
90 | 85
79 | 89
64 | 26
24 | 25 | | | 4,000 | 72 | 79
75 | 86 | 40 | 23 | | | | 88 | 79 | 145 | 55 | 47* | | | 5,000 | 82 | 70 | 73 | 30 | | | | | 89 | 67 | 79 | 30 | 30 | Pyridine, NTP TR 470 F-9 TABLE F2 Induction of Trifluorothymidine Resistance in L5178Y Mouse Lymphoma Cells by Pyridine | Compound | Concentration (µg/mL) | Cloning
Efficiency
(%) | Relative
Total Growth
(%) | Mutant
Count | Mutant
Fraction | Average
Mutant
Fraction | |---------------------------------|-----------------------|------------------------------|---------------------------------|-----------------|--------------------|-------------------------------| | +89 | | | | | | | | Trial 1 | | | | | | | | Medium | | 90 | 90 | 126 | 47 | | | | | 79 | 104 | 124 | 53 | | | | | 83 | 102 | 137 | 55 | | | | | 74 | 105 | 141 | 64 | 55 | | Methylcholanthrene ^d | 2.5 | 50 | 18 | 820 | 552 | | | | -1- | 43 | 20 | 726 | 561 | 556* | | Pyridine | 1,000 | 82 | 88 | 133 | 54 | | | 2,114 | 1,000 | 89 | 96 | 152 | 57 | 56 | | | 2,000 | 94 | 77 | 230 | 82 | 20 | | | 2,000 | 77 | 99 | 123 | 53 | 68 | | | 3,000 | 77 | 86 | 204 | 89 | 00 | | | 2,000 | 89 | 80 | 140 | 52 | 71 | | | 4,000 | 100 | 70 | 167 | 55 | | | | 1,000 | 78 | 79 | 147 | 63 | 59 | | | 5,000 | 95 | 81 | 158 | 55 | 0, | | | 3,000 | 98 | 73 | 207 | 70 | 63 | | Trial 2 | | | | | | | | Solvent control | | 85 | 101 | 111 | 43 | | | Sorvent control | | 91 | 108 | 138 | 50 | | | | | 100 | 93 | 188 | 62 | | | | | 105 | 98 | 159 | 50 | 52 | | Methylcholanthrene | 2.5 | 54 | 24 | 686 | 421 | | | | -1- | 58 | 28 | 791 | 451 | 436* | | Pyridine | 2,000 | 86 | 104 | 95 | 37 | | | • | , | 87 | 108 | 119 | 46 | 41 | | | 3,000 | 78 | 101 | 87 | 37 | | | | - , | 79 | 105 | 117 | 49 | 43 | | | 4,000 | 80 | 97 | 94 | 39 | | | | * | 84 | 91 | 107 | 42 | 41 | | | 5,000 | 109 | 78 | 101 | 31 | | | | * | 109 | 84 | 115 | 35 | 33 | ^{*} Positive response ($P \le 0.05$) versus the solvent control Study was performed at Inveresk Research International. The detailed protocol and these data are presented in McGregor *et al.* (1988). Mutant fraction (MF) (frequency) is a ratio of the mutant count to the cloning efficiency, divided by 3 (to arrive at MF/ 10^6 cells treated). Solvent control d Positive control F-10 Pyridine, NTP TR 470 TABLE F3 Induction of Sister Chromatid Exchanges in Chinese Hamster Ovary Cells by Pyridine^a | Compound | Concentration
(μg/mL) | Total
Cells
Scored | No. of
Chromo-
somes | No. of
SCEs | SCEs/
Chromo-
some | SCEs/
Cell | Hrs
in BrdU | Relative
Change of SCEs/
Chromosome ^b
(%) | |-------------------------------|------------------------------|--------------------------|----------------------------|-------------------|--------------------------|-------------------|---------------------------|---| | S9
Summary: Negative | | | | | | | | | | Distilled water ^c | | 50
50 | 1,049
1,049 | 415
424 | 0.39
0.40 | 8.3
8.5 | 26.0
31.0 ^e | | | Mitomycin-C ^d | 0.001
0.004 | 50
10 | 1,049
208 | 665
201 | 0.63
0.96 | 13.3
20.1 | 26.0
26.0 | 56.84
139.08 | | Pyridine | 167
502
1,673
5,020 | 50
50
50
0 | 1,043
1,049
1,050 | 407
437
434 | 0.39
0.41
0.41 | 8.1
8.7
8.7 | 26.0
26.0
31.0 | 3.46
3.07
2.26 | | | | | | | $P=0.273^{f}$ | | | | | +S9
Summary: Negative | | | | | | | | | | Distilled water | | 50 | 1,050 | 389 | 0.37 | 7.8 | 26.0 | | | Cyclophosphamide ^d | 0.125
0.5 | 50
10 | 1,051
207 | 598
186 | 0.56
0.89 | 12.0
18.6 | 26.0
26.0 | 53.58
142.54 | | Pyridine | 502
1,673
5,020 | 50
50
50 | 1,048
1,051
1,051 | 416
421
388 | 0.39
0.40
0.36 | 8.3
8.4
7.8 | 26.0
26.0
26.0 | 7.14
8.12
0.35 | | | | | | | P=0.494 | | | | Study was performed at SITEK Research Laboratories. The detailed protocol is presented in Galloway $\it et~al.~(1987)$. SCE=sister chromatid exchange; BrdU=bromodeoxyuridine SCEs/chromosome in treated cells versus SCEs/chromosome in solvent control cells Solvent control Positive control Due to cell cycle delay, harvest time was extended to maximize the number of second-division metaphase cells available for analysis. Significance of SCEs/chromosome tested by the linear regression trend test versus log of the dose Pyridine, NTP TR 470 F-11 TABLE F4 Induction of Chromosomal Aberrations in Chinese Hamster Ovary Cells by Pyridine^a | Compound | Concentration $(\mu g/mL)$ | Total Cells
Scored | Number of Aberrations | Aberrations/
Cell | Cells with
Aberrations (%) | |--|----------------------------|-----------------------|-----------------------|----------------------|---------------------------------| | S9 Harvest time: 13.5 hours Summary: Negative | | | | | | | Distilled water ^b | | 200 | 2 | 0.01 | 1.0 | | Mitomycin-C ^c | 0.4 | 25 | 37 | 1.48 | 76.0 | | Pyridine | 503
1,081
2,325 | 200
200
200 | 0
0
2 | 0.00
0.00
0.01 | 0.0 0.0 1.0 $P=0.450^{d}$ | | +S9
Harvest time: 13.5 hours
Summary: Negative | | | | | | | Distilled water | | 200 | 2 | 0.01 | 1.0 | | Cyclophosphamide ^c | 20 | 25 | 42 | 1.68 | 48.0 | | Pyridine | 1,081
2,325
5,000 | 200
200
200 | 1
1
3 | 0.01
0.01
0.02 | 0.5
0.5
1.5 | | | | | | | P = 0.305 | Study was performed at SITEK Research Laboratories. The detailed protocol is presented in Galloway *et al.* (1987). Solvent control Positive control Significance of percent cells with aberrations tested by the linear regression trend test versus log of the dose F-12 Pyridine, NTP TR 470 TABLE F5 Induction of Sex-Linked Recessive Lethal Mutations in Drosophila melanogaster by Pyridine^a | Route of | Dose | Incidence of | Incidence of | No. of Lethal | s/No. of X Chromo | osomes Tested | | |-------------|------------|-----------------|------------------|----------------------------|--------------------|--------------------|--| | Exposure | (ppm) | Death (%) | Sterility (%) | Mating 1 | Mating 2 | Mating 3 | Total ^b | | Study perfe | ormed at | Brown Universi | ity ^c | | | | | | Feed | 700
0 | 20 | 2 | 4/1,027
0/1,114 | 1/1,069
1/1,142 | 0/1,082
0/1,105 | 5/3,178 (0.16%)
1/3,361 (0.03%)
P=0.043 | | Injection | 7,000
0 | 5 | 0 | 1/1,770
1/2,170 | 1/2,281
2/2,750 | 3/2,039
0/1,379 | 5/6,090 (0.08%)
3/6,299 (0.05%)
P=0.225 | | Feed | 729
0 | 22 | 0 | 1/1,724
0/1,902 | 0/2,664
1/2,541 | 1/1,121
6/1,413 | 2/5,509 (0.04%)
7/5,856 (0.12%)
P=0.943 | | Injection | 500
0 | 4 | 0 | 4/1,916
2/1,908 | 1/2,006
1/1,933 | 2/1,944
0/1,921 | 7/5,866 (0.12%)
3/5,762 (0.05%)
P=0.108 | | Study perf |
ormed at | University of W | isconsin, Madis | \mathbf{on}^{d} | | | | | Feed | 500
0 | 12 | 1 | 1/2,063
3/1,947 | 0/1,989
5/1,726 | 0/1,666
2/1,438 | 1/5,718 (0.02%)
10/5,111 (0.20%)
P=0.998 | | Injection | 4,300
0 | 26 | 9 | 7/1,854
3/4,163 | 1/1,731
2/3,949 | 1/1,608
1/3,285 | 9/5,193 (0.17%)
6/11,397 (0.05%)
P=0.008 | The mean mutant frequency from 518 negative control experiments is 0.074% (Mason *et al.*, 1992). Total number of lethal mutations/total number of X chromosomes tested for three mating trials The detailed protocol and these data are presented in Valencia et al. (1985) (first two exposures); data are not presented for the third and fourth exposures. The detailed protocol and these data are presented in Mason *et al.* (1992). Pyridine, NTP TR 470 F-13 TABLE F6 Induction of Reciprocal Translocations in *Drosophila melanogaster* by Pyridine^a | Route of | oute of Dose Translocations/Total F ₁ Tested | | | | | | | No. of | Total
No. of | Total
Translocations | |--------------------|---|----------|----------|----------|----------|----------|-------|---------|-----------------|-------------------------| | Exposure | (ppm) | 1 | 2 | 3 | 4 | 5 | 6 | Tests | Translocations | (%) | | Injection | 4,300 | 0/1,483 | 0/1,413 | 0/1,243 | 0/819 | 0/254 | 0/11 | 5,223 | 0 | 0 | | Historical control | | 0/27,245 | 0/31,611 | 0/22,410 | 2/23,623 | 0/10,506 | 0/768 | 116,163 | 2 | 0.002 | Study was performed at University of Wisconsin, Madison. The detailed protocol and these data are presented in Mason et al. (1992). Results were not significant at the 5% level (Kastenbaum and Bowman, 1970). TABLE F7 Induction of Chromosomal Aberrations in Mouse Bone Marrow Cells by Pyridine^a | Compound | Dose
(mg/kg) | Total Cells
Scored | Total Aberrations (gaps) | Cells with Aberrations ^b (%) | |--|-------------------|-----------------------|--------------------------|--| | Trial 1
Sample time: 17 hours | | | | | | Phosphate-buffered saline ^c | | 400 | 2 | 0.50 ± 0.33 | | Mitomycin-C ^d | 1
2 | 400
400 | 11
48 | $\begin{array}{c} 2.25 \pm 0.45 \\ 9.50 \pm 1.76 \end{array}$ | | Pyridine | 400
500
600 | 400
400
400 | 2
8
2 | $\begin{array}{c} 0.50 \pm 0.50 \\ 1.75 \pm 0.59 \\ 0.50 \pm 0.33 \end{array}$ | | Trial 2 | | | | $P = 0.222^{e}$ | | Sample time: 36 hours | | | | | | Phosphate-buffered saline | | 400 | 6 | 1.50 ± 0.63 | | Mitomycin-C | 1
2 | 400
400 | 14
68 | 3.00 ± 0.85 6.25 ± 2.31 | | Pyridine | 400
500
600 | 400
400
400 | 3
6
0 | $\begin{array}{c} 0.75 \pm 0.53 \\ 1.50 \pm 0.82 \\ 0.00 \pm 0.00 \end{array}$ | | | | | | P=0.948 | Study was performed at Environmental Health Research and Testing, Inc. Fifty first-division metaphase cells were scored from each of eight mice per group. The detailed protocol and these data are presented in McFee (1989). b Mean ± standard error c Solvent control d Positive control e Significance tested by the one-tailed trend test; significant at P≤0.05 (Margolin *et al.*, 1986) F-14 Pyridine, NTP TR 470 Table F8 Induction of Micronuclei in Bone Marrow Polychromatic Erythrocytes of Mice Treated with Pyridine by Intraperitoneal Injection^a | Compound | Dose
(mg/kg) | Number of Mice | Micronucleated PCEs/
1,000 PCEs ^b | PCEs ^b (%) | |--|------------------------------------|-----------------------|--|--| | Phosphate-buffered saline ^c | | 5 | 1.60 ± 0.51 | 52.52 ± 4.30 | | Cyclophosphamide ^d | 15 | 5 | 11.50 ± 0.91 | 52.46 ± 1.71 | | Pyridine | 31.25
62.5
125
250
500 | 5
5
5
5
5 | $\begin{array}{c} 1.40 \pm 0.29 \\ 1.60 \pm 0.43 \\ 1.10 \pm 0.51 \\ 1.10 \pm 0.37 \\ 1.20 \pm 0.25 \end{array}$ | 52.22 ± 1.11
53.04 ± 3.89
51.40 ± 3.66
51.22 ± 1.61
48.02 ± 1.88 | | | | | $P = 0.811^{e}$ | | Study was performed at Environmental Health Research and Testing, Inc. The detailed protocol and these data are presented in Shelby et al. (1993). Mean ± standard error Solvent control d Positive control e Significance of micronucleated PCEs/1,000 PCEs tested by the one-tailed trend test; significant at P≤0.025 (Margolin et al., 1990) # APPENDIX G HEMATOLOGY AND CLINICAL CHEMISTRY RESULTS | TABLE G1 | Hematology and Clinical Chemistry Data for F344/N Rats | | |----------|---|-----| | | in the 13-Week Drinking Water Study of Pyridine | G-2 | | TABLE G2 | Hematology and Clinical Chemistry Data for Male Wistar Rats | | | | in the 13-Week Drinking Water Study of Pyridine | G-7 | G-2 Pyridine, NTP TR 470 TABLE G1 Hematology and Clinical Chemistry Data for F344/N Rats in the 13-Week Drinking Water Study of Pyridine^a | | 0 ppm | 50 ppm | 100 ppm | 250 ppm | 500 ppm | 1,000 ppm | |-------------------------------------|----------------------------------|-------------------|------------------------------------|-----------------------------------|----------------------------------|----------------------------------| | Male | | | | | | | | Hematology | | | | | | | | n | | | | | | | | Day 5 | 10 | 9 | 10 | 10 | 10 | 10 | | Day 20 | 10 | 10 | 10 | 10 | 10 | 9 | | Week 13 | 10 | 10 | 10 | 10 | 10 | 10 | | Automated hematocrit (%) | | | | | | | | Day 5 | 46.8 ± 0.3 | 47.3 ± 0.5 | $48.1 \pm 0.4*$ | $47.9 \pm 0.5*$ | 47.9 ± 0.5 | $49.6 \pm 0.4**$ | | Day 20 | 49.6 ± 0.4 | 50.4 ± 0.3 | 48.2 ± 0.6 | $47.9 \pm 0.3**$ | $47.8 \pm 0.4**$ | $45.0 \pm 0.4**$ | | Week 13 | 46.9 ± 0.5 | 46.4 ± 0.3 | 46.8 ± 0.2 | 46.1 ± 0.3 | 45.9 ± 0.3 | $44.4 \pm 0.7**$ | | Manual hematocrit (%) | | | | | | | | Day 5 | 44.2 ± 0.3 | 44.7 ± 0.6 | $45.2 \pm 0.3*$ | 45.4 ± 0.5 | 45.5 ± 0.6 | $46.5 \pm 0.5**$ | | Day 20 | 48.0 ± 0.3 | 49.1 ± 0.6 | 46.6 ± 0.5 | 46.3 ± 0.5 | $46.5 \pm 0.5*$ | $43.3 \pm 0.5**$ | | Week 13 | 45.7 ± 0.5 | 44.8 ± 0.4 | 45.6 ± 0.4 | 44.7 ± 0.2 | $44.3 \pm 0.4*$ | $42.7 \pm 0.7**$ | | Hemoglobin (g/dL) | | | | | | | | Day 5 | 15.3 ± 0.1 | 15.4 ± 0.1 | 15.6 ± 0.1 | 15.7 ± 0.1 | $15.8 \pm 0.1**$ | $16.0 \pm 0.2**$ | | Day 20 | 16.3 ± 0.2 | 16.6 ± 0.1 | 15.7 ± 0.2 | $15.6 \pm 0.1**$ | $15.7 \pm 0.1*$ | $14.8 \pm 0.2**$ | | Week 13 | 15.4 ± 0.2 | 15.2 ± 0.1 | 15.3 ± 0.1 | 15.0 ± 0.2 | $14.9 \pm 0.1*$ | $14.3 \pm 0.2**$ | | Erythrocytes $(10^6/\mu L)$ | | | | | | | | Day 5 | 8.40 ± 0.07 | 8.41 ± 0.13 | 8.54 ± 0.08 | 8.54 ± 0.07 | 8.58 ± 0.10 | $8.79 \pm 0.08**$ | | Day 20 | 8.92 ± 0.07 | 9.07 ± 0.07 | 8.62 ± 0.11 | $8.62 \pm 0.07*$ | 8.66 ± 0.10 | $8.27 \pm 0.13**$ | | Week 13 | 9.09 ± 0.11 | 9.00 ± 0.07 | 9.12 ± 0.05 | 8.88 ± 0.07 | 8.87 ± 0.09 | $8.52 \pm 0.20*$ | | Reticulocytes (10 ⁶ /μL) | 0.40 . 0.00 | 0.00 | 0.00 | 0.45 . 0.05 | 0.45 . 0.04 | 0.4.7 . 0.04 | | Day 5 | 0.18 ± 0.03 | 0.26 ± 0.05 | 0.20 ± 0.01 | 0.15 ± 0.02 | 0.15 ± 0.01 | 0.15 ± 0.01 | | Day 20 | 0.18 ± 0.02 | 0.17 ± 0.02 | 0.18 ± 0.01 | 0.20 ± 0.01 | 0.19 ± 0.02 | 0.16 ± 0.01 | | Week 13 | 0.17 ± 0.01 | 0.18 ± 0.02 | 0.19 ± 0.02 | 0.19 ± 0.02 | 0.19 ± 0.01 | 0.19 ± 0.02 | | Nucleated erythrocytes $(10^3/\mu)$ | | 0.04 + 0.02 | 0.00 + 0.00 | 0.02 + 0.02 | 0.04 + 0.02 | 0.00 + 0.00 | | Day 5 | 0.01 ± 0.01 | 0.04 ± 0.02 | 0.00 ± 0.00 | 0.02 ± 0.02 | 0.04 ± 0.02 | 0.00 ± 0.00 | | Day 20
Week 13 | 0.00 ± 0.00 | 0.03 ± 0.02 | 0.01 ± 0.01
0.03 ± 0.02 | $0.05 \pm 0.02* \\ 0.01 \pm 0.01$ | 0.02 ± 0.01 | 0.03 ± 0.02 | | | 0.02 ± 0.01 | 0.04 ± 0.02 | 0.03 ± 0.02 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.06 ± 0.02 | | Mean cell volume (fL) Day 5 | 55.8 ± 0.3 | 56.3 ± 0.4 | 56.4 ± 0.3 | 56.2 ± 0.3 | 55.9 ± 0.3 | 56.6 ± 0.2 | | Day 3
Day 20 | 55.5 ± 0.3
55.5 ± 0.2 | 55.5 ± 0.4 | 55.8 ± 0.3 | 55.5 ± 0.3 | 55.9 ± 0.3
55.3 ± 0.4 | 50.0 ± 0.2
54.6 ± 0.5 | | Week 13 | 51.6 ± 0.2 | 51.5 ± 0.2 | 51.4 ± 0.2 | 52.0 ± 0.3 | 51.8 ± 0.5 | 52.3 ± 0.7 | | Mean cell hemoglobin (pg) | 31.0 ± 0.2 | 31.3 ± 0.2 | 31.4 ± 0.2 | 32.0 ± 0.3 | 31.0 ± 0.3 | 32.3 <u>1</u> 0.7 | | Day 5 | 18.3 ± 0.1 | 18.3 ± 0.1 | 18.3 ± 0.1 | 18.3 ± 0.1 | 18.5 ± 0.1 | 18.2 ± 0.1 | | Day 20 | 18.3 ± 0.1 | 18.3 ± 0.1 | 18.3 ± 0.1 | 18.1 ± 0.1 | 18.1 ± 0.1 | $17.9 \pm 0.1*$ | | Week 13 | 17.0 ± 0.1 | 16.9 ± 0.1 | 16.8 ± 0.1 | 16.8 ± 0.1 | 16.8 ± 0.2 | 16.9 ± 0.2 | | Mean cell hemoglobin concent | | _ | _ | _ | _ | _ | | Day 5 | 32.8 ± 0.2 | 32.4 ± 0.1 | 32.5 ± 0.1 | 32.7 ± 0.1 | 33.1 ± 0.2 | 32.3 ± 0.2 | | Day 20 | 32.8 ± 0.2 | 33.0 ± 0.2 | 32.6 ± 0.2 | 32.7 ± 0.2 | 32.8 ± 0.2 | 32.9 ± 0.2 | | Week 13 | 32.8 ± 0.1 | 32.9 ± 0.1 | 32.7 ± 0.1 | 32.4 ± 0.2 | $32.5 \pm 0.1*$ | $32.3 \pm 0.1**$ | | Platelets $(10^3/\mu L)$ | | | | | | | | Day 5 | 908.7 ± 26.6 | 973.1 ± 33.9 | 957.3 ± 23.1 | 924.4 ± 27.9 | 880.7 ± 21.4 | 937.0 ± 19.9 | | Day 20 | 856.9 ± 12.1 | 902.3 ± 31.3 | 880.4 ± 22.8 | $917.8 \pm 15.1*$ | $1,065.7 \pm 39.8**$ | $949.0 \pm 28.2**$ | | Week 13 | 731.0 ± 26.3 | 711.2 ± 12.1 | 732.3 ± 15.5 | 760.1 ± 15.5 | $791.8 \pm 42.0*$ | $869.5 \pm 65.4*$ | | Leukocytes $(10^3/\mu L)$ | | | | | | | | Day 5 | 10.82 ± 0.44 | 11.72 ± 0.45 |
11.25 ± 0.43 | 10.36 ± 0.40 | 10.19 ± 0.45 | 10.82 ± 0.42 . | | Day 20 | 9.31 ± 0.42 | $11.48 \pm 0.49*$ | 8.83 ± 0.22 | 9.32 ± 0.34 | 9.62 ± 0.51 | 9.42 ± 0.49 | | Week 13 | 9.46 ± 0.43 | 10.24 ± 0.31 | 9.93 ± 0.50 | 9.96 ± 0.37 | 10.24 ± 0.49 | 11.26 ± 0.56 | | Segmented neutrophils $(10^3/\mu)$ | | 1.66 . 0.15 | 4.45 . 0.46 | 1.00 : 0.10 | 4.45 . 0.45 | 1.55 | | Day 5 | 1.84 ± 0.14 | 1.66 ± 0.13 | 1.47 ± 0.16 | 1.60 ± 0.13 | 1.45 ± 0.13 | 1.77 ± 0.23 | | Day 20 | 1.45 ± 0.15 | 1.68 ± 0.17 | 1.08 ± 0.13 | 1.28 ± 0.10 | 1.54 ± 0.22 | 1.00 ± 0.09 | | Week 13 | 2.01 ± 0.20 | 1.84 ± 0.14 | 1.64 ± 0.21 | 1.78 ± 0.23 | 1.90 ± 0.16 | 2.16 ± 0.29 | Pyridine, NTP TR 470 G-3 $TABLE\ G1$ Hematology and Clinical Chemistry Data for F344/N Rats in the 13-Week Drinking Water Study of Pyridine | | 0 ppm | 50 ppm | 100 ppm | 250 ppm | 500 ppm | 1,000 ppm | |---------------------------------|-----------------------------|------------------------------------|-----------------------------|------------------------------|------------------------------------|--------------------------------| | Male (continued) | | | | | | | | Hematology (continued) | | | | | | | | 1 | | | | | | | | Day 5 | 10 | 9 | 10 | 10 | 10 | 10 | | Day 20 | 10 | 10 | 10 | 10 | 10 | 9 | | Week 13 | 10 | 10 | 10 | 10 | 10 | 10 | | Lymphocytes $(10^3/\mu L)$ | | | | | | | | Day 5 | 8.84 ± 0.39 | 9.95 ± 0.44 | 9.73 ± 0.46 | 8.61 ± 0.36 | 8.66 ± 0.39 | 9.02 ± 0.34 | | Day 20 | 7.80 ± 0.32 | $9.73 \pm 0.49*$ | 7.68 ± 0.27 | 8.00 ± 0.37 | 7.99 ± 0.48 | 8.32 ± 0.45 | | Week 13 | 7.40 ± 0.37 | 8.37 ± 0.28 | 8.25 ± 0.48 | 8.15 ± 0.41 | 8.27 ± 0.51 | $9.03 \pm 0.44*$ | | Monocytes $(10^3/\mu L)$ | 7110 ± 0.07 | 0.57 ± 0.20 | 0.20 ± 0.10 | 0.10 ± 0.11 | 0.27 ± 0.01 | >.oo <u>+</u> o | | Day 5 | 0.11 ± 0.04 | 0.05 ± 0.02 | 0.05 ± 0.02 | 0.09 ± 0.04 | 0.05 ± 0.02 | 0.01 ± 0.01 | | Day 20 | 0.05 ± 0.02 | 0.03 ± 0.02 | 0.04 ± 0.02 | 0.01 ± 0.01 | 0.03 ± 0.01 | 0.06 ± 0.02 | | Week 13 | 0.02 ± 0.02 | 0.03 ± 0.02
0.01 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.03 ± 0.01
0.03 ± 0.02 | 0.05 ± 0.02 | | Basophils $(10^3/\mu L)$ | | | | | | | | Day 5 | 0.000 ± 0.000 | | Day 20 | 0.000 ± 0.000 | | Week 13 | 0.000 ± 0.000 | 0.011 ± 0.011 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | | Eosinophils $(10^3/\mu L)$ | | | | | | | | Day 5 | 0.02 ± 0.01 | 0.06 ± 0.03 | 0.01 ± 0.01 | 0.06 ± 0.03 | 0.03 ± 0.02 | 0.03 ± 0.02 | | Day 20 | 0.01 ± 0.01 | 0.04 ± 0.02 | 0.04 ± 0.01 | 0.03 ± 0.02 | 0.06 ± 0.02 | 0.04 ± 0.02 | | Week 13 | 0.02 ± 0.02 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.02 ± 0.02 | 0.05 ± 0.02 | 0.02 ± 0.01 | | Clinical Chemistry Day 5 | 10 | 10 | 10 | 10 | 10 | 10 | | Day 20 | 10 | 10 | 10 | 10 | 10 | 9 | | Week 13 | 10 | 10 | 10 | 10 | 10 | 10 | | Urea nitrogen (mg/dL) | | | | | | | | Day 5 | 23.1 ± 0.7 | 24.1 ± 0.8 | 25.5 ± 0.7 | 25.9 ± 0.9 | 24.1 ± 0.8 | 23.8 ± 0.8 | | Day 20 | 24.3 ± 0.6 | 22.8 ± 0.6 | 23.9 ± 0.5 | 24.8 ± 0.4 | 23.2 ± 0.5 | 25.0 ± 0.5 | | Week 13 | 25.1 ± 0.4 | 23.1 ± 0.7 | 23.9 ± 0.6 | 23.9 ± 0.7 | 25.0 ± 1.0 | 25.3 ± 1.1 | | Creatinine (mg/dL) | | | | | | | | Day 5 | 0.49 ± 0.01 | 0.51 ± 0.02 | 0.53 ± 0.02 | 0.49 ± 0.01 | 0.51 ± 0.01 | 0.50 ± 0.01 | | Day 20 | 0.61 ± 0.03 | 0.56 ± 0.03 | 0.59 ± 0.02 | 0.60 ± 0.02 | 0.60 ± 0.03 | 0.61 ± 0.02 | | Week 13 | 0.59 ± 0.02 | 0.55 ± 0.03 | 0.60 ± 0.03 | 0.60 ± 0.04 | 0.59 ± 0.03 | 0.64 ± 0.03 | | Total protein (g/dL) | | | | | | | | Day 5 | 6.3 ± 0.1 | 6.4 ± 0.1 | 6.6 ± 0.1 | 6.5 ± 0.1 | 6.4 ± 0.1 | 6.3 ± 0.1 | | Day 20 | 6.8 ± 0.1 | 7.0 ± 0.1 | 7.1 ± 0.1 | 7.1 ± 0.1 | 7.1 ± 0.1 | 7.1 ± 0.1 | | Week 13 | 6.4 ± 0.1 | 6.5 ± 0.1 | $6.8 \pm 0.1*$ | $6.9 \pm 0.1**$ | $7.1 \pm 0.1**$ | $6.8 \pm 0.1**$ | | Albumin (g/dL) | | | | | | | | Day 5 | 3.5 ± 0.1 | 3.6 ± 0.1 | $3.8 \pm 0.1*$ | $3.7 \pm 0.1*$ | 3.6 ± 0.1 | 3.6 ± 0.1 | | Day 20 | 3.8 ± 0.1 | 4.0 ± 0.1 | 4.0 ± 0.1 | 4.0 ± 0.1 | $4.1 \pm 0.1**$ | 3.9 ± 0.1 | | Week 13 | 3.5 ± 0.1 | 3.6 ± 0.1 | $3.9 \pm 0.1**$ | $3.8 \pm 0.0**$ | $4.0 \pm 0.0**$ | $3.9 \pm 0.1**$ | | Alanine aminotransferase (IU/L) | | | | | | | | Day 5 | 42 ± 2 | 46 ± 1 | 51 ± 1** | 47 ± 1 | 60 ± 11 | 46 ± 1 | | Day 20 | 53 ± 3 | 44 ± 3 | $40 \pm 1*$ | 39 ± 2** | 49 ± 6 | 54 ± 6 | | Week 13 | 60 ± 2 | 56 ± 4 | 52 ± 5 | $44 \pm 2*$ | 50 ± 3 | 583 ± 268 | | Alkaline phosphatase (IU/L) | | 460 - | | | | | | Day 5 | 441 ± 15 | 468 ± 8 | 454 ± 16 | 423 ± 9 | 465 ± 10 | 456 ± 10 | | Day 20 | 411 ± 11
236 ± 6 | $302 \pm 12** $
219 ± 4 | $385 \pm 14** \\ 223 \pm 6$ | $320 \pm 14** \\ 203 \pm 3*$ | 275 ± 21**
176 ± 8** | $331 \pm 10**$
278 ± 25 | | Week 13 | | | | | | | G-4 Pyridine, NTP TR 470 TABLE G1 Hematology and Clinical Chemistry Data for F344/N Rats in the 13-Week Drinking Water Study of Pyridine | | 0 ppm | 50 ppm | 100 ppm | 250 ppm | 500 ppm | 1,000 ppm | |--|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------| | Male (continued) | | | | | | | | Clinical Chemistry (continued) | | | | | | | | n | | | | | | | | Day 5 | 10 | 10 | 10 | 10 | 10 | 10 | | Day 20 | 10 | 10 | 10 | 10 | 10 | 9 | | Week 13 | 10 | 10 | 10 | 10 | 10 | 10 | | Creatine kinase (U/L) | | | | | | | | Day 5 | 275 ± 63 | 260 ± 66 | 262 ± 43 | 183 ± 17 | 244 ± 33^{b} | 193 ± 21 | | Day 20 | 169 ± 14 ^b | 241 ± 31^{b} | 167 ± 14 | 198 ± 20 | 180 ± 20 | 171 ± 28 | | Week 13 | 234 ± 62 | 243 ± 63 | 223 ± 58 | 202 ± 56 | 339 ± 115 | 161 ± 32^{b} | | Sorbitol dehydrogenase (IU/L) | | | | | | | | Day 5 | 8 ± 0 | 9 ± 0 | $10 \pm 1*$ | 9 ± 1 | 27 ± 17 | $11 \pm 0**$ | | Day 20 | 10 ± 0 | 8 ± 0 | 10 ± 1 | 10 ± 1 | 39 ± 13 | 23 ± 7 | | Week 13 | 12 ± 1 | 11 ± 1 | 10 ± 1 | 10 ± 1 | 12 ± 1 | 395 ± 217 | | Bile acids (μmol/L) | | | ** · | | 4.50 | 40.6 | | Day 5 | 33.5 ± 4.0 | 34.7 ± 3.5 | 38.6 ± 7.5 | 26.6 ± 1.7 | 45.9 ± 7.3 | 40.6 ± 5.1 | | Day 20 | 28.3 ± 3.2 | $40.3 \pm 3.7*$ | 26.6 ± 3.7 | 30.3 ± 2.7 | $61.0 \pm 6.1**$ | $59.6 \pm 7.6**$ | | Week 13 | 30.5 ± 4.7 | 29.5 ± 4.2 | 26.0 ± 3.9 | 40.3 ± 7.7 | $62.1 \pm 12.9*$ | 150.0 ± 19.7** | | Female | | | | | | | | n | | | | | | | | Day 5 | 10 | 10 | 10 | 10 | 10 | 10 | | Day 20 | 10 | 10 | 10 | 10 | 10 | 10 | | Week 13 | 10 | 10 | 10 | 10 | 10 | 8 | | Hematology | | | | | | | | Automated hematocrit (%) | | | | | | | | Day 5 | 48.4 ± 0.5 | 48.9 ± 0.5 | 50.3 ± 0.6 | 48.6 ± 0.6 | 50.7 ± 0.7 | 50.5 ± 1.0 | | Day 20 | 48.2 ± 0.4 | 47.4 ± 0.5 | 47.8 ± 0.3 | 47.0 ± 0.5 | $45.5 \pm 0.6**$ | 48.2 ± 1.0 | | Week 13 | 46.5 ± 0.3 | $45.4 \pm 0.3*$ | $45.5 \pm 0.3*$ | $43.5 \pm 0.5**$ | $43.1 \pm 0.3**$ | $43.8 \pm 0.4**$ | | Manual hematocrit (%) | | | | | | | | Day 5 | 44.9 ± 0.7 | 45.5 ± 0.4 | 46.9 ± 0.4 | 45.5 ± 0.6 | 46.9 ± 0.5 | 47.0 ± 0.9 | | Day 20 | 46.7 ± 0.3 | 45.8 ± 0.6 | 46.3 ± 0.2 | 45.5 ± 0.4 | $44.4 \pm 0.6*$ | 47.4 ± 0.9 | | Week 13 | 44.8 ± 0.3 | 44.0 ± 0.3 | 44.0 ± 0.4 | $41.3 \pm 0.8**$ | $40.9 \pm 0.4**$ | $41.5 \pm 0.5**$ | | Hemoglobin (g/dL) | | | | | | | | Day 5 | 16.0 ± 0.1 | 16.0 ± 0.2 | 16.4 ± 0.1 | 15.9 ± 0.2 | 16.6 ± 0.2 | 16.5 ± 0.3 | | Day 20 | 16.6 ± 0.2 | 16.3 ± 0.1 | 16.3 ± 0.1 | $15.8 \pm 0.1**$ | $15.6 \pm 0.2**$ | $16.2 \pm 0.3**$ | | Week 13 | 15.8 ± 0.1 | $15.3 \pm 0.1**$ | $15.2 \pm 0.1**$ | $14.4 \pm 0.2**$ | $14.2 \pm 0.1**$ | $14.3 \pm 0.1**$ | | Erythrocytes $(10^6/\mu L)$ | 7 06 + 0.0 7 | 5.05 . 2.11 | 0.10 . 0.11 | 5 06 + 0.00 | 0.00 . 0.11 | 0.40 . 0.54 | | Day 5 | 7.96 ± 0.07 | 7.97 ± 0.11 | 8.19 ± 0.11 | 7.86 ± 0.09 | 8.30 ± 0.11 | 8.18 ± 0.21 | | Day 20 | 8.25 ± 0.09 | 8.06 ± 0.08 | 8.14 ± 0.07 | 7.92 ± 0.10 | 7.85 ± 0.09 | 8.43 ± 0.18 | | Week 13 | 8.66 ± 0.06 | $8.43 \pm 0.04**$ | $8.40 \pm 0.11*$ | $7.94 \pm 0.11**$ | $7.93 \pm 0.10**$ | $8.17 \pm 0.11**$ | | Reticulocytes (10 ⁶ /μL) | 0.18 ± 0.02 | 0.17 - 0.01 | 0.18 ± 0.02 | 0.13 ± 0.01 | 0.10 ± 0.02 | 0.16 - 0.01 | | Day 5 | 0.18 ± 0.02 | 0.17 ± 0.01 | 0.18 ± 0.02 | 0.13 ± 0.01 | 0.19 ± 0.02 | 0.16 ± 0.01 | | Day 20 | 0.16 ± 0.01
0.15 ± 0.01 | 0.16 ± 0.02
0.15 + 0.01 | 0.16 ± 0.01 | 0.18 ± 0.01 | 0.17 ± 0.02
0.15 + 0.01 | 0.17 ± 0.01 | | Week 13
Nucleated erythrocytes $(10^3/\mu L)$ | 0.13 ± 0.01 | 0.15 ± 0.01 | 0.15 ± 0.01 | 0.15 ± 0.01 | 0.13 ± 0.01 | 0.17 ± 0.01 | | | 0.03 ± 0.03 | 0.05 ± 0.02 | 0.04 ± 0.03 | 0.06 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.03 | | Day 5
Day 20 | 0.03 ± 0.03
0.00 + 0.00 | 0.03 ± 0.02
0.00 ± 0.00 | 0.04 ± 0.03
0.00 ± 0.00 | 0.06 ± 0.02
0.02 ± 0.01 | 0.04 ± 0.02
0.01 + 0.01 | 0.04 ± 0.03
0.01 ± 0.01 | | Week 13 | 0.00 ± 0.00
0.00 ± 0.00 | 0.00 ± 0.00
0.00 ± 0.00 | 0.00 ± 0.00
0.03 ± 0.01 | 0.02 ± 0.01
0.03 ± 0.02 | $0.01
\pm 0.01$
0.01 ± 0.01 | 0.01 ± 0.01
0.00 ± 0.00 | | 17 CCR 13 | 0.00 <u>r</u> 0.00 | 0.00 <u>r</u> 0.00 | 0.03 1 0.01 | 0.03 1 0.02 | 0.01 _ 0.01 | 0.00 <u>T</u> 0.00 | Pyridine, NTP TR 470 G-5 TABLE G1 Hematology and Clinical Chemistry Data for F344/N Rats in the 13-Week Drinking Water Study of Pyridine | Day 20 Week 13 Mean cell hemoglobin (pg) Day 5 Day 20 Week 13 Mean cell hemoglobin concentration (g Day 5 Day 20 Week 13 Mean cell hemoglobin concentration (g Day 5 Day 20 Week 13 Platelets (10³/μL) Day 5 Day 20 Week 13 Zeukocytes (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 | $ \begin{array}{c} 10 \\ 10 \\ 10 \end{array} $ $ \begin{array}{c} 50.9 \pm 0.4 \\ 88.4 \pm 0.4 \\ 53.7 \pm 0.2 \end{array} $ $ \begin{array}{c} 20.1 \pm 0.2 \\ 20.1 \pm 0.1 \\ 8.2 \pm 0.1 \\ g/dL) \\ \hline 33.1 \pm 0.2 \\ \hline 44.4 \pm 0.2 \\ \hline 44.0 \pm 0.1 \\ \hline 44.7 \pm 30.3 \end{array} $ | $ \begin{array}{c} 10 \\ 10 \\ 10 \end{array} $ $ \begin{array}{c} 61.6 \pm 0.5 \\ 58.7 \pm 0.3 \\ 54.0 \pm 0.1 \end{array} $ $ \begin{array}{c} 20.1 \pm 0.2 \\ 20.2 \pm 0.1 \\ 18.1 \pm 0.1 \end{array} $ $ \begin{array}{c} 32.7 \pm 0.1 \\ 34.4 \pm 0.2 \\ 33.7 \pm 0.2 \end{array} $ $ \begin{array}{c} 885.4 \pm 26.5 \end{array} $ | $ \begin{array}{c} 10 \\ 10 \\ 10 \end{array} $ $ \begin{array}{c} 61.6 \pm 0.3 \\ 58.7 \pm 0.3 \\ 54.2 \pm 0.6 \end{array} $ $ \begin{array}{c} 20.1 \pm 0.2 \\ 20.0 \pm 0.1 \\ 18.2 \pm 0.2 \end{array} $ $ \begin{array}{c} 32.7 \pm 0.3 \\ 34.0 \pm 0.2 \\ 33.5 \pm 0.1* \end{array} $ | $ \begin{array}{c} 10 \\ 10 \\ 10 \end{array} $ $ \begin{array}{c} 61.7 \pm 0.4 \\ 59.4 \pm 0.5 \\ 54.2 \pm 0.2 \end{array} $ $ \begin{array}{c} 20.2 \pm 0.2 \\ 19.9 \pm 0.1 \\ 18.2 \pm 0.2 \end{array} $ $ \begin{array}{c} 32.7 \pm 0.3 \\ 33.7 \pm 0.2 \\ \end{array} $ $ \begin{array}{c} 33.1 \pm 0.2 ** ** \\ \end{array} $ | $ \begin{array}{c} 10 \\ 10 \\ 10 \end{array} $ $ \begin{array}{c} 61.3 \pm 0.3 \\ 58.0 \pm 0.3 \\ 54.4 \pm 0.4 \end{array} $ $ \begin{array}{c} 20.0 \pm 0.1 \\ 19.8 \pm 0.1 \\ 18.0 \pm 0.2 ** \\ \end{array} $ $ \begin{array}{c} 32.7 \pm 0.2 \\ 34.2 \pm 0.3 \\ 33.0 \pm 0.1 ** \\ \end{array} $ | $ \begin{array}{c} 10 \\ 10 \\ 8 \end{array} $ $ \begin{array}{c} 61.7 \pm 0.7 \\ 57.3 \pm 0.4 \\ 53.6 \pm 0.3 \end{array} $ $ \begin{array}{c} 20.2 \pm 0.2^{b} \\ 19.3 \pm 0.1^{**} \\ 17.5 \pm 0.2^{**} \end{array} $ $ \begin{array}{c} 32.7 \pm 0.2 \\ 33.7 \pm 0.2^{*} \\ 32.7 \pm 0.2^{**} \end{array} $ | |---|--|---|--|---|---|---| | Day 5 Day 20 Week 13 Hematology (continued) Mean cell volume (fL) Day 5 66 Day 20 55 Week 13 55 Mean cell hemoglobin (pg) Day 5 22 Day 20 26 Week 13 15 Mean cell hemoglobin concentration (g Day 5 32 Day 20 33 Week 13 39 Platelets (10³/μL) Day 5 94 Day 20 93 Week 13 72 Leukocytes (10³/μL) Day 5 10 Day 20 93 Week 13 88 Segmented neutrophils (10³/μL) Day 5 10 Day 20 99 Week 13 88 Segmented neutrophils (10³/μL) Day 5 10 Day | $ \begin{array}{c} 10 \\ 10 \end{array}
$ $ \begin{array}{c} 50.9 \pm 0.4 \\ 88.4 \pm 0.4 \\ 53.7 \pm 0.2 \end{array} $ $ \begin{array}{c} 20.1 \pm 0.2 \\ 20.1 \pm 0.1 \\ 18.2 \pm 0.1 \\ \end{array} $ $ \begin{array}{c} 33.1 \pm 0.2 \\ 44.4 \pm 0.2 \\ \end{array} $ $ \begin{array}{c} 44.4 \pm 0.2 \\ \end{array} $ | $ \begin{array}{c} 10 \\ 10 \end{array} $ $ \begin{array}{c} 61.6 \pm 0.5 \\ 58.7 \pm 0.3 \\ 54.0 \pm 0.1 \end{array} $ $ \begin{array}{c} 20.1 \pm 0.2 \\ 20.2 \pm 0.1 \\ 18.1 \pm 0.1 \end{array} $ $ \begin{array}{c} 32.7 \pm 0.1 \\ 34.4 \pm 0.2 \\ 33.7 \pm 0.2 \end{array} $ | 10 10 61.6 ± 0.3 58.7 ± 0.3 54.2 ± 0.6 20.1 ± 0.2 20.0 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 34.0 ± 0.2 $33.5 \pm 0.1*$ | $ \begin{array}{c} 10 \\ 10 \end{array} $ $ \begin{array}{c} 61.7 \pm 0.4 \\ 59.4 \pm 0.5 \\ 54.2 \pm 0.2 \end{array} $ $ \begin{array}{c} 20.2 \pm 0.2 \\ 19.9 \pm 0.1 \\ 18.2 \pm 0.2 \end{array} $ $ \begin{array}{c} 32.7 \pm 0.3 \\ 33.7 \pm 0.2 \\ \end{array} $ $ \begin{array}{c} 33.1 \pm 0.2 ** ** \\ \end{array} $ | 10 10 61.3 ± 0.3 58.0 ± 0.3 54.4 ± 0.4 20.0 ± 0.1 19.8 ± 0.1 $18.0 \pm 0.2***$ 32.7 ± 0.2 34.2 ± 0.3 | $ \begin{array}{c} 10 \\ 8 \end{array} $ $ \begin{array}{c} 61.7 \pm 0.7 \\ 57.3 \pm 0.4 \\ 53.6 \pm 0.3 \end{array} $ $ \begin{array}{c} 20.2 \pm 0.2^{b} \\ 19.3 \pm 0.1^{**} \\ 17.5 \pm 0.2^{**} \end{array} $ $ \begin{array}{c} 32.7 \pm 0.2 \\ 33.7 \pm 0.2^{**} \end{array} $ | | Day 20 Week 13 Hematology (continued) Mean cell volume (fL) Day 5 66 Day 20 55 Week 13 55 Mean cell hemoglobin (pg) Day 5 20 Week 13 15 Mean cell hemoglobin concentration (g Day 5 33 Mean cell hemoglobin concentration (g Day 5 33 Mean cell hemoglobin concentration (g Day 5 33 Platelets (10³/μL) Day 5 94 Day 20 93 Week 13 72 Leukocytes (10³/μL) Day 5 10 Day 20 93 Week 13 Segmented neutrophils (10³/μL) Day 5 10 Day 20 99 Week 13 Segmented neutrophils (10³/μL) Day 5 1 Day 20 1 Week 13 Lymphocytes (10³/μL) Day 5 1 Day 20 1 Week 13 Lymphocytes (10³/μL) Day 5 1 Day 20 1 Week 13 Lymphocytes (10³/μL) Day 5 8 Day 20 8 Week 13 Lymphocytes (10³/μL) Day 5 8 Day 20 8 Week 13 | $ \begin{array}{c} 10 \\ 10 \end{array} $ $ \begin{array}{c} 50.9 \pm 0.4 \\ 88.4 \pm 0.4 \\ 53.7 \pm 0.2 \end{array} $ $ \begin{array}{c} 20.1 \pm 0.2 \\ 20.1 \pm 0.1 \\ 18.2 \pm 0.1 \\ \end{array} $ $ \begin{array}{c} 33.1 \pm 0.2 \\ 44.4 \pm 0.2 \\ \end{array} $ $ \begin{array}{c} 44.4 \pm 0.2 \\ \end{array} $ | $ \begin{array}{c} 10 \\ 10 \end{array} $ $ \begin{array}{c} 61.6 \pm 0.5 \\ 58.7 \pm 0.3 \\ 54.0 \pm 0.1 \end{array} $ $ \begin{array}{c} 20.1 \pm 0.2 \\ 20.2 \pm 0.1 \\ 18.1 \pm 0.1 \end{array} $ $ \begin{array}{c} 32.7 \pm 0.1 \\ 34.4 \pm 0.2 \\ 33.7 \pm 0.2 \end{array} $ | 10 10 61.6 ± 0.3 58.7 ± 0.3 54.2 ± 0.6 20.1 ± 0.2 20.0 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 34.0 ± 0.2 $33.5 \pm 0.1*$ | $ \begin{array}{c} 10 \\ 10 \end{array} $ $ \begin{array}{c} 61.7 \pm 0.4 \\ 59.4 \pm 0.5 \\ 54.2 \pm 0.2 \end{array} $ $ \begin{array}{c} 20.2 \pm 0.2 \\ 19.9 \pm 0.1 \\ 18.2 \pm 0.2 \end{array} $ $ \begin{array}{c} 32.7 \pm 0.3 \\ 33.7 \pm 0.2 \\ \end{array} $ $ \begin{array}{c} 33.1 \pm 0.2 ** ** \\ \end{array} $ | 10 10 61.3 ± 0.3 58.0 ± 0.3 54.4 ± 0.4 20.0 ± 0.1 19.8 ± 0.1 $18.0 \pm 0.2***$ 32.7 ± 0.2 34.2 ± 0.3 | $ \begin{array}{c} 10 \\ 8 \end{array} $ $ \begin{array}{c} 61.7 \pm 0.7 \\ 57.3 \pm 0.4 \\ 53.6 \pm 0.3 \end{array} $ $ \begin{array}{c} 20.2 \pm 0.2^{b} \\ 19.3 \pm 0.1^{**} \\ 17.5 \pm 0.2^{**} \end{array} $ $ \begin{array}{c} 32.7 \pm 0.2 \\ 33.7 \pm 0.2^{**} \end{array} $ | | Week 13 Hematology (continued) Mean cell volume (fL) Day 5 60 Day 20 55 Week 13 55 Mean cell hemoglobin (pg) Day 5 20 Week 13 15 Mean cell hemoglobin concentration (g Day 5 32 Week 13 3 Mean cell hemoglobin concentration (g Day 5 33 Mean cell hemoglobin concentration (g Day 5 33 Platel to 103/μL) Day 5 94 Day 20 93 Week 13 72 Leukocytes (103/μL) Day 5 10 Day 5 94 Leukocytes (103/μL) Day 5 10 Day 5 10 Day 5 10 Day 5 10 Day 20 9 Week 13 Segmented neutrophils (103/μL) Day 5 1 Day 20 1 Week 13 Lymphocytes (103/μL) Day 5 1 Day 20 1 Lymphocytes (103/μL) Day 5 8 Day 20 8 Week 13 Lymphocytes (103/μL) Day 5 8 Day 20 8 Week 13 6 | 10 50.9 ± 0.4 58.4 ± 0.4 53.7 ± 0.2 20.1 ± 0.2 20.1 ± 0.1 8.2 ± 0.1 20.1 ± 0.2 33.1 ± 0.2 34.4 ± 0.2 34.0 ± 0.1 | 10 61.6 ± 0.5 58.7 ± 0.3 54.0 ± 0.1 20.1 ± 0.2 20.2 ± 0.1 18.1 ± 0.1 32.7 ± 0.1 34.4 ± 0.2 33.7 ± 0.2 | 10 61.6 ± 0.3 58.7 ± 0.3 54.2 ± 0.6 20.1 ± 0.2 20.0 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 34.0 ± 0.2 $33.5 \pm 0.1*$ | 10 61.7 ± 0.4 59.4 ± 0.5 54.2 ± 0.2 20.2 ± 0.2 19.9 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 33.7 ± 0.2 $33.1 \pm 0.2**$ | 10 61.3 ± 0.3 58.0 ± 0.3 54.4 ± 0.4 20.0 ± 0.1 19.8 ± 0.1 $18.0 \pm 0.2**$ 32.7 ± 0.2 34.2 ± 0.3 | 8 61.7 ± 0.7 57.3 ± 0.4 53.6 ± 0.3 20.2 ± 0.2^{b} $19.3 \pm 0.1^{**}$ $17.5 \pm 0.2^{**}$ 32.7 ± 0.2 $33.7 \pm 0.2^{**}$ | | Mean cell volume (fL) Day 5 66 Day 20 55 Week 13 55 Mean cell hemoglobin (pg) Day 5 20 Week 13 15 Mean cell hemoglobin concentration (g Day 5 35 Day 20 36 Week 13 3 37 Platelets (10³/μL) Day 5 94 Day 20 93 Week 13 72 Leukocytes (10³/μL) Day 5 10 Day 5 94 Segmented neutrophils (10³/μL) Day 5 10 Day 20 93 Week 13 Segmented neutrophils (10³/μL) Day 5 12 Day 20 94 Week 13 Segmented neutrophils (10³/μL) Day 5 15 Day 20 16 Week 13 17 Lymphocytes (10³/μL) Day 5 18 Day 20 19 Day 5 10 1 | 50.9 ± 0.4 58.4 ± 0.4 53.7 ± 0.2 20.1 ± 0.2 20.1 ± 0.1 8.2 ± 0.1 20.1 ± 0.2 20.1 ± 0.1 20.1 ± 0.1 20.1 ± 0.1 20.1 ± 0.2 20.1 ± 0.1 20.1 ± 0.2 20.1 ± 0.1 20.1 ± 0.2 20.1 | 61.6 ± 0.5 58.7 ± 0.3 54.0 ± 0.1 20.1 ± 0.2 20.2 ± 0.1 18.1 ± 0.1 32.7 ± 0.1 34.4 ± 0.2 33.7 ± 0.2 | 61.6 ± 0.3 58.7 ± 0.3 54.2 ± 0.6 20.1 ± 0.2 20.0 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 34.0 ± 0.2 $33.5 \pm 0.1*$ | 61.7 ± 0.4 59.4 ± 0.5 54.2 ± 0.2 20.2 ± 0.2 19.9 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 33.7 ± 0.2 $33.1 \pm 0.2**$ | 61.3 ± 0.3 58.0 ± 0.3 54.4 ± 0.4 20.0 ± 0.1 19.8 ± 0.1 $18.0 \pm 0.2**$ 32.7 ± 0.2 34.2 ± 0.3 | 61.7 ± 0.7 57.3 ± 0.4 53.6 ± 0.3 20.2 ± 0.2^{b} $19.3 \pm 0.1**$ $17.5 \pm 0.2**$ 32.7 ± 0.2 33.7 ± 0.2 | | Mean cell volume (fL) Day 5 66 Day 20 55 Week 13 55 Mean cell hemoglobin (pg) Day 5 20 Week 13 15 Mean cell hemoglobin concentration (g Day 5 33 Day 20 34 Week 13 3-1 Mean cell hemoglobin concentration (g Day 5 33 Day 20 34 Week 13 3-1 Platelets (10³/μL) Day 5 94 Day 20 930 Week 13 72 Leukocytes (10³/μL) Day 5 10 Day 20 93 Week 13 Segmented neutrophils (10³/μL) Day 5 1 Day 20 94 Week 13 Segmented neutrophils (10³/μL) Day 5 1 Day 20 1 Week 13 Lymphocytes (10³/μL) Day 5 1 Day 20 1 Week 13 Lymphocytes (10³/μL) Day 5 1 Day 20 1 Week 13 Lymphocytes (10³/μL) Day 5 8 Day 20 8 Week 13 Day 20 8 Week 13 | 58.4 ± 0.4
53.7 ± 0.2
20.1 ± 0.2
20.1 ± 0.1
18.2 ± 0.1
20.1 ± 0.1
20.1 ± 0.1
20.1 ± 0.1
20.1 ± 0.1
20.1 ± 0.1
20.1 ± 0.1 | 58.7 ± 0.3 54.0 ± 0.1 20.1 ± 0.2 20.2 ± 0.1 18.1 ± 0.1 32.7 ± 0.1 34.4 ± 0.2 33.7 ± 0.2 | 58.7 ± 0.3 54.2 ± 0.6 20.1 ± 0.2 20.0 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 34.0 ± 0.2 $33.5 \pm 0.1*$ | 59.4 ± 0.5 54.2 ± 0.2 20.2 ± 0.2 19.9 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 33.7 ± 0.2 $33.1 \pm 0.2**$ | 58.0 ± 0.3 54.4 ± 0.4 20.0 ± 0.1 19.8 ± 0.1 $18.0 \pm 0.2**$ 32.7 ± 0.2 34.2 ± 0.3 | 57.3 ± 0.4 53.6 ± 0.3 20.2 ± 0.2^{b} $19.3 \pm 0.1^{**}$ $17.5 \pm 0.2^{**}$ 32.7 ± 0.2 $33.7 \pm 0.2^{**}$ | | Day 5 Day 20 Week 13 Mean cell hemoglobin (pg) Day 5 Day 20 Week 13 Mean cell hemoglobin concentration (g Day 5 Day 20 Week 13 Mean cell hemoglobin concentration (g Day 5 Day 20 Week 13 Platelets (10³/μL) Day 5 Day 20 Week 13 Leukocytes (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Lymphocytes Read Segmented 108 | 58.4 ± 0.4
53.7 ± 0.2
20.1 ± 0.2
20.1 ± 0.1
18.2 ± 0.1
20.1 ± 0.1
20.1 ± 0.1
20.1 ± 0.1
20.1 ± 0.1
20.1 ± 0.1
20.1 ± 0.1 | 58.7 ± 0.3 54.0 ± 0.1 20.1 ± 0.2 20.2 ± 0.1 18.1 ± 0.1 32.7 ± 0.1 34.4 ± 0.2 33.7 ± 0.2 | 58.7 ± 0.3 54.2 ± 0.6 20.1 ± 0.2 20.0 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 34.0 ± 0.2 $33.5 \pm 0.1*$ | 59.4 ± 0.5 54.2 ± 0.2 20.2 ± 0.2 19.9 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 33.7 ± 0.2 $33.1 \pm 0.2**$ | 58.0 ± 0.3 54.4 ± 0.4 20.0 ± 0.1 19.8 ± 0.1 $18.0 \pm 0.2**$ 32.7 ± 0.2 34.2 ± 0.3 | 57.3 ± 0.4 53.6 ± 0.3 20.2 ± 0.2^{b} $19.3 \pm 0.1^{**}$ $17.5 \pm 0.2^{**}$ 32.7 ± 0.2 $33.7 \pm 0.2^{**}$ | | Day 5 | 58.4 ± 0.4
53.7 ± 0.2
20.1 ± 0.2
20.1 ± 0.1
18.2 ± 0.1
20.1 ± 0.1
20.1 ± 0.1
20.1 ± 0.1
20.1 ± 0.1
20.1 ± 0.1
20.1 ± 0.1 | 58.7 ± 0.3 54.0 ± 0.1 20.1 ± 0.2 20.2 ± 0.1 18.1 ± 0.1 32.7 ± 0.1 34.4 ± 0.2 33.7 ± 0.2 | 58.7 ± 0.3 54.2 ± 0.6 20.1 ± 0.2 20.0 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 34.0 ± 0.2 $33.5 \pm 0.1*$ | 59.4 ± 0.5 54.2 ± 0.2 20.2 ± 0.2 19.9 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 33.7 ± 0.2 $33.1 \pm 0.2**$ | 58.0 ± 0.3 54.4 ± 0.4 20.0 ± 0.1 19.8 ± 0.1 $18.0 \pm 0.2**$ 32.7 ± 0.2 34.2 ± 0.3 | 57.3 ± 0.4 53.6 ± 0.3 20.2 ± 0.2^{b} $19.3 \pm 0.1^{**}$ $17.5 \pm 0.2^{**}$ 32.7 ± 0.2 $33.7 \pm 0.2^{**}$ | | Day 20 Week 13 Mean cell hemoglobin (pg) Day 5 Day 20 Week 13 Mean cell hemoglobin concentration (g Day 5 Day 20 Week 13 Mean cell hemoglobin concentration (g Day 5 Day 20 Week 13 Platelets (10³/μL) Day 5 Day 20 Week 13 Leukocytes
(10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 20 Week 13 Regulary 108 Regu | $\begin{array}{c} 53.7 \pm 0.2 \\ 20.1 \pm 0.2 \\ 20.1 \pm 0.1 \\ 18.2 \pm 0.1 \\ 83.1 \pm 0.2 \\ 34.4 \pm 0.2 \\ 34.0 \pm 0.1 \end{array}$ | 54.0 ± 0.1 20.1 ± 0.2 20.2 ± 0.1 18.1 ± 0.1 32.7 ± 0.1 34.4 ± 0.2 33.7 ± 0.2 | 54.2 ± 0.6 20.1 ± 0.2 20.0 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 34.0 ± 0.2 $33.5 \pm 0.1*$ | 54.2 ± 0.2 20.2 ± 0.2 19.9 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 33.7 ± 0.2 $33.1 \pm 0.2**$ | 54.4 ± 0.4 20.0 ± 0.1 19.8 ± 0.1 $18.0 \pm 0.2**$ 32.7 ± 0.2 34.2 ± 0.3 | 53.6 ± 0.3 20.2 ± 0.2^{b} $19.3 \pm 0.1**$ $17.5 \pm 0.2**$ 32.7 ± 0.2 $33.7 \pm 0.2*$ | | Week 13 55 Mean cell hemoglobin (pg) 20 Day 5 2c Day 20 2c Week 13 1c Mean cell hemoglobin concentration (g 3c Day 5 3c Day 20 3c Week 13 7c Day 20 9d Week 13 7c Leukocytes (10³/μL) 2c Day 5 1c Day 20 9c Week 13 8c Segmented neutrophils (10³/μL) 2c Day 5 1c Day 20 1c Week 13 1c Lymphocytes (10³/μL) 2c Day 5 8c Day 20 8c Bay 20 8c Week 13 6c | $\begin{array}{c} 53.7 \pm 0.2 \\ 20.1 \pm 0.2 \\ 20.1 \pm 0.1 \\ 18.2 \pm 0.1 \\ 20.1 $ | 54.0 ± 0.1 20.1 ± 0.2 20.2 ± 0.1 18.1 ± 0.1 32.7 ± 0.1 34.4 ± 0.2 33.7 ± 0.2 | 54.2 ± 0.6 20.1 ± 0.2 20.0 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 34.0 ± 0.2 $33.5 \pm 0.1*$ | 54.2 ± 0.2 20.2 ± 0.2 19.9 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 33.7 ± 0.2 $33.1 \pm 0.2**$ | 54.4 ± 0.4 20.0 ± 0.1 19.8 ± 0.1 $18.0 \pm 0.2**$ 32.7 ± 0.2 34.2 ± 0.3 | 53.6 ± 0.3 20.2 ± 0.2^{b} $19.3 \pm 0.1**$ $17.5 \pm 0.2**$ 32.7 ± 0.2 $33.7 \pm 0.2*$ | | Day 5 Day 20 Week 13 Mean cell hemoglobin concentration (g Day 5 Day 20 Week 13 Platelets (10³/μL) Day 5 Day 20 Week 13 Platelets (10³/μL) Day 5 Day 20 Week 13 Leukocytes (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 20 Week 13 Regulary 108 Reg | 20.1 ± 0.1
18.2 ± 0.1
g/dL)
33.1 ± 0.2
34.4 ± 0.2
34.0 ± 0.1 | 20.2 ± 0.1 18.1 ± 0.1 32.7 ± 0.1 34.4 ± 0.2 33.7 ± 0.2 | 20.0 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 34.0 ± 0.2 $33.5 \pm 0.1*$ | 19.9 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 33.7 ± 0.2 $33.1 \pm 0.2**$ | 19.8 ± 0.1 $18.0 \pm 0.2**$ 32.7 ± 0.2 34.2 ± 0.3 | 20.2 ± 0.2^{b} $19.3 \pm 0.1**$ $17.5 \pm 0.2**$ 32.7 ± 0.2 $33.7 \pm 0.2*$ | | Day 5 Day 20 Week 13 Mean cell hemoglobin concentration (g Day 5 Day 20 Week 13 Platelets (10³/μL) Day 5 Day 20 Week 13 Platelets (10³/μL) Day 5 Day 20 Week 13 Leukocytes (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 20 Week 13 Segmented neutrophils (10³/μL) Day 5 Day 20 Week 13 Lymphocytes (10³/μL) Day 5 Day 20 Week 13 Regulary 108 Reg | 20.1 ± 0.1
18.2 ± 0.1
g/dL)
33.1 ± 0.2
34.4 ± 0.2
34.0 ± 0.1 | 20.2 ± 0.1 18.1 ± 0.1 32.7 ± 0.1 34.4 ± 0.2 33.7 ± 0.2 | 20.0 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 34.0 ± 0.2 $33.5 \pm 0.1*$ | 19.9 ± 0.1 18.2 ± 0.2 32.7 ± 0.3 33.7 ± 0.2 $33.1 \pm 0.2**$ | 19.8 ± 0.1 $18.0 \pm 0.2**$ 32.7 ± 0.2 34.2 ± 0.3 | $19.3 \pm 0.1**$ $17.5 \pm 0.2**$ 32.7 ± 0.2 $33.7 \pm 0.2*$ | | Day 20 Week 13 Mean cell hemoglobin concentration (g Day 5 Day 20 See 13 Platelets $(10^3/\mu L)$ Day 5 Day 20 Week 13 Platelets $(10^3/\mu L)$ Day 5 Day 20 Week 13 Leukocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 Segmented neutrophils $(10^3/\mu L)$ Day 5 Day 20 Week 13 Segmented neutrophils $(10^3/\mu L)$ Day 5 Day 20 Week 13 Lymphocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 Lymphocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 Lymphocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 Lymphocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 Respectively. | 18.2 ± 0.1
g/dL)
33.1 ± 0.2
34.4 ± 0.2
34.0 ± 0.1 | 18.1 ± 0.1 32.7 ± 0.1 34.4 ± 0.2 33.7 ± 0.2 | 18.2 ± 0.2 32.7 ± 0.3 34.0 ± 0.2 $33.5 \pm 0.1*$ | 18.2 ± 0.2 32.7 ± 0.3 33.7 ± 0.2 $33.1 \pm 0.2**$ | $18.0 \pm 0.2**$ 32.7 ± 0.2 34.2 ± 0.3 | $19.3 \pm 0.1**$ $17.5 \pm 0.2**$ 32.7 ± 0.2 $33.7 \pm 0.2*$ | | Week 13 Mean cell hemoglobin concentration (g Day 5 Day 20 Week 13 Platelets $(10^3/\mu L)$ Day 5 Pay 20 Week 13 Platelets $(10^3/\mu L)$ Day 5 Pay 20 Week 13 Leukocytes $(10^3/\mu L)$ Day 5 Pay 20 Week 13 Segmented neutrophils $(10^3/\mu L)$ Day 5 Day 5 Day 20 Week 13 Segmented neutrophils $(10^3/\mu L)$ Day 5 Day 20 Week 13 Lymphocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 Lymphocytes $(10^3/\mu L)$ Day 5 Segmented neutrophils $(10^3/\mu L)$ Day 5 Segmented 1 Lymphocytes $(10^3/\mu L)$ Day 5 Segmented 1 Rever | g/dL)
33.1 ± 0.2
34.4 ± 0.2
34.0 ± 0.1 | $32.7 \pm 0.1 \\ 34.4 \pm 0.2 \\ 33.7 \pm 0.2$ | 32.7 ± 0.3
34.0 ± 0.2
$33.5 \pm 0.1*$ | 32.7 ± 0.3
33.7 ± 0.2
$33.1 \pm 0.2**$ | 32.7 ± 0.2 34.2 ± 0.3 | 32.7 ± 0.2
$33.7 \pm 0.2*$ | | Day 5 Day 20 Week 13 Platelets $(10^3/\mu L)$ Day 5 Day 20 Week 13 Platelets $(10^3/\mu L)$ Day 5 Day 20 Week 13 Platelets $(10^3/\mu L)$ Day 5 Day 20 Week 13 Segmented neutrophils $(10^3/\mu L)$ Day 5 Day 20 Week 13 Lymphocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 Lymphocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 Lymphocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 Lymphocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 Lymphocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 Rymphocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 Rymphocytes $(10^3/\mu L)$ Day 5 Day 20 Week 13 | 33.1 ± 0.2
34.4 ± 0.2
34.0 ± 0.1 | 34.4 ± 0.2
33.7 ± 0.2 | 34.0 ± 0.2
$33.5 \pm 0.1*$ | 33.7 ± 0.2
$33.1 \pm 0.2**$ | 34.2 ± 0.3 | $33.7 \pm 0.2*$ | | Day 20 3- Week 13 3- Platelets ($10^3/\mu$ L) 94 Day 5 94 Day 20 93 Week 13 72 Leukocytes ($10^3/\mu$ L) 10 Day 20 9 Week 13 8 Segmented neutrophils ($10^3/\mu$ L) 20 Day 5 1 Day 20 1 Week 13 1 Lymphocytes ($10^3/\mu$ L) 2 Day 5 8 Day 20 8 Week 13 6 | 34.4 ± 0.2
34.0 ± 0.1 | 34.4 ± 0.2
33.7 ± 0.2 | 34.0 ± 0.2
$33.5 \pm 0.1*$ | 33.7 ± 0.2
$33.1 \pm 0.2**$ | 34.2 ± 0.3 | $33.7 \pm 0.2*$ | | Week 13 3-3 Platelets ($10^3/\mu$ L) 94 Day 5 94 Day 20 93 Week 13 72 Leukocytes ($10^3/\mu$ L) 10 Day 20 9 Week 13 8 Segmented neutrophils ($10^3/\mu$ L) 1 Day 5 1 Day 20 1 Week 13 1 Lymphocytes ($10^3/\mu$ L) 1 Day 5 8 Day 20 8 Week 13 6 | 34.0 ± 0.1 | 33.7 ± 0.2 | $33.5 \pm 0.1*$ | 33.1 ± 0.2** | _ | _ | | Platelets $(10^3/\mu L)$ Day 5 94 Day 20 93 Week 13 72 Leukocytes $(10^3/\mu L)$ Day 5 10 Day 20 9 Week 13 8 Segmented neutrophils $(10^3/\mu L)$ Day 5 1 Day 20 1 Week 13 1 Lymphocytes $(10^3/\mu L)$ Day 5 1 Lymphocytes $(10^3/\mu L)$ Day 5 8 Day 20 8 Week 13 6 | | | | | $33.0 \pm 0.1**$ | $32.7 \pm 0.2**$ | | Day 5 94 Day 20 936 Week 13 72 Leukocytes ($10^3/\mu$ L) 10 Day 5 10 Week 13 8 Segmented neutrophils ($10^3/\mu$ L) 1 Day 5 1 Day 20 1 Week 13 1 Lymphocytes ($10^3/\mu$ L) 1 Day 5 8 Day 20 8 Week 13 6 | 41.7 ± 30.3 | 885 4 + 26 5 | 071 4 : 26 2 | | | | | Day 20 930 Week 13 72 Leukocytes ($10^3/\mu$ L) 10 Day 5 10 Day 20 9 Week 13 8 Segmented neutrophils ($10^3/\mu$ L) 1 Day 5 1 Day 20 1 Week 13 1 Lymphocytes ($10^3/\mu$ L) 1 Day 5 8 Day 20 8 Week 13 6 | 11.7 ± 30.3 | 885.4 ± 26.5 | 071 4 : 26 2 | | | | | Week 13 72 Leukocytes ($10^3/\mu$ L) Day 5 10 Day 20 9 Week 13 8 Segmented neutrophils ($10^3/\mu$ L) Day 5 1. Day 20 1. Week 13 1. Lymphocytes ($10^3/\mu$ L) Day 5 8 Day 20 8 Week 13 66 | | 005.4 1 20.5 | 971.4 ± 26.3 | 906.8 ± 11.8^{b} | 863.3 ± 21.2 | 857.5 ± 61.5 | | Leukocytes $(10^3/\mu\text{L})$ Day 5 10 Day 20 9 Week 13 8 Segmented neutrophils $(10^3/\mu\text{L})$ Day 5 1. Day 20 1. Week 13 1. Lymphocytes $(10^3/\mu\text{L})$ Day 5 8 Day 20 8 Week 13 66 | 30.8 ± 22.3 | 885.0 ± 28.0 | 884.6 ± 44.3 | 982.5 ± 23.9 | 919.7 ± 16.9 | 812.6 ± 61.7 | | Day 5 10 Day 20 9 Week 13 8 Segmented neutrophils $(10^3/\mu L)$ 1 Day 5 1 Lymphocytes $(10^3/\mu L)$ 1 Day 5 8 Day 20 8 Week 13 6 | 21.5 ± 17.2 | 741.0 ± 9.5 | 729.4 ± 32.6 | 738.5 ± 38.4 | 759.2 ± 36.4 | 751.3 ± 45.7 | | Day 20 9 Week 13 8 Segmented neutrophils $(10^3/\mu L)$ 1 Day 5 1 Day 20 1 Week 13 1 Lymphocytes $(10^3/\mu L)$ 8 Day 5 8 Day 20 8 Week 13 6 | | | | | | | | Week 13 8 Segmented neutrophils $(10^3/\mu L)$ 1 Day 5 1 Day 20 1 Week 13 1 Lymphocytes $(10^3/\mu L)$ 1 Day 5 8 Day 20 8 Week 13 6 | 0.19 ± 0.41 | 9.35 ± 0.34 | 8.84 ± 0.35 | 8.67 ± 0.26 | 8.97 ± 0.50 | $8.36 \pm 0.56*$ | | Segmented neutrophils $(10^3/\mu L)$ Day 5 1. Day 20 1. Week 13 1. Lymphocytes $(10^3/\mu L)$ Day 5 8. Day 20 8 Week 13 66 | 9.54 ± 0.29 | 9.60 ± 0.34 | 9.15 ± 0.42 | 9.41 ± 0.32 | 9.05 ± 0.35 | 8.95 ± 0.43 | | Day 5 1 Day 20 1 Week 13 1 Lymphocytes $(10^3/μL)$ 8 Day 5 8 Day 20 8 Week 13 6 | 3.01 ± 0.32 | 8.38 ± 0.18 | 8.35 ± 0.23 | 7.93 ± 0.47 | 8.89 ± 0.28 | 8.70 ± 0.49 | | Day 20 1 Week 13 1 Lymphocytes $(10^3/μL)$ 5 Day 5 8 Day 20 8 Week 13 6 | | | | | | | | Week 13 1. Lymphocytes $(10^3/μL)$ | 1.18 ± 0.18 | 1.48 ± 0.22 | 1.17 ± 0.13 | 0.98 ± 0.12 | 1.20 ± 0.23 | 1.15 ± 0.17 | |
Lymphocytes $(10^3/\mu\text{L})$
Day 5 8
Day 20 8
Week 13 6 | 1.31 ± 0.14 | 1.49 ± 0.19 | 1.32 ± 0.13 | 1.44 ± 0.17 | 1.41 ± 0.17 | 1.87 ± 0.25 | | Day 5 Day 20 Week 13 8 8 6 | 1.55 ± 0.15 | 1.48 ± 0.18 | 1.42 ± 0.09 | 1.39 ± 0.14 | 1.62 ± 0.19 | 1.27 ± 0.16 | | Day 20 8. Week 13 6. | | - 04 . 0.4 0 | = 24 . 5 44 | - 64 . 0.00 | - 00 . 0 - 0 | = 44 . 0.50 | | Week 13 | 3.89 ± 0.42 | 7.81 ± 0.43 | 7.61 ± 0.41 | 7.64 ± 0.28 | 7.93 ± 0.52 | 7.14 ± 0.62 | | | 3.18 ± 0.32 | 8.06 ± 0.42 | 7.75 ± 0.46 | 7.82 ± 0.26 | 7.54 ± 0.36 | 6.99 ± 0.48 | | | 6.41 ± 0.23 | 6.87 ± 0.23 | 6.86 ± 0.24 | 6.42 ± 0.41 | 7.20 ± 0.28 | 7.40 ± 0.48 | | Monocytes $(10^3/\mu L)$ | 11 . 0.04 | 0.02 + 0.02 | 0.04 + 0.03 | 0.04 + 0.03 | 0.04 + 0.01 | 0.02 + 0.01 | | • | 0.11 ± 0.04 | 0.03 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.01 | 0.03 ± 0.01 | | | 0.05 ± 0.02 | 0.04 ± 0.03 | 0.04 ± 0.02 | 0.11 ± 0.03 | 0.08 ± 0.04 | 0.07 ± 0.04 | | | 0.04 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.01 ± 0.01 | | Basophils $(10^3/\mu L)$ | 000 + 0 000 | 0.000 + 0.000 | 0.000 + 0.000 | 0.000 + 0.000 | 0.000 + 0.000 | 0.000 + 0.000 | | • | 000 ± 0.000 | 0.000 ± 0.000 | | | 000 ± 0.000 | 0.000 ± 0.000 | | Week 13 0.0 | 000 ± 0.000 | 0.000 ± 0.000 | | Eosinophils $(10^3/\mu L)$ | | 0.02 + 0.02 | 0.02 + 0.01 | 0.01 + 0.01 | 0.02 + 0.01 | 0.05 + 0.02 | | - | 0.01 + 0.01 | 0.03 ± 0.02 | 0.03 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.05 ± 0.03 | | Day 20 0. Week 13 0. | 0.01 ± 0.01
0.01 ± 0.01 | 0.01 ± 0.01 | 0.04 ± 0.03 | 0.04 ± 0.02
0.05 ± 0.02 | $\begin{array}{c} 0.02 \pm 0.01 \\ 0.04 \pm 0.01 \end{array}$ | 0.03 ± 0.02
0.03 ± 0.02 | G-6 Pyridine, NTP TR 470 TABLE G1 Hematology and Clinical Chemistry Data for F344/N Rats in the 13-Week Drinking Water Study of Pyridine | | 0 ppm | 50 ppm | 100 ppm | 250 ppm | 500 ppm | 1,000 ppm | |---------------------------------|-----------------|-------------------|------------------------|-------------------|-----------------|---------------------| | Female (continued) | | | | | | | | n | | | | | | | | Day 5 | 10 | 10 | 10 | 10 | 10 | 10 | | Day 20 | 10 | 10 | 10 | 10 | 10 | 10 | | Week 13 | 10 | 10 | 10 | 10 | 10 | 8 | | Clinical Chemistry | | | | | | | | Urea nitrogen (mg/dL) | | | | | | | | Day 5 | 20.9 ± 1.0 | 21.2 ± 2.0 | 20.6 ± 0.8 | 20.3 ± 1.0 | 24.0 ± 1.0 | 22.9 ± 0.7 | | Day 20 | 21.5 ± 0.7 | 22.0 ± 1.3 | 22.1 ± 1.1 | 22.6 ± 0.6 | 22.0 ± 0.6 | 25.9 ± 1.4 | | Week 13 | 21.0 ± 0.8 | 20.4 ± 0.8 | 21.5 ± 1.2 | 18.3 ± 0.6 | 19.8 ± 0.7 | 23.4 ± 1.3 | | Creatinine (mg/dL) | | | | | | | | Day 5 | 0.55 ± 0.02 | 0.55 ± 0.03 | 0.51 ± 0.01 | 0.52 ± 0.03 | 0.58 ± 0.01 | 0.56 ± 0.02 | | Day 20 | 0.58 ± 0.02 | 0.56 ± 0.03 | 0.61 ± 0.02 | 0.56 ± 0.03 | 0.57 ± 0.02 | 0.59 ± 0.02^{b} | | Week 13 | 0.62 ± 0.02 | 0.60 ± 0.01 | 0.63 ± 0.03 | 0.61 ± 0.02 | 0.60 ± 0.03 | 0.61 ± 0.05 | | Total protein (g/dL) | _ | _ | _ | _ | _ | _ | | Day 5 | 6.0 ± 0.1 | 6.2 ± 0.1 | $6.7 \pm 0.0**$ | 6.2 ± 0.1 | $6.5 \pm 0.1**$ | 6.0 ± 0.1 | | Day 20 | 6.4 ± 0.1 | 6.6 ± 0.1 | 6.5 ± 0.1 | $6.8 \pm 0.1*$ | $6.9 \pm 0.1**$ | $6.8 \pm 0.1**$ | | Week 13 | 6.8 ± 0.1 | 6.6 ± 0.1 | 6.7 ± 0.1 | 6.8 ± 0.1 | 7.0 ± 0.1 | 6.7 ± 0.1 | | Albumin (g/dL) | | | | - · · · · - · · · | | | | Day 5 | 3.7 + 0.0 | 3.7 ± 0.1 | $4.0 \pm 0.1**$ | 3.7 + 0.1 | $3.9 \pm 0.1*$ | 3.8 ± 0.1 | | Day 20 | 3.5 ± 0.1 | 3.6 ± 0.1 | 3.7 ± 0.1 | $3.8 \pm 0.1**$ | $4.1 \pm 0.1**$ | $4.0 \pm 0.1**$ | | Week 13 | 3.9 ± 0.1 | 3.9 ± 0.0 | 4.0 ± 0.1 | 4.0 ± 0.1 | 4.0 ± 0.1 | 4.0 ± 0.1 | | Alanine aminotransferase (IU/L) | | - · · · - · · · · | | | | | | Day 5 | 36 ± 1 | 34 ± 1 | 33 ± 1 | 35 ± 2 | 45 ± 5 | 432 ± 294 | | Day 20 | 35 ± 1 | 33 ± 2 | 30 ± 1 | 28 ± 1* | 29 + 2* | $1,295 \pm 1,133$ | | Week 13 | 40 ± 1 | 31 ± 2** | $33 \pm 2*$ | 30 ± 1** | 30 + 1** | 141 ± 72 | | Alkaline phosphatase (IU/L) | - - | - - | | - · · - | | _ | | Day 5 | 419 + 7 | 375 + 11* | $367 \pm 7**$ | $368 \pm 8**$ | 405 + 10 | 410 + 12 | | Day 20 | 357 + 8 | 328 + 5** | 315 ± 7** | 287 + 3** | 283 ± 6** | 314 + 18** | | Week 13 | 210 ± 5 | 193 ± 5 | 176 ± 4** | 162 ± 7** | 168 ± 5** | 209 ± 17** | | Creatine kinase (IU/L) | _ | _ | _ | _ | _ | _ | | Day 5 | 195 ± 28 | 230 ± 43 | 257 ± 22 | 207 ± 21^{b} | $300 \pm 27**$ | $288 \pm 39*$ | | Day 20 | 266 ± 74 | 222 ± 53 | $\frac{-}{208 \pm 45}$ | 175 ± 38 | 143 ± 9 | 144 ± 15^{b} | | Week 13 | 169 + 23 | 119 + 19 | 187 ± 42 | 210 ± 40 | 159 ± 20 | 240 ± 70 | | Sorbitol dehydrogenase (IU/L) | _ | _ | _ | _ | _ | _ | | Day 5 | 8 + 1 | 7 ± 0 | 6 ± 1 | 7 ± 0 | 39 + 20 | 111 + 91 | | Day 20 | 8 ± 1 | 9 ± 1 | 10 ± 0 | 10 ± 0 | 17 ± 6** | $383 \pm 162**^{b}$ | | Week 13 | 8 ± 0 | 9 ± 0 | 8 ± 1 | 9 ± 1 | 10 ± 1 | 289 ± 204** | | Bile acids (μmol/L) | | _ · | _ | _ | _ | | | Day 5 | 32.3 ± 3.4 | 28.3 ± 5.1 | 20.9 ± 2.8 | 43.0 ± 5.9 | 39.3 ± 11.2 | 69.2 ± 25.7 | | Day 20 | 34.1 ± 3.9 | 37.0 ± 5.9 | 41.1 ± 6.1 | 40.0 ± 8.9 | $55.0 \pm 4.9*$ | $202.0 \pm 114.1**$ | | Week 13 | 47.3 ± 9.8 | 39.5 ± 4.9 | 38.0 ± 5.6 | 38.9 ± 4.6 | 54.5 ± 7.9 | 87.3 ± 21.8 | ^{*} Significantly different (P $\!\leq\!0.05)$ from the control group by Dunn s or Shirley s test ** P $\!\leq\!0.01$ Mean \pm standard error. Statistical tests were performed on unrounded data. n=9 Pyridine, NTP TR 470 G-7 TABLE G2 Hematology and Clinical Chemistry Data for Male Wistar Rats in the 13-Week Drinking Water Study of Pyridine^a | | 0 ppm | 50 ppm | 100 ppm | 250 ppm | 500 ppm | 1,000 ppm | |--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | Hematology | | | | | | | | n | | | | | | | | Day 5 | 10 | 10 | 10 | 10 | 10 | 10 | | Day 20
Week 13 | 10
10 | 9
10 | 9
10 | 9
10 | 10
9 | 10
10 | | WCCR 13 | 10 | 10 | 10 | 10 | 9 | 10 | | Automated hematocrit (%) Day 5 | 40.7 ± 0.4 | 40.1 ± 0.7 | 41.0 ± 0.5 | 41.5 ± 0.6 | 45.6 ± 0.7** | 45.0 ± 1.0** | | Day 20 | 43.0 ± 0.5 | 43.0 ± 0.7 | 42.6 ± 0.8 | 43.1 ± 0.5 | 42.9 ± 0.3 | 43.0 ± 1.0
44.2 ± 0.9 | | Week 13 | 45.0 ± 0.5
45.0 ± 0.5 | 45.3 ± 0.7 | 45.4 ± 0.3 | 46.2 ± 0.7 | 46.0 ± 0.3 | 44.6 ± 0.7 | | Manual hematocrit (%) | 45.0 ± 0.5 | 43.3 ± 0.7 | 45.4 <u>1</u> 0.5 | 40.2 _ 0.7 | 40.0 ± 0.5 | 44.0 <u>1</u> 0.7 | | Day 5 | 39.3 ± 0.4 | 38.6 ± 0.9 | 39.8 ± 0.5 | 40.1 ± 0.7 | 44.2 ± 0.8** | 43.4 ± 1.0** | | Day 20 | 41.3 ± 0.6 | 42.7 ± 0.7 | 41.8 ± 0.8 | 42.2 ± 0.5 | 41.3 ± 0.4 | 43.5 ± 1.0 | | Week 13 | 43.5 ± 0.6 | 44.0 ± 0.6 | 44.2 ± 0.2 | 44.7 ± 0.6 | 44.4 ± 0.4 | 43.4 ± 0.6 | | Hemoglobin (g/dL) | | | | | | | | Day 5 | 13.3 ± 0.1 | 13.1 ± 0.2 | 13.5 ± 0.2 | 13.7 ± 0.2 | $15.1 \pm 0.2**$ | $14.8 \pm 0.3**$ | | Day 20 | 14.3 ± 0.2 | 14.2 ± 0.2 | 14.0 ± 0.2 | 14.1 ± 0.2 | 14.0 ± 0.1 | 14.6 ± 0.3 | | Week 13 | 15.1 ± 0.2 | 15.2 ± 0.2 | 15.2 ± 0.1 | 15.5 ± 0.1 | 15.3 ± 0.1 | 14.8 ± 0.2 | | Erythrocytes $(10^6/\mu L)$ | | | | | | | | Day 5 | 6.43 ± 0.07 | 6.35 ± 0.10 | 6.43 ± 0.09 | 6.62 ± 0.08 | $7.34 \pm 0.16**$ | $7.13 \pm 0.17**$ | | Day 20 | 6.99 ± 0.12 | 6.94 ± 0.10 | 6.90 ± 0.12 | 7.04 ± 0.10 | 7.07 ± 0.09 | 7.36 ± 0.13 | | Week 13 | 8.52 ± 0.14 | 8.59 ± 0.17 | 8.71 ± 0.12 | 8.61 ± 0.14 | 8.64 ± 0.12 | 8.42 ± 0.10 | | Reticulocytes $(10^6/\mu L)$ | | | | | | | | Day 5 | 0.27 ± 0.02 | 0.29 ± 0.03 | 0.29 ± 0.02 | 0.32 ± 0.02 | 0.27 ± 0.02 | 0.26 ± 0.02 | | Day 20 | 0.21 ± 0.01 | 0.21 ± 0.01 | 0.18 ± 0.01 | 0.19 ± 0.01 | 0.22 ± 0.02 | 0.23 ± 0.01 | | Week 13 | 0.13 ± 0.01 | 0.15 ± 0.01 | 0.14 ± 0.01 | 0.16 ± 0.01 | 0.18 ± 0.02 | 0.15 ± 0.01 | | Nucleated erythrocytes $(10^3/\mu)$ | L) | | | | | | | Day 5 | 0.06 ± 0.02 | 0.02 ± 0.01 | 0.04 ± 0.02 | $0.01 \pm 0.01*$ | 0.02 ± 0.01 | 0.02 ± 0.01 | | Day 20 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.02 | 0.03 ± 0.02 | 0.01 ± 0.01 | | Week 13 | 0.00 ± 0.00 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.03 ± 0.02 | 0.04 ± 0.02 | | Mean cell volume (fL) | | | | | | | | Day 5 | 63.5 ± 0.6 | 63.2 ± 0.7 | 63.9 ± 0.7 | 62.6 ± 0.6 | 62.2 ± 0.5 | 63.2 ± 0.7 | | Day 20 | 61.7 ± 0.7 | 62.1 ± 0.9 | 61.8 ± 0.7 | 61.4 ± 0.6 | 60.7 ± 0.4 | 60.3 ± 0.5 | | Week 13 | 52.9 ± 0.6 | 52.9 ± 0.5 | 52.4 ± 0.5 | 53.8 ± 0.6 | 53.3 ± 0.7 | 53.2 ± 0.5 | | Mean cell hemoglobin (pg) | 20.0 . 0.2 | 20.7 + 0.2 | 21.0 + 0.2 | 20.6 + 0.2 | 20.6 + 0.2 | 20.0 . 0.2 | | Day 5 | 20.8 ± 0.2 | 20.7 ± 0.2 | 21.0 ± 0.2 | 20.6 ± 0.2 | 20.6 ± 0.2 | 20.8 ± 0.2 | | Day 20 | 20.4 ± 0.2 | 20.5 ± 0.2 | 20.4 ± 0.2 | 20.1 ± 0.2 | 19.8 ± 0.2 | $19.8 \pm 0.2*$ | | Week 13 Man and hamaglahin agneent | 17.7 ± 0.3 | 17.7 ± 0.2 | 17.5 ± 0.2 | 18.0 ± 0.2 | 17.7 ± 0.2 | 17.6 ± 0.2 | | Mean cell hemoglobin concent | |
32.7 + 0.1 | 22.0 + 0.2 | 22.0 + 0.2 | 22 1 + 0 2 | 22.0 + 0.1 | | Day 5
Day 20 | 32.8 ± 0.1
33.2 ± 0.2 | 32.7 ± 0.1
33.1 ± 0.3 | 32.9 ± 0.2
33.0 ± 0.2 | 32.9 ± 0.2
32.8 ± 0.2 | 33.1 ± 0.2
32.7 ± 0.1 | 32.9 ± 0.1
33.0 ± 0.1 | | Week 13 | 33.2 ± 0.2
33.5 ± 0.2 | 33.6 ± 0.1 | 33.0 ± 0.2
33.5 ± 0.2 | 32.6 ± 0.2
33.5 ± 0.2 | 32.7 ± 0.1
33.3 ± 0.2 | 33.0 ± 0.1
33.3 ± 0.1 | | Platelets $(10^3/\mu L)$ | 33.3 <u>1</u> 0.2 | 33.0 <u>1</u> 0.1 | 33.3 <u>1</u> 0.2 | 33.3 <u>1</u> 0.2 | 33.3 <u>1</u> 0.2 | 33.3 <u>1</u> 0.1 | | Day 5 | 1.356.5 + 55.6 | 1,361.6 + 46.8 | $1,398.8 \pm 66.0$ | 1.297.1 + 70.9 | 1.364.3 + 50.5 | 1,421.5 + 75.1 | | Day 20 | $1,227.3 \pm 39.0$ | $1,227.0 \pm 49.9$ | $1,225.9 \pm 46.1$ | $1,177.4 \pm 67.6$ | $1,207.3 \pm 52.1$ | $1,258.0 \pm 78.4$ | | Week 13 | $1,055.2 \pm 89.2$ | 993.1 ± 57.2 | $1,012.2 \pm 53.8$ | $1,040.8 \pm 55.8$ | $1,232.1 \pm 62.4$ | $1,047.6 \pm 72.7$ | | Leukocytes $(10^3/\mu L)$ | , <u>_</u> | | , | , 00.0 | , <u></u> v= | , <u>.</u> . _ | | Day 5 | 9.82 ± 0.56 | 11.44 ± 0.45 | 9.11 ± 0.94 | 9.29 ± 0.61 | 8.98 ± 0.32 | 9.05 ± 0.84 | | Day 20 | 10.09 ± 0.61 | 12.41 ± 0.53 | 10.14 ± 0.87 | 9.52 ± 0.35 | 10.16 ± 0.78 | 11.15 ± 0.92 | | Week 13 | 9.81 ± 0.77 | 10.67 ± 0.88 | 9.89 ± 0.61 | 10.45 ± 0.43 | 11.38 ± 0.47 | 10.81 ± 0.87 | | Segmented neutrophils (10 ³ /µI | | | _ | _ | _ | _ | | Day 5 | 1.34 ± 0.17 | 1.98 ± 0.27 | 1.39 ± 0.21 | 1.47 ± 0.20 | 1.52 ± 0.14 | 1.26 ± 0.16 | | Day 20 | 1.46 ± 0.19 | 1.84 ± 0.24 | 1.54 ± 0.14 | 1.29 ± 0.17 | 1.55 ± 0.15 | 2.02 ± 0.34 | | Week 13 | 1.66 ± 0.17 | 1.52 ± 0.16 | 1.55 ± 0.21 | 1.71 ± 0.14 | 2.08 ± 0.19 | 1.67 ± 0.21 | | Lymphocytes $(10^3/\mu L)$ | | | | | | | | Day 5 | 8.41 ± 0.49 | 9.32 ± 0.35 | 7.64 ± 0.78 | 7.70 ± 0.51 | 7.38 ± 0.34 | 7.69 ± 0.86 | | Day 20 | 8.52 ± 0.60 | 10.48 ± 0.62 | 8.51 ± 0.80 | 8.13 ± 0.37 | 8.50 ± 0.66 | 9.01 ± 0.74 | | Week 13 | 8.06 ± 0.72 | 9.06 ± 0.79 | 8.24 ± 0.70 | 8.63 ± 0.42 | 9.19 ± 0.50 | 9.05 ± 0.81 | G-8 Pyridine, NTP TR 470 TABLE G2 Hematology and Clinical Chemistry Data for Male Wistar Rats in the 13-Week Drinking Water Study of Pyridine | | 0 ррт | 50 ppm | 100 ppm | 250 ppm | 500 ppm | 1,000 ppm | |---------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------| | Hematology (continued) | | | | | | | | n | | | | | | | | Day 5 | 10 | 10 | 10 | 10 | 10 | 10 | | Day 20 | 10 | 9 | 9 | 9 | 10 | 10 | | Week 13 | 10 | 10 | 10 | 10 | 9 | 10 | | Monocytes $(10^3/\mu L)$ | | | | | | | | Day 5 | 0.04 ± 0.02 | 0.08 ± 0.03 | 0.05 ± 0.03 | 0.09 ± 0.03 | 0.03 ± 0.01 | 0.04 ± 0.02 | | Day 20 | 0.08 ± 0.03 | 0.08 ± 0.03 | 0.07 ± 0.02 | 0.07 ± 0.02 | 0.05 ± 0.02 | 0.09 ± 0.02 | | Week 13 | 0.03 ± 0.02 | 0.05 ± 0.03 | 0.03 ± 0.02 | 0.03 ± 0.02 | 0.06 ± 0.03 | 0.07 ± 0.02 | | Basophils $(10^3/\mu L)$ | **** **** | **** ***** | ***** | **** - **** | **** - **** | **** <u>*</u> **** | | Day 5 | 0.000 ± 0.000 | | Day 20 | 0.000 ± 0.000 | | Week 13 | 0.000 ± 0.000 | | Eosinophils $(10^3/\mu L)$ | | | | | | | | Day 5 | 0.03 + 0.02 | 0.06 ± 0.03 | 0.03 ± 0.02 | 0.03 ± 0.03 | 0.05 ± 0.02 | 0.06 ± 0.03 | | Day 20 | 0.03 ± 0.02 | 0.01 ± 0.01 | 0.03 ± 0.02 | 0.03 ± 0.02 | 0.06 ± 0.03 | 0.04 ± 0.02 | | Week 13 | 0.06 ± 0.02 | 0.05 ± 0.02 | 0.07 ± 0.03 | 0.09 ± 0.04 | 0.05 ± 0.03 | 0.02 ± 0.01 | | Clinical Chemistry | | | | | | | | n | | | | | | | | n
Day 5 | 10 | 10 | 10 | 10 | 10 | 10 | | Day 3
Day 20 | 10 | 10 | 10 | 10 | 10 | 10 | | Week 13 | 10 | 10 | 10 | 10 | 9 | 10 | | Uran nitragan (mg/dL) | | | | | | | | Urea nitrogen (mg/dL) | 10.0 + 0.9 | 19.4 ± 0.6 | 10 4 + 1 0 | 10.0 + 1.0 | 22.1 + 1.1* | 25.2 + 1.2** | | Day 5 | 19.9 ± 0.8 | | 18.4 ± 1.0 | 18.9 ± 1.0 | $23.1 \pm 1.1*$ | $25.2 \pm 1.3**$ | | Day 20 | 23.3 ± 0.9 | 24.5 ± 0.5 | 22.7 ± 0.6 | 25.6 ± 1.0 | $25.8 \pm 0.6*$ | $28.0 \pm 1.1**$ | | Week 13 | 28.1 ± 0.8 | 27.5 ± 0.9 | 27.0 ± 1.0 | 26.8 ± 1.7 | 31.2 ± 1.8 | 29.7 ± 2.3 | | Creatinine (mg/dL) | 0.50 + 0.03 | 0.52 + 0.02 | 0.46 ± 0.02 | 0.49 + 0.02 | 0.52 + 0.02 | 0.52 + 0.01 | | Day 5
Day 20 | 0.50 ± 0.03
0.54 ± 0.02 | 0.52 ± 0.02
0.53 ± 0.02 | 0.46 ± 0.02
0.54 ± 0.02 | 0.48 ± 0.02
0.53 ± 0.05 | 0.53 ± 0.03
0.57 ± 0.02 | 0.52 ± 0.01 | | Week 13 | 0.54 ± 0.02
0.62 ± 0.04 | 0.68 ± 0.02 | 0.54 ± 0.02
0.68 ± 0.02 | 0.72 ± 0.03 | 0.37 ± 0.02
0.74 ± 0.04 | 0.57 ± 0.04
0.67 ± 0.03 | | Total protein (g/dL) | 0.02 ± 0.04 | 0.08 ± 0.02 | 0.08 ± 0.02 | 0.72 ± 0.03 | 0.74 ± 0.04 | 0.07 ± 0.03 | | Day 5 | 5.9 ± 0.1 | 5.8 ± 0.1 | 5.8 ± 0.1 | 5.9 ± 0.1 | 5.8 ± 0.1 | 6.1 ± 0.2 | | Day 20 | 6.5 ± 0.1 | 6.7 ± 0.1 | 6.4 ± 0.1 | 6.8 ± 0.1 | 6.7 ± 0.1 | 6.7 ± 0.2
6.7 ± 0.1 | | Week 13 | 6.6 ± 0.1 | 6.7 ± 0.1
6.7 ± 0.1 | 6.7 ± 0.1 | 7.0 ± 0.1 | 6.9 ± 0.1 | 6.6 ± 0.1 | | Albumin (g/dL) | 0.0 _ 0.1 | 0.7 1 0.1 | 0.7 ± 0.1 | 7.0 _ 0.1 | 0.9 1 0.1 | 0.0 _ 0.1 | | Day 5 | 3.0 ± 0.0 | 3.2 ± 0.1 | 3.1 ± 0.0 | 3.2 ± 0.1 | 3.2 ± 0.1 | $3.3 \pm 0.1*$ | | Day 20 | 3.0 ± 0.0
3.3 ± 0.1 | 3.4 ± 0.1 | 3.1 ± 0.0
3.3 ± 0.1 | 3.2 ± 0.1
3.5 ± 0.0 | 3.4 ± 0.1 | 3.4 ± 0.1 | | Week 13 | _ | | | | | | | | 3.6 ± 0.1 | 3.8 ± 0.1 | 3.8 ± 0.1 | $3.9 \pm 0.1*$ | 3.8 ± 0.1 | 3.8 ± 0.1 | | Alanine aminotransferase (IU/L) | 52 2 | 52 2 | 52 2 | 53 + 4 | 117 + 30** | 124 + 74 | | Day 5 | 52 ± 2 | 53 ± 2 | 52 ± 2
45 ± 2 | _ | _ | 134 ± 74 $299 + 162$ | | Day 20
Week 13 | 48 ± 2
54 ± 2 | 43 ± 1
51 ± 4 | 43 ± 2
50 ± 3 | 45 ± 2
47 ± 3 | 45 ± 2 $146 + 51$ | _ | | Alkaline phosphatase (IU/L) | J+ ± 4 | J1 ± 4 | 30 ± 3 | +1 ± 3 | 140 ± 31 | 62 ± 11 | | Day 5 | 339 + 13 | 343 ± 19 | 327 ± 20 | 303 + 26 | 339 ± 29 | 378 ± 30 | | Day 3
Day 20 | 339 ± 13
294 ± 11 | 281 ± 21 | $\frac{327 \pm 20}{268 \pm 16}$ | 303 ± 26
$229 \pm 16*$ | 339 ± 29
262 ± 19 | $\frac{378 \pm 30}{288 \pm 30}$ | | Week 13 | 179 ± 7 | 189 ± 8 | 160 ± 7 | 157 ± 6* | 168 ± 18 | 143 ± 11* | | | 1/2 ヹ / | 107 <u>T</u> 0 | 100 ± / | 13/ ± 0. | 100 ± 10 | 142 ± 11. | | Creatine kinase (U/L) | 242 ± 23 | 211 ± 22 | 280 ± 31 | 255 ± 21 | 306 ± 35 | 291 ± 51 | | Day 5 | 242 ± 23
223 ± 42 | 211 ± 22 | | | | | | Day 20 | | 322 ± 69 | 345 ± 80 | 298 ± 56 | 333 ± 91 | 362 ± 99 | | Week 13 | 274 ± 65 | 454 ± 136 | 290 ± 45 | 272 ± 58 | 331 ± 64 | 309 ± 56 | Pyridine, NTP TR 470 G-9 TABLE G2 Hematology and Clinical Chemistry Data for Male Wistar Rats in the 13-Week Drinking Water Study of Pyridine | | 0 ppm | 50 ppm | 100 ppm | 250 ppm | 500 ppm | 1,000 ppm | |--------------------------------|-----------------|----------------|-----------------|----------------|--------------------|------------------| | Clinical Chemistry (continued) | | | | | | | | n | | | | | | | | Day 5 | 10 | 10 | 10 | 10 | 10 | 10 | | Day 20 | 10 | 10 | 10 | 10 | 10 | 10 | | Week 13 | 10 | 10 | 10 | 10 | 9 | 10 | | Sorbitol dehydrogenase (IU/L | .) | | | | | | | Day 5 | 8 ± 1 | 8 ± 1 | 7 + 1 | 7 + 0 | 615 ± 179** | 370 + 289** | | Day 20 | 7 + 0 | 7 + 1 | 7 + 1 | 8 + 1 | 9 + 1 | 1,075 + 605** | | Week 13 | 7 ± 0 | 8 ± 1 | 7 + 1 | 9 ± 1 | 253 ± 94** | 49 + 29** | | Bile acids (μmol/L) | | | | | | | | Day 5 | 100.0 + 14.8 | 77.4 ± 8.4 | 118.5 + 12.6 | 119.1 + 16.9 | $235.0 \pm 44.4**$ | 191.3 + 27.9* | | Day 20 | 70.2 + 8.1 | 76.0 ± 8.4 | 98.0 ± 14.9 | 159.1 + 41.2* | 111.5 ± 23.3 | 172.4 + 37.9* | | Week 13 | 75.5 ± 13.9 | 66.7 ± 6.7 | 67.4 ± 6.3 | 64.1 ± 8.1 | 117.8 ± 24.9 | 116.3 ± 20.2 | ^{*} Significantly different (P \le 0.05) from the control group by Dunn s or Shirley s test ** $P\le$ 0.01 Mean \pm standard error. Statistical tests were performed on unrounded data. G-10 Pyridine, NTP TR 470 ### APPENDIX H ORGAN WEIGHTS AND ORGAN-WEIGHT-TO-BODY-WEIGHT RATIOS | TABLE H1 | Organ Weights and Organ-Weight-to-Body-Weight Ratios for F344/N Rats | | |----------|---|-----| | | in the 13-Week Drinking Water Study of Pyridine | H-2 | | TABLE H2 | Organ Weights and Organ-Weight-to-Body-Weight Ratios for Male Wistar Rats | | | | in the 13-Week Drinking Water Study of Pyridine | Н-3 | | TABLE H3 | Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice | | | | in the 13-Week Drinking Water Study of Pyridine | H-4 | H-2 Pyridine, NTP TR 470 $TABLE\ H1$ Organ Weights and Organ-Weight-to-Body-Weight Ratios for F344/N Rats in the 13-Week Drinking Water Study of Pyridine^a | | 0 ppm | 50 ppm | 100 ppm | 250 ppm | 500 ppm | 1,000 ppm | |------------------|--------------------|--------------------|---------------------|---------------------|---------------------|---------------------| | Male | | | | | | | | n | 10 | 10 | 10 | 10 | 10 | 10 | | Necropsy body wt | 335 ± 9 | 334 ± 7 | 337 ± 6 | 334 ± 7 | 316 ± 5 | 287 ± 5** | | Heart | | | | | | | | Absolute | 1.145 ± 0.034 | 1.187 ± 0.049 | 1.140 ± 0.038 | 1.140 ± 0.029 | 1.129 ± 0.059 | $1.159 \pm
0.037$ | | Relative | 3.42 ± 0.08 | 3.56 ± 0.13 | 3.38 ± 0.08 | 3.42 ± 0.08 | 3.57 ± 0.17 | $4.04 \pm 0.12**$ | | R. Kidney | | | | | | | | Absolute | 1.352 ± 0.037 | 1.333 ± 0.039 | 1.345 ± 0.032 | 1.398 ± 0.040 | 1.381 ± 0.026 | 1.396 ± 0.037 | | Relative | 4.04 ± 0.05 | 3.99 ± 0.06 | 3.99 ± 0.05 | 4.18 ± 0.08 | $4.38 \pm 0.08**$ | $4.87 \pm 0.08**$ | | Liver | _ | _ | _ | _ | _ | _ | | Absolute | 14.384 ± 0.601 | 14.901 ± 0.579 | 15.415 ± 0.429 | $16.091 \pm 0.541*$ | $16.535 \pm 0.295*$ | $15.512 \pm 0.500*$ | | Relative | 42.81 ± 0.99 | 44.52 ± 0.77 | $45.75 \pm 0.76*$ | $48.07 \pm 0.81**$ | $52.41 \pm 0.99**$ | $54.06 \pm 1.27**$ | | Lung | | _ | | _ | _ | _ | | Absolute | 1.837 ± 0.061 | 1.782 ± 0.048 | 1.791 ± 0.050 | 1.844 ± 0.077 | 1.747 ± 0.051 | $1.558 \pm 0.053**$ | | Relative | 5.49 ± 0.16 | 5.36 ± 0.17 | 5.33 ± 0.17 | 5.51 ± 0.18 | 5.55 ± 0.20 | 5.43 ± 0.16 | | R. Testis | | _ | _ | _ | _ | | | Absolute | 1.502 ± 0.026 | 1.474 ± 0.020 | 1.486 ± 0.025 | 1.502 ± 0.019 | 1.516 ± 0.013 | 1.437 ± 0.019 | | Relative | 4.51 ± 0.15 | 4.43 ± 0.10 | 4.42 ± 0.08 | 4.50 ± 0.05 | $4.81 \pm 0.07*$ | $5.02 \pm 0.08**$ | | Γhymus | | | | | | | | Absolute | 0.320 ± 0.022 | 0.363 ± 0.031 | 0.352 ± 0.020 | 0.350 ± 0.018 | 0.362 ± 0.026 | 0.294 ± 0.023 | | Relative | 0.95 ± 0.06 | 1.08 ± 0.07 | 1.04 ± 0.05 | 1.05 ± 0.04 | 1.15 ± 0.08 | 1.03 ± 0.08 | | Female | | | | | | | | n | 10 | 10 | 10 | 10 | 10 | 8 | | Necropsy body wt | 198 ± 3 | 196 ± 4 | 195 ± 2 | 197 ± 4 | 185 ± 2** | 180 ± 3** | | Heart | | | | | | | | Absolute | 0.807 ± 0.033 | 0.752 ± 0.027 | 0.797 ± 0.030 | 0.786 ± 0.033 | 0.806 ± 0.029 | 0.767 ± 0.054 | | Relative | 4.07 ± 0.16 | 3.83 ± 0.11 | 4.10 ± 0.17 | 3.99 ± 0.15 | 4.37 ± 0.18 | 4.26 ± 0.30 | | R. Kidney | | | | | | | | Absolute | 0.752 ± 0.017 | 0.731 ± 0.018 | 0.741 ± 0.008 | 0.795 ± 0.012 | 0.774 ± 0.019 | 0.739 ± 0.024 | | Relative | 3.80 ± 0.09 | 3.74 ± 0.10 | 3.81 ± 0.06 | 4.04 ± 0.05 | $4.19 \pm 0.11**$ | $4.10 \pm 0.10*$ | | Liver | | | | | | | | Absolute | 6.866 ± 0.135 | 7.305 ± 0.133 | $7.874 \pm 0.212**$ | $8.732 \pm 0.244**$ | 9.391 ± 0.152** | 9.619 ± 0.293** | | Relative | 34.68 ± 0.53 | 37.32 ± 0.76 | 40.46 ± 1.23** | $44.30 \pm 0.82**$ | $50.80 \pm 0.75**$ | 53.44 ± 1.79** | | Lung | | | | | | | | Absolute | 1.277 ± 0.049 | 1.230 ± 0.048 | 1.253 ± 0.070 | 1.289 ± 0.059 | 1.290 ± 0.034 | 1.173 ± 0.022 | | Relative | 6.46 ± 0.27 | 6.26 ± 0.15 | 6.45 ± 0.40 | 6.53 ± 0.22 | 6.98 ± 0.16 | 6.51 ± 0.07 | | Γhymus | | | | | | | | Absolute | 0.265 ± 0.011 | 0.295 ± 0.013 | 0.280 ± 0.008 | 0.305 ± 0.037 | 0.313 ± 0.034 | 0.252 ± 0.011 | | Relative | 1.34 ± 0.06 | 1.50 ± 0.06 | 1.44 ± 0.04 | 1.54 ± 0.18 | 1.70 ± 0.19 | 1.39 ± 0.05 | ^{*} Significantly different ($P \le 0.05$) from the control group by Williams or Dunnett s test ^{**} P≤0.01 ^a Organ weights (absolute weights) and body weights are given in grams; organ-weight-to-body-weight ratios (relative weights) are given as mg organ weight/g body weight (mean ± standard error). Pyridine, NTP TR 470 H-3 TABLE H2 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Male Wistar Rats in the 13-Week Drinking Water Study of Pyridine^a | | 0 ppm | 50 ppm | 100 ppm | 250 ppm | 500 ppm | 1,000 ppm | |------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | n | 10 | 10 | 10 | 10 | 9 | 10 | | Necropsy body wt | 490 ± 10 | 457 ± 12 | 469 ± 6 | 445 ± 17* | 428 ± 8** | 405 ± 15** | | Heart | | | | | | | | Absolute | 1.679 ± 0.043 | 1.730 ± 0.088 | 1.780 ± 0.051 | 1.712 ± 0.090 | 1.560 ± 0.081 | 1.513 ± 0.071 | | Relative | 3.44 ± 0.09 | 3.78 ± 0.14 | 3.80 ± 0.13 | 3.84 ± 0.10 | 3.63 ± 0.13 | 3.74 ± 0.12 | | R. Kidney | | | | | | | | Absolute | 1.948 ± 0.069 | 1.924 ± 0.061 | 2.004 ± 0.046 | 2.085 ± 0.079 | 2.041 ± 0.115 | 1.998 ± 0.114 | | Relative | 3.98 ± 0.11 | 4.21 ± 0.09 | 4.27 ± 0.10 | $4.70 \pm 0.13**$ | $4.76 \pm 0.21**$ | $4.92 \pm 0.19**$ | | Liver | | | | | | | | Absolute | 20.949 ± 0.624 | 21.152 ± 0.840 | 21.528 ± 0.608 | 21.706 ± 0.945 | 22.662 ± 1.098 | 21.367 ± 1.160 | | Relative | 42.79 ± 0.98 | 46.33 ± 1.47 | 45.90 ± 1.25 | $48.78 \pm 0.97**$ | 52.77 ± 1.68** | $52.60 \pm 1.65**$ | | Lung | | | | | | | | Absolute | 2.534 ± 0.090 | 2.366 ± 0.129 | 2.429 ± 0.098 | 2.217 ± 0.104 | 2.133 ± 0.134 | 2.213 ± 0.111 | | Relative | 5.22 ± 0.28 | 5.16 ± 0.20 | 5.20 ± 0.25 | 5.00 ± 0.19 | 4.97 ± 0.25 | 5.46 ± 0.19 | | R. Testis | | | | | | | | Absolute | 1.737 ± 0.046 | 1.632 ± 0.074 | 1.843 ± 0.039 | 1.731 ± 0.051 | 1.939 ± 0.181 | 1.823 ± 0.085 | | Relative | 3.56 ± 0.14 | 3.59 ± 0.17 | 3.93 ± 0.09 | 3.92 ± 0.12 | $4.50 \pm 0.34**$ | $4.52 \pm 0.18**$ | | Thymus | | | | | | | | Absolute | 0.479 ± 0.039 | 0.501 ± 0.035 | 0.458 ± 0.026 | 0.499 ± 0.036 | 0.423 ± 0.029 | 0.507 ± 0.061 | | Relative | 0.98 ± 0.08 | 1.11 ± 0.09 | 0.98 ± 0.06 | 1.12 ± 0.07 | 0.99 ± 0.06 | 1.23 ± 0.12 | ^{*} Significantly different (P \le 0.05) from the control group by Williams or Dunnett's test ** P \le 0.01 Organ weights (absolute weights) and body weights are given in grams; organ-weight-to-body-weight ratios (relative weights) are given as mg organ weight/g body weight (mean ± standard error). H-4 Pyridine, NTP TR 470 TABLE H3 Organ Weights and Organ-Weight-to-Body-Weight Ratios for Mice in the 13-Week Drinking Water Study of Pyridine^a | | 0 ppm | 50 ppm | 100 ppm | 250 ppm | 500 ppm | 1,000 ppm | |------------------|-------------------|--------------------|--------------------|-----------------------|---------------------|--------------------| | Male | | | | | | | | n | 10 | 10 | 10 | 10 | 10 | 10 | | Necropsy body wt | 38.9 ± 0.8 | 37.6 ± 1.1 | 38.8 ± 0.9 | 39.6 ± 1.2 | 38.8 ± 0.8 | 36.9 ± 0.7 | | Heart | | | | | | | | Absolute | 0.199 ± 0.008 | 0.193 ± 0.010 | 0.211 ± 0.013 | 0.203 ± 0.010 | 0.188 ± 0.006 | 0.193 ± 0.008 | | Relative | 5.12 ± 0.17 | 5.15 ± 0.26 | 5.41 ± 0.28 | 5.11 ± 0.19 | 4.85 ± 0.14 | 5.25 ± 0.19 | | R. Kidney | | | | | | | | Absolute | 0.304 ± 0.007 | 0.291 ± 0.010 | 0.302 ± 0.016 | 0.293 ± 0.011 | $0.254 \pm 0.009*$ | $0.274 \pm 0.008*$ | | Relative | 7.85 ± 0.24 | 7.76 ± 0.16 | 7.80 ± 0.43 | 7.41 ± 0.23 | $6.57 \pm 0.26**$ | 7.44 ± 0.24 | | Liver | | | | | | | | Absolute | 1.855 ± 0.044 | 1.878 ± 0.048 | $2.058 \pm 0.057*$ | $2.177 \pm 0.083**$ | $2.264 \pm 0.066**$ | 2.249 ± 0.067** | | Relative | 47.81 ± 1.21 | 50.16 ± 1.06 | 53.08 ± 1.19** | $54.85 \pm 0.76**$ | 58.36 ± 1.23** | $60.96 \pm 1.01**$ | | Lung | | | | | | | | Absolute | 0.281 ± 0.020 | 0.267 ± 0.017 | 0.293 ± 0.022 | 0.274 ± 0.018^{b} | 0.288 ± 0.017 | 0.269 ± 0.008 | | Relative | 7.31 ± 0.66 | 7.13 ± 0.44 | 7.54 ± 0.48 | 6.85 ± 0.41^{b} | 7.46 ± 0.47 | 7.36 ± 0.33 | | R. Testis | | | | | | | | Absolute | 0.125 ± 0.003 | 0.125 ± 0.004 | 0.127 ± 0.004 | 0.129 ± 0.004 | 0.123 ± 0.002 | 0.117 ± 0.004 | | Relative | 3.22 ± 0.10 | 3.34 ± 0.07 | 3.27 ± 0.12 | 3.27 ± 0.10 | 3.18 ± 0.06 | 3.18 ± 0.12 | | Γhymus | | | | | | | | Absolute | 0.057 ± 0.007 | 0.059 ± 0.005 | 0.065 ± 0.007 | 0.057 ± 0.009 | 0.055 ± 0.005 | 0.047 ± 0.006 | | Relative | 1.46 ± 0.17 | 1.59 ± 0.16 | 1.65 ± 0.17 | 1.42 ± 0.18 | 1.42 ± 0.13 | 1.28 ± 0.14 | | Female | | | | | | | | 1 | 10 | 10 | 10 | 9 | 10 | 10 | | Necropsy body wt | 33.0 ± 1.1 | 37.1 ± 1.1 | 33.9 ± 0.9 | 34.0 ± 1.1 | 32.9 ± 0.9 | 29.4 ± 0.9* | | Heart | | | | | | | | Absolute | 0.146 ± 0.007 | 0.157 ± 0.006 | 0.139 ± 0.003 | 0.134 ± 0.006 | 0.141 ± 0.006 | $0.129 \pm 0.003*$ | | Relative | 4.45 ± 0.24 | 4.27 ± 0.21 | 4.13 ± 0.17 | 3.93 ± 0.10 | 4.28 ± 0.14 | 4.40 ± 0.12 | | R. Kidney | _ | | - | | _ | | | Absolute | 0.199 ± 0.006 | 0.219 ± 0.004 | 0.193 ± 0.010 | 0.203 ± 0.007 | 0.206 ± 0.004 | 0.204 ± 0.005 | | Relative | 6.07 ± 0.14 | 5.94 ± 0.14 | 5.73 ± 0.32 | 5.97 ± 0.12 | 6.28 ± 0.14 | $6.98 \pm 0.19**$ | | Liver | | | | | | | | Absolute | 1.513 ± 0.039 | $1.766 \pm 0.039*$ | 1.630 ± 0.044 | $1.743 \pm 0.081*$ | $1.836 \pm 0.059**$ | 1.609 ± 0.071 | | Relative | 46.04 ± 1.09 | 47.80 ± 0.84 | 48.29 ± 1.67 | $51.04 \pm 1.20**$ | 55.71 ± 0.81** | 54.69 ± 1.58** | | Lung | | | | | | | | Absolute | 0.263 ± 0.016 | 0.268 ± 0.015 | 0.224 ± 0.008 | 0.233 ± 0.009 | 0.252 ± 0.012 | 0.231 ± 0.012 | | Relative | 7.98 ± 0.44 | 7.25 ± 0.41 | $6.60 \pm 0.24*$ | 6.90 ± 0.35 | 7.66 ± 0.32 | 7.91 ± 0.46 | | Thymus | | | | <u>-</u> | , | | | Absolute | 0.062 ± 0.005 | 0.068 ± 0.004 | 0.060 ± 0.005 | 0.065 ± 0.005 | 0.056 ± 0.003 | 0.055 ± 0.003 | | Relative | 1.87 ± 0.12 | 1.85 ± 0.12 | 1.78 ± 0.13 | 1.91 ± 0.15 | 1.72 ± 0.12 | 1.89 ± 0.10 | ^{*} Significantly different (P $\!\leq\! 0.05$) from the control group by Williams or Dunnett s test ^{**} $P \le 0.01$ Organ weights (absolute weights) and body weights are given in grams; organ-weight-to-body-weight ratios (relative weights) are given
as mg organ weight/g body weight (mean \pm standard error). n=9 ### APPENDIX I REPRODUCTIVE TISSUE EVALUATIONS AND ESTROUS CYCLE CHARACTERIZATION | TABLE II | Summary of Reproductive Tissue Evaluations for Male F344/N Rats | | |----------|--|-----| | | in the 13-Week Drinking Water Study of Pyridine | I-2 | | TABLE I2 | Summary of Estrous Cycle Characterization for Female F344/N Rats | | | | in the 13-Week Drinking Water Study of Pyridine | I-2 | | TABLE I3 | Summary of Reproductive Tissue Evaluations for Male Mice | | | | in the 13-Week Drinking Water Study of Pyridine | I-3 | | TABLE I4 | Summary of Estrous Cycle Characterization for Female Mice | | | | in the 13-Week Drinking Water Study of Pyridine | I-3 | I-2 Pyridine, NTP TR 470 TABLE I1 Summary of Reproductive Tissue Evaluations for Male F344/N Rats in the 13-Week Drinking Water Study of Pyridine^a | | 0 ppm | 250 ppm | 500 ppm | 1,000 ppm | |--|-------------------------------|----------------------|---------------------|-----------------------| | n | 10 | 10 | 10 | 10 | | Weights (g) | | | | | | Necropsy body wt | 339 + 9 | 334 + 7 | 316 + 5* | 287 + 5** | | L. cauda epididymis | 0.1834 + 0.0057 | 0.1866 ± 0.0040 | 0.1939 ± 0.0039 | 0.1785 ± 0.0042 | | L. epididymis | 0.4590 ± 0.0105 | 0.4529 ± 0.0037 | 0.4723 ± 0.0030 | 0.4201 + 0.0068** | | L. testis | 1.5272 ± 0.0165 | 1.5036 ± 0.0181 | 1.5726 ± 0.0150 | $1.4368 \pm 0.0125**$ | | Spermatid measurements | | | | | | Spermatid heads (10 ⁷ /g testis) | 11.29 ± 0.72^{b} | 10.86 ± 0.41^{b} | 10.87 + 0.35 | 11.36 ± 0.37 | | Spermatid heads (10 ⁷ /testis) | 17.29 ± 1.17^{b} | 16.31 ± 0.60^{b} | 17.07 ± 0.49 | 16.33 ± 0.58 | | Spermatid count | | | | | | (mean/10 ⁻⁴ mL suspension) | $86.47 \pm 5.84^{\mathrm{b}}$ | 81.53 ± 3.01^{b} | 85.33 ± 2.44 | 81.63 ± 2.88 | | Epididymal spermatozoal measurements | | | | | | Motility (%) | 98.89 ± 0.19 | 98.96 ± 0.16 | 99.00 ± 0.13 | 98.87 ± 0.15 | | Concentration | | | | | | (10 ⁶ /g cauda epididymal tissue) | 748 ± 34 | 733 ± 24 | 683 ± 18 | 714 ± 36 | ^{*} Significantly different (P≤0.05) from the control group by Williams test Table I2 Summary of Estrous Cycle Characterization for Female F344/N Rats in the 13-Week Drinking Water Study of Pyridine^a | | 0 ррт | 250 ppm | 500 ppm | 1,000 ppm | |--|----------------------------------|--------------------------------|--------------------------------|-----------------------------------| | n | 10 | 10 | 10 | 8 | | Necropsy body wt (g) Estrous cycle length (days) Estrous stages (% of cycle) | $198 \pm 3 \\ 5.00 \pm 0.00^{b}$ | 197 ± 4
5.00 ± 0.00 | $185 \pm 2** \\ 5.30 \pm 0.30$ | $180 \pm 3** 6.08 \pm 0.30**^{c}$ | | Diestrus | 42.5 | 45.8 | 40.8 | 54.2 | | Proestrus | 13.3 | 16.7 | 16.7 | 12.5 | | Estrus | 25.0 | 19.2 | 23.3 | 19.8 | | Metestrus | 19.2 | 18.3 | 19.2 | 13.5 | ^{**} Significantly different ($P \le 0.01$) from the control group by Williams test (body weights) or Shirley s test (estrous cycle length) ^{**} Significantly different (P≤0.01) from the control group by Williams test (body weights) or Dunnett s test (epididymal and testis weights) Data are presented as mean ± standard error. Differences from the control group are not significant by Dunnett s test (caudal weight) or Dunn s test (spermatid and epididymal spermatozoal measurements). b n=9 a Necropsy body weight and estrous cycle length data are presented as mean ± standard error. By multivariate analysis of variance, exposed females do not differ significantly from the control females in the relative length of time spent in the estrous stages. Estrous cycle was longer than 12 days or unclear in 1 of 10 animals. c Estrous cycle was longer than 12 days or unclear in 2 of 8 animals. Pyridine, NTP TR 470 TABLE I3 Summary of Reproductive Tissue Evaluations for Male Mice in the 13-Week Drinking Water Study of Pyridine^a | 0 ррт | 250 ppm | 500 ppm | 1,000 ppm | |---------------------|---|--|--| | 10 | 10 | 10 | 10 | | | | | | | 38.9 ± 0.8 | 39.6 ± 1.2 | 38.8 ± 0.8 | 36.9 ± 0.7 | | 0.0170 ± 0.0011 | 0.0166 ± 0.0006 | 0.0170 ± 0.0008 | 0.0155 ± 0.0008 | | 0.0453 ± 0.0018 | 0.0480 ± 0.0016 | 0.0449 ± 0.0017 | 0.0446 ± 0.0019 | | 0.1174 ± 0.0036 | 0.1181 ± 0.0034 | 0.1169 ± 0.0033 | 0.1088 ± 0.0044 | | | | | | | 15.81 ± 0.62 | 13.37 ± 0.56 | 15.53 ± 1.05 | 14.73 ± 1.10 | | 1.85 ± 0.09 | $1.57 \pm 0.05*$ | 1.80 ± 0.11 | 1.61 ± 0.14 | | 57.90 ± 2.69 | 49.00 ± 1.69* | 56.28 ± 3.37 | 50.45 ± 4.26 | | | | | | | 99.31 ± 0.13 | $98.58 \pm 0.12**$ | 98.16 + 0.26** | 97.21 ± 0.42** | | <u>-</u> | · · · · · · · · · · · · · · · · · · · | - | | | 1,630 + 126 | $1,432 \pm 57$ | 1.360 ± 54 | $1,461 \pm 72$ | | | $ 38.9 \pm 0.8 \\ 0.0170 \pm 0.0011 \\ 0.0453 \pm 0.0018 \\ 0.1174 \pm 0.0036 $ $ 15.81 \pm 0.62 \\ 1.85 \pm 0.09 \\ 57.90 \pm 2.69 $ | $ \begin{array}{ccccccccccccccccccccccccccccccccc$ | $10 \qquad 10 \qquad 10$ $38.9 \pm 0.8 \qquad 39.6 \pm 1.2 \qquad 38.8 \pm 0.8$ $0.0170 \pm 0.0011 \qquad 0.0166 \pm 0.0006 \qquad 0.0170 \pm 0.0008$ $0.0453 \pm 0.0018 \qquad 0.0480 \pm 0.0016 \qquad 0.0449 \pm 0.0017$ $0.1174 \pm 0.0036 \qquad 0.1181 \pm 0.0034 \qquad 0.1169 \pm 0.0033$ $15.81 \pm 0.62 \qquad 13.37 \pm 0.56 \qquad 15.53 \pm 1.05$ $1.85 \pm 0.09 \qquad 1.57 \pm 0.05* \qquad 1.80 \pm 0.11$ $57.90 \pm 2.69 \qquad 49.00 \pm 1.69* \qquad 56.28 \pm 3.37$ $99.31 \pm 0.13 \qquad 98.58 \pm 0.12** \qquad 98.16 \pm 0.26**$ | ^{*} Significantly different ($P \le 0.05$) from the control group by Dunn s test Table 14 Summary of Estrous Cycle Characterization for Female Mice in the 13-Week Drinking Water Study of Pyridine^a | | 0 ррт | 250 ppm | 500 ppm | 1,000 ppm | |--|--|-----------------------------------|--|-------------------------------------| | n | 10 | 9 | 10 | 10 | | Necropsy body wt (g) Estrous cycle length (days) Estrous stages (% of cycle) | $\begin{array}{l} 33.0\pm1.1 \\ 4.72\pm0.55^{b} \end{array}$ | $34.0 \pm 1.1 4.50 \pm 0.16^{c}$ | $\begin{array}{l} 32.9 \pm 0.9 \\ 4.72 \pm 0.22^{b} \end{array}$ | $29.4 \pm 0.9*$ 4.28 ± 0.15^{b} | | Diestrus | 36.7 | 35.2 | 31.7 | 31.7 | | Proestrus | 20.0 | 13.9 | 17.5 | 20.0 | | Estrus | 25.0 | 35.2 | 35.8 | 27.5 | | Metestrus | 18.3 | 15.7 | 15.0 | 20.8 | ^{*} Significantly different ($P \le 0.05$) from the control group by Dunnett s test ^{**} Significantly different (P≤0.01) from the control group by Shirley s test a Data are presented as mean ± standard error. Differences from the control group are not significant by Dunnett s test (body and tissue weights) or Dunn s test (spermatid heads per gram testis and epididymal spermatozoal concentration). ^a Necropsy body weight and estrous cycle length data are presented as mean ± standard error. Differences from the control group for estrous cycle length are not significant by Dunn s test. By multivariate analysis of variance, exposed females do not differ significantly from the control females in the relative length of time spent in the estrous stages. b Estrous cycle was longer than 12 days or unclear in 1 of 10 animals. ^c Estrous cycle was longer than 12 days or unclear in 1 of 9 animals. I-4 Pyridine, NTP TR 470 ## APPENDIX J DETERMINATIONS OF PYRIDINE IN PLASMA | TABLE J1 | Plasma Concentrations of Pyridine in F344/N Rats | | |----------|---|-----| | | in the 13-Week Drinking Water Study of Pyridine | J-2 | | TABLE J2 | Plasma Concentrations of Pyridine in Male Wistar Rats | | | | in the 13-Week Drinking Water Study of Pyridine | J-2 | J-2 Pyridine, NTP TR 470 TABLE J1 Plasma Concentrations of Pyridine in F344/N Rats in the 13-Week Drinking Water Study of Pyridine^a | | 50 ppm | 100 ppm | 250 ppm | 500 ppm | 1,000 ppm | |-----------------------------|-------------------|-------------------|-------------------|-------------------|--------------------| | Male | | | | | | | n | 10 | 10 | 9 | 9 | 10 | | Concentration (μ g/mL) | 0.045 ± 0.016 | 0.018 ± 0.007 | 0.084 ± 0.022 | 4.760 ± 1.334 | 38.140 ± 4.173 | | Female | | | | | | | n | 10 | 10 | 10 | 10 | 8 | | Concentration (μ g/mL) | 0.057 ± 0.014 | 0.075 ± 0.019 | 2.851 ± 0.602 | 14.810 ± 1.682 | 28.351 ± 5.070 | $^{^{}a}\quad Mean\,\pm\,standard\,error$ TABLE J2 Plasma Concentrations of Pyridine in Male Wistar Rats in the 13-Week Drinking Water Study of Pyridine^a | | 50 ppm | 100 ppm | 250 ppm | 500 ppm | 1,000 ppm | |-----------------------|-------------------|-------------------|-------------------|-------------------|--------------------| | n | 10 | 9 | 9 | 9 | 9 | | Concentration (µg/mL) | 0.153 ± 0.096 | 0.043 ± 0.010 | 2.811 ± 1.406 | 8.278 ± 1.716 | $22.602 \pm
5.798$ | $^{^{}a}\quad Mean\,\pm\,standard\,error$ # APPENDIX K CHEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES | PROCUREMEN | VT AND CHARACTERIZATION OF PYRIDINE | K-2 | |-------------|---|-------------| | PREPARATION | N AND ANALYSIS OF DOSE FORMULATIONS | K-3 | | FIGURE K1 | Infrared Absorption Spectrum of Pyridine | K-4 | | FIGURE K2 | Nuclear Magnetic Resonance Spectrum of Pyridine | K-5 | | TABLE K1 | Preparation and Storage of Dose Formulations | | | | in the Drinking Water Studies of Pyridine | K-6 | | TABLE K2 | Results of Analyses of Dose Formulations Administered to F344/N Rats, | | | | Wistar Rats, and Mice in the 13-Week Drinking Water Studies of Pyridine | K-7 | | TABLE K3 | Results of Analyses of Dose Formulations Administered to F344/N Rats, | | | | Wistar Rats, and Mice in the 2-Year Drinking Water Studies of Pyridine | K-10 | | TABLE K4 | Results of Referee Analyses of Dose Formulations Administered to F344/N Rats, | | | | Wistar Rats, and Mice in the 13-Week Drinking Water Studies of Pyridine | K-17 | K-2 Pyridine, NTP TR 470 ### CHEMICAL CHARACTERIZATION AND DOSE FORMULATION STUDIES ### PROCUREMENT AND CHARACTERIZATION OF PYRIDINE Pyridine was obtained from Aldrich Chemical Company (Milwaukee, WI) in one lot (00103BV), which was used during the 13-week and 2-year studies. Identity, purity, and stability analyses were conducted by the analytical chemistry laboratory, Midwest Research Institute (Kansas City, MO). Reports on analyses performed in support of the pyridine studies are on file at the National Institute of Environmental Health Sciences. The chemical, a clear colorless liquid, was identified as pyridine by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy. All spectra were consistent with those expected for the structure and with the literature spectra (*Sadtler Standard Spectra*) of pyridine. The infrared and nuclear magnetic spectra are presented in Figures K1 and K2. The purity of lot 00103BV was determined by elemental analyses, Karl Fischer water analysis, functional group titration, and gas chromatography. For amine group titration, the sample was dissolved in glacial acetic acid, then titrated with 0.1 N perchloric acid in glacial acetic acid to a potentiometric endpoint. The titration was monitored with a combination mV/pH electrode filled with aqueous 3 M potassium chloride. Gas chromatography was performed using a flame ionization detector. Two systems were used: - A) 10% Carbowax 20M-TPA on 80/100 Chromosorb W AW glass column, with an isothermal oven temperature of 93° C, an oven temperature program of 60° C for 6 minutes, then 60° to 220° C at 10° C per minute, and a nitrogen carrier gas at a flow rate of 70 mL/minute, and - B) DB-5 Capillary fused silica column, with an oven temperature program of 50° C for 5 minutes, then 50° to 250° C at 10° C per minute, and a helium carrier gas at a flow rate of 5 mL/minute. Elemental analyses for hydrogen and nitrogen were in agreement with the theoretical values for pyridine; results for carbon were slightly low. Karl Fischer water analysis indicated $0.049\% \pm 0.003\%$ water. Functional group titration indicated a purity of $99.8\% \pm 0.6\%$. Gas chromatography using systems A and B indicated one major peak and no impurities with an area greater than or equal to 0.1% relative to the major peak area. Concomitant analyses of lot 00103BV with lot 18400080202, a previously analyzed lot which was not used in the current studies, were performed with gas chromatography by system A but with an isothermal oven temperature of 95° C and with *n*-butanol as an internal standard. Results indicated a purity of $99.9\% \pm 0.7\%$ for lot 00103BV relative to lot 18400080202. The overall purity of lot 00103BV was determined to be greater than 99%. The analytical chemistry laboratory conducted bulk stability studies on lot 18400080202 with gas chromatography. A flame ionization detector was used with a 20% SP-2100/0.1% Carbowax 1500 on 100/120 Supelcoport glass column, a nitrogen carrier gas at a flow rate of 70 mL/minute, an oven temperature of 50° C, and a 0.4% ethyl acetate internal standard. Samples stored for 2 weeks at 25° or 60° C showed some decomposition. To ensure stability, the bulk chemical was stored at 1° to 7° C (13-week studies) or 2° to 8° C (2-year studies) in amber glass bottles in the dark. Stability was monitored during the studies using gas chromatography. No degradation of the bulk chemical was detected. Pyridine, NTP TR 470 K-3 ### PREPARATION AND ANALYSIS OF DOSE FORMULATIONS The dose formulations were prepared as needed by mixing pyridine with deionized water (Table K1). Formulations were stored in Teflon®-capped amber glass bottles (13-week studies) or glass carboys (2-year studies) at room temperature in the dark for up to 3 weeks. Stability studies of a 0.01 mg/mL formulation were performed by the analytical chemistry laboratory using high-performance liquid chromatography with a Waters μ Bondapak C18 column, ultraviolet (254 nm) detection, a solvent system of 0.005 M triethanolamine in water:methanol (30:70) with the pH adjusted to 7.0 with 10% phosphoric acid, and a flow rate of 1 mL/minute. The stability of the dose formulation was confirmed for at least 3 weeks when stored in the dark at room temperature. Solutions stored at room temperature exposed to air and light were also stable for 96 hours. In an earlier study by the analytical chemistry laboratory, the stability of a 19.64 mg/mL formulation was tested by gas chromatography using flame ionization detection, a 10% Carbowax 20 M/2% KOH on 80/100 mesh Chromosorb W AW silenized glass column, a nitrogen carrier gas at 25 mL/minute, and an oven temperature of 80° C. Stability was confirmed for 7 days at room temperature. Periodic analyses of the dose formulations of pyridine were conducted at the study laboratory and the analytical chemistry laboratory using HPLC. For the 13-week studies, dose formulations were analyzed after preparation at the beginning, midpoint, and end of the studies (Table K2). During the 2-year studies, dose formulations were analyzed approximately every 6 to 10 weeks (Table K3). All dose formulations (45/45) analyzed and used during the 13-week studies were within 10% of the target concentration; 98% (44/45) of the animal room samples were within 10% of the target concentration. Results of periodic referee analyses performed by the analytical chemistry laboratory during the 13-week studies agreed with the results obtained by the study laboratory (Table K4). Of the dose formulations analyzed during the 2-year studies, 99% (191/192) were within 10% of the target concentration. One formulation was 47% less than the target concentration; because records indicated that the proper amounts of pyridine and deionized water were used, it is possible that the wrong dose formulation was sampled for analysis. This dose formulation was remixed, and the remix was found to be within 10% of the target concentration. All animal room samples (75/75) were within 10% of the target concentration. K-4 Pyridine, NTP TR 470 FIGURE K1 Infrared Absorption Spectrum of Pyridine Pyridine, NTP TR 470 K-5 FIGURE K2 Nuclear Magnetic Resonance Spectrum of Pyridine K-6 Pyridine, NTP TR 470 ### TABLE K1 ### Preparation and Storage of Dose Formulations in the Drinking Water Studies of Pyridine 13-Week Studies 2-Year Studies Preparation Dose formulations were prepared as needed by combining weighed amounts of pyridine at room temperature and deionized water, then diluting to volume with additional water and mixing. Same as 13-week studies **Chemical Lot Number** 00103BV 00103BV **Maximum Storage Time** 3 weeks **Storage Conditions** Stored in sealed Teflon®-capped, amber glass bottles at room Stored in sealed glass carboys at room temperature in the dark temperature in the dark Study Laboratory TSI Mason Research Institute (Worcester, MA) TSI Mason Laboratories (Worcester, MA) **Referee Laboratory** Midwest Research Institute (Kansas City, MO) None performed Pyridine, NTP TR 470 K-7 TABLE K2 Results of Analyses of Dose Formulations Administered to F344/N Rats, Wistar Rats, and Mice in the 13-Week Drinking Water Studies of Pyridine | Date Prepared | Date Analyzed | Target
Concentration ^a
(mg/mL) | Determined
Concentration ^b
(mg/mL) | Difference
from Target
(%) | |-------------------|------------------------------|---|---|----------------------------------| | F344/N Rats | | | | | | 11 January 1990 | 11 January 1990 | 0.05 | 0.048 | -4 | | | 11 vanuary 1990 | 0.10 | 0.097 | -3 | | | | 0.25 | 0.235 | -6 | | | | 0.50 | 0.492 | -2 | | | | 1.00 | 0.989 | -1 | | | 26 January 1990 ^c | 0.05 | 0.044 | -12 | | | ř | 0.10 | 0.096 | -4 | | | | 0.25 | 0.246 | -2 | | | | 0.50 | 0.487 | -3 | | | | 1.00 | 0.973 | -3 | | 1 March 1990 | 1 March 1990 | 0.05 | 0.051 | +2 | | 1 March 1990 | | 0.10 | 0.100 | 0 | | | | 0.25 | 0.249 | 0 | | | | 0.50 | 0.501 | 0 | | | | 1.00 | 0.973 | -3 | | | 13 March 1990 ^c | 0.05 | 0.053 | +6 | | | | 0.10 | 0.100 | 0 | | | | 0.25 | 0.241 | -4 | | | | 0.50 | 0.504 | +1 | | | | 1.00 | 0.966 | -3 | | 12 April 1990 | 16 April 1990 | 0.05 | 0.050 | 0 | | r | r | 0.10 | 0.098 | -2 | | | | 0.25 | 0.249 | 0 | | | | 0.50 | 0.502 | 0 | | | | 1.00 | 0.996 | 0 | | | 25 April 1990 ^c | 0.05 | 0.050 | 0 | | | | 0.10 | 0.097 | -3 | | | | 0.25 | 0.249 | 0 | | | | 0.50 | 0.506 | +1 | | | | 1.00 | 0.993 | -1 | | Wistar Rats | | | | | | 15 February 1990 | 16 February 1990 | 0.05 | 0.050 | 0 | | 13 1 Coluary 1990 | 10 reductly 1990 | | 0.400 | 0 | | | | 0.10
0.25 | 0.100
0.254 | +2 | | | | 0.23 | 0.507 | +2 +1 | | | | 1.00 | 1.005 | +1 | | | 2 March 1990 ^c | 0.05 |
0.050 | 0 | | | 2 Waten 1990 | 0.03 | 0.099 | -1 | | | | 0.10 | 0.249 | 0 | | | | 0.50 | 0.493 | -1 | | | | 1.00 | 0.998 | 0 | K-8 Pyridine, NTP TR 470 TABLE K2 Results of Analyses of Dose Formulations Administered to F344/N Rats, Wistar Rats, and Mice in the 13-Week Drinking Water Studies of Pyridine | Date Prepared | Date Analyzed | Target
Concentration
(mg/mL) | Determined
Concentration
(mg/mL) | Difference
from Target
(%) | |-----------------------|-------------------------------|------------------------------------|--|----------------------------------| | Wistar Rats (continue | ed) | | | | | 5 April 1990 | 5 April 1990 | 0.05 | 0.051 | +2 | | 3 April 1990 | 3 April 1990 | 0.10 | 0.101 | +1 | | | | 0.25 | 0.250 | 0 | | | | 0.50 | 0.500 | 0 | | | | 1.00 | 0.999 | 0 | | | 16 April 1990 ^c | 0.05 | 0.049 | -2 | | | r | 0.10 | 0.097 | -3 | | | | 0.25 | 0.248 | -1 | | | | 0.50 | 0.494 | -1 | | | | 1.00 | 0.996 | 0 | | 17 May 1990 | 17 May 1990 | 0.05 | 0.048 | -4 | | • | • | 0.10 | 0.099 | -1 | | | | 0.25 | 0.248 | -1 | | | | 0.50 | 0.494 | -1 | | | | 1.00 | 1.006 | +1 | | | 25 May 1990 ^c | 0.05 | 0.050 | 0 | | | | 0.10 | 0.098 | -2 | | | | 0.25 | 0.246 | -2 | | | | 0.50 | 0.495 | -1 | | | | 1.00 | 0.997 | 0 | | Mice | | | | | | 7 December 1989 | 7 December 1989 | 0.05 | 0.049 | -2 | | | | 0.10 | 0.097 | -3 | | | | 0.25 | 0.242 | -3 | | | | 0.50 | 0.483 | -3 | | | | 1.00 | 0.996 | -3 | | | 27 December 1989 ^c | 0.05 | 0.051 | +2 | | | | 0.10 | 0.099 | -1 | | | | 0.25 | 0.246 | -2 | | | | 0.50 | 0.504 | +1 | | | | 1.00 | 0.986 | -1 | | 25 January 1990 | 26 January 1990 | 0.05 | 0.052 | +4 | | | | 0.10 | 0.097 | -3 | | | | 0.25 | 0.246 | -3
-2
-3 | | | | 0.50 | 0.487 | -3 | | | | 1.00 | 0.981 | -2 | | | 13 February 1990 ^c | 0.05 | 0.049 | -2 | | | | 0.10 | 0.097 | -3 | | | | 0.25 | 0.240 | -4 | | | | 0.50 | 0.489 | -2 | | | | 1.00 | 0.973 | -3 | Pyridine, NTP TR 470 K-9 TABLE K2 Results of Analyses of Dose Formulations Administered to F344/N Rats, Wistar Rats, and Mice in the 13-Week Drinking Water Studies of Pyridine | Date Prepared | Date Analyzed | Target
Concentration
(mg/mL) | Determined
Concentration
(mg/mL) | Difference
from Target
(%) | |--------------------|----------------------------|------------------------------------|--|----------------------------------| | Mice (continued) | | | | | | 1 March 1990 | 1 March 1990 | 0.05 | 0.051 | +2 | | March 1990 1 March | | 0.10 | 0.100 | 0 | | | | 0.25 | 0.249 | 0 | | | | 0.50 | 0.501 | 0 | | | | 1.00 | 0.973 | -3 | | | 13 March 1990 ^c | 0.05 | 0.052 | +4 | | | | 0.10 | 0.096 | -4 | | | | 0.25 | 0.239 | -4 | | | | 0.50 | 0.494 | -1 | | | | 1.00 | 0.952 | -5 | $^{0.05 \;} mg/mL = 50 \; ppm; \; 0.10 \; mg/mL = 100 \; ppm; \; 0.25 \; mg/mL = 250 \; ppm; \; 0.50 \; mg/mL = 500 \; ppm; \; 1.00 \; mg/mL = 1,000 mg/mL$ Results of duplicate analyses Animal room samples K-10 Pyridine, NTP TR 470 TABLE K3 Results of Analyses of Dose Formulations Administered to F344/N Rats, Wistar Rats, and Mice in the 2-Year Drinking Water Studies of Pyridine | Date Prepared | Date Analyzed | Target
Concentration ^a
(mg/mL) | Determined
Concentration ^b
(mg/mL) | Difference
from Target
(%) | |------------------|--------------------------------|---|---|----------------------------------| | F344/N Rats | | | | | | 11 April 1991 | 12 April 1991 | 0.1
0.2
0.4 | 0.100
0.196
0.396 | 0
-2
-1 | | | 2 May 1991 ^c | 0.1
0.2
0.4 | 0.099
0.199
0.398 | -1
0
0 | | 23 May 1991 | 24 May 1991 | 0.1
0.1
0.2
0.2
0.4
0.4 | 0.099
0.099
0.198
0.198
0.394 | -1
-1
-1
-1
-1
0 | | 1 July 1991 | 1-3 July 1991 | 0.1
0.1
0.2
0.2
0.4
0.4 | 0.100
0.100
0.202
0.201
0.388
0.211 | 0
0
+1
+1
-3
-47 | | 3 July 1991 | 3 July 1991 | 0.4 | 0.398 ^d | 0 | | 29 August 1991 | 30 August 1991 | 0.1
0.1
0.2
0.2
0.4
0.4 | 0.101
0.098
0.197
0.191
0.347
0.390 | +1
-2
-1
-4
-6
-2 | | | 20 September 1991 ^c | 0.1
0.1
0.2
0.2
0.4
0.4 | 0.101
0.098
0.201
0.201
0.400
0.396 | +1
-2
+1
+1
0
-1 | | 24 October 1991 | 25 October 1991 | 0.1
0.2
0.4 | 0.102
0.209
0.416 | +2
+5
+4 | | 19 December 1991 | 20 December 1991 | 0.1
0.2
0.4 | 0.099
0.197
0.398 | -1
-1
0 | Pyridine, NTP TR 470 K-11 TABLE K3 Results of Analyses of Dose Formulations Administered to F344/N Rats, Wistar Rats, and Mice in the 2-Year Drinking Water Studies of Pyridine | Date Prepared | Date Analyzed | Target
Concentration
(mg/mL) | Determined
Concentration
(mg/mL) | Difference
from Target
(%) | |-----------------------|-------------------------------|------------------------------------|--|----------------------------------| | F344/N Rats (continue | ed) | | | | | 13 February 1992 | 14 February 1992 | 0.1 | 0.100 | 0 | | 13 1 coluary 1992 | 14 1 Columny 1992 | 0.1 | 0.198 | -1 | | | | 0.4 | 0.392 | -2 | | | 3 March 1992 ^c | 0.1 | 0.098 | -2 | | | 5 11141 611 1552 | 0.2 | 0.195 | $-\frac{2}{2}$ | | | | 0.4 | 0.397 | -1 | | 9 April 1992 | 10 April 1992 | 0.1 | 0.100 | 0 | |) 11pin 1992 | 10 11pm 1992 | 0.1 | 0.098 | -2 | | | | 0.2 | 0.197 | -1 | | | | 0.2 | 0.199 | 0 | | | | 0.4 | 0.392 | -2 | | | | 0.4 | 0.402 | +1 | | 4 June 1992 | 5 June 1992 | 0.1 | 0.097 | -3 | | | | 0.2 | 0.198 | -1 | | | | 0.4 | 0.396 | -1 | | 30 July 1992 | 31 July 1992 | 0.1 | 0.098 | -2 | | 30 July 1992 | | 0.2 | 0.193 | -3 | | | | 0.4 | 0.393 | -2 | | | 2 September 1992 ^c | 0.1 | 0.097 | -3 | | | r | 0.2 | 0.195 | -2 | | | | 0.4 | 0.383 | -4 | | 24 September 1992 | 25 September 1992 | 0.1 | 0.102 | +2 | | 1 | 1 | 0.2 | 0.201 | +1 | | | | 0.4 | 0.399 | 0 | | 19 November 1992 | 20-24 November 1992 | 0.1 | 0.101 | +1 | | | | 0.2 | 0.206 | +3 | | | | 0.4 | 0.395 | -1 | | 14 January 1993 | 15 January 1993 | 0.1 | 0.098 | -2 | | • | • | 0.1 | 0.099 | -1 | | | | 0.2 | 0.193 | -3 | | | | 0.2 | 0.198 | -1 | | | | 0.4 | 0.395 | -1 | | | | 0.4 | 0.392 | -2 | | | 8 February 1993 ^c | 0.1 | 0.090 | -10 | | | | 0.1 | 0.095 | -5 | | | | 0.2 | 0.195 | -2 | | | | 0.2 | 0.195 | -2 | | | | 0.4 | 0.386 | -3 | | | | 0.4 | 0.386 | -3 | | 11 March 1993 | 12 March 1993 | 0.1 | 0.098 | -2 | | | | 0.2 | 0.197 | -1 | | | | 0.4 | 0.396 | -1 | K-12 Pyridine, NTP TR 470 TABLE K3 Results of Analyses of Dose Formulations Administered to F344/N Rats, Wistar Rats, and Mice in the 2-Year Drinking Water Studies of Pyridine | Date Prepared | Date Analyzed | Target
Concentration
(mg/mL) | Determined
Concentration
(mg/mL) | Difference
from Target
(%) | |------------------|------------------------------|------------------------------------|--|----------------------------------| | Wistar Rats | | | | | | 2 May 1991 | 2 May 1991 | 0.1 | 0.099 | -1 | | 2 1.1uj 1991 | 2 may 1991 | 0.2 | 0.198 | -1 | | | | 0.4 | 0.397 | -1 | | | 24 May 1991 ^c | 0.1 | 0.099 | -1 | | | • | 0.2 | 0.197 | -1 | | | | 0.4 | 0.398 | 0 | | 1 July 1991 | 1-2 July 1991 | 0.1 | 0.100 | 0 | | • | · | 0.2 | 0.190 | -5 | | | | 0.4 | 0.396 | -1 | | 29 August 1991 | 30 August 1991 | 0.1 | 0.099 | -1 | | • | - | 0.2 | 0.197 | -1 | | | | 0.4 | 0.408 | +2 | | 24 October 1991 | 25 October 1991 | 0.1 | 0.104 | +4 | | | | 0.1 | 0.101 | +1 | | | | 0.2 | 0.210 | +5 | | | | 0.2 | 0.206 | +3 | | | | 0.4 | 0.408 | +2 | | | | 0.4 | 0.416 | +4 | | | 1 November 1991 ^c | 0.1 | 0.095 | -5 | | | | 0.1 | 0.098 | -2 | | | | 0.2 | 0.197 | -1 | | | | 0.2 | 0.197 | -1 | | | | 0.4
0.4 | 0.403
0.403 | +1
+1 | | 10.75 | 20 D 1 1001 | 0.1 | 0.000 | 2 | | 19 December 1991 | 20 December 1991 | 0.1 | 0.098 | -2 | | | | 0.2
0.4 | 0.195
0.395 | -2
-1 | | 40.7 | 4474 | | | | | 13 February 1992 | 14 February 1992 | 0.1
0.2 | 0.100
0.199 | 0 | | | | 0.4 | 0.398 | 0 | | 0.4:1.1002 | 10 4 1 1002 | 0.1 | | 0 | | 9 April 1992 | 10 April 1992 | 0.1
0.2 | 0.100
0.198 | 0
-1 | | | | 0.4 | 0.394 | -1
-1 | | | 27 April 1992 ^c | | | 1 | | | 27 April 1992 | 0.1
0.2 | 0.099
0.198 | -1
-1 | | | | 0.4 | 0.421 | +5 | | 4 June 1992 | 5 June 1992 | 0.1 | 0.099 | -1 | | 7 June 1992 | 3 June 1992 | 0.1 | 0.198 | -1
-1 | | | | 0.4 | 0.390 | -2 | | 30 July 1992 | 31 July 1992 | 0.1 | 0.099 | -1 | | 50 July 1992 | 31 July 1992 | 0.1 | 0.195 | -1
-2 | | | | 0.4 | 0.390 | $-\frac{2}{2}$ | Pyridine, NTP TR 470 K-13 TABLE K3 Results of Analyses of Dose Formulations Administered to F344/N Rats, Wistar Rats, and Mice in the 2-Year Drinking Water Studies of Pyridine | Date Prepared | Date Analyzed | Target
Concentration
(mg/mL) | Determined
Concentration
(mg/mL) | Difference
from Target
(%) | |------------------------|-----------------------------|------------------------------------|--|----------------------------------| | Wistar Rats (continued | d) | | | | | 24 September 1992 | 25 September 1992 | 0.1 | 0.101 | +1 | | - · | | 0.2 | 0.200 | 0 | | | | 0.4 | 0.385 | -4 | | | 9 October 1992 ^c | 0.1 | 0.100 | 0 | | | | 0.2 | 0.198 | -1 | | | | 0.4 | 0.398 | 0 | | 19 November 1992 | 20-24 November 1992 | 0.1 | 0.101 | +1 | | | | 0.1 | 0.099 | -1 | | | | 0.1 | 0.099 | -1 | | | | 0.2 | 0.202 | +1 | | | | 0.2 | 0.198 | -1 | | | | 0.2 | 0.199 | 0 | | | | 0.4 | 0.401 | 0 | | | | 0.4
0.4 | 0.399
0.394 | 0 | | | | 0.4 | 0.394 | -1 | | 14 January 1993 | 15 January 1993 | 0.1 | 0.100 | 0 | | | | 0.2 | 0.193 | -3 | | | | 0.4 | 0.389 | -3 | | 11 March 1993 | 12 March 1993 | 0.1 | 0.100 | 0 | | | | 0.2 | 0.197 | -1 | | | | 0.4 | 0.394 | -1 | | | 1 April 1993 ^c | 0.1 | 0.099 | -1 | | | _ | 0.2 | 0.197 | -1 | | | | 0.4 | 0.393 | -2 | | 22 April
1993 | 23 April 1993 | 0.1 | 0.102 | +2 | | • | • | 0.2 | 0.201 | +1 | | | | 0.4 | 0.405 | +1 | | Male Mice | | | | | | 21 March 1001 | 22 Morrol 1001 | 0.25 | 0.240 | 0 | | 21 March 1991 | 22 March 1991 | 0.25
0.50 | 0.249
0.498 | 0
0 | | | | 1.00 | 0.498 | -1 | | | | | | | | | 12 April 1991 ^c | 0.25 | 0.246 | -2 | | | | 0.50 | 0.492 | -2 | | | | 1.00 | 0.979 | -2 | | 9 May 1991 | 10 May 1991 | 0.25 | 0.244 | -2 | | • | - | 0.50 | 0.494 | -1 | | | | 1.00 | 0.981 | -2 | | 1 July 1991 | 1 July 1991 | 0.25 | 0.246 | -2 | | • | • | 0.50 | 0.491 | $-\overline{2}$ | | | | 1.00 | 0.986 | -1 | K-14 Pyridine, NTP TR 470 TABLE K3 Results of Analyses of Dose Formulations Administered to F344/N Rats, Wistar Rats, and Mice in the 2-Year Drinking Water Studies of Pyridine | Date Prepared | Date Analyzed | Target
Concentration
(mg/mL) | Determined
Concentration
(mg/mL) | Difference
from Target
(%) | |-----------------------|--------------------------------|------------------------------------|--|----------------------------------| | Male Mice (continued) | | | | | | 29 August 1991 | 30 August 1991 | 0.25 | 0.236 | -6 | | | | 0.50 | 0.479 | -4 | | | | 1.00 | 0.944 | -6 | | | 20 September 1991 ^c | 0.25 | 0.251 | 0 | | | • | 0.50 | 0.513 | +3 | | | | 1.00 | 1.000 | 0 | | 24 October 1991 | 25 October 1991 | 0.25 | 0.258 | +3 | | | | 0.50 | 0.520 | +4 | | | | 1.00 | 1.025 | +3 | | 19 December 1991 | 20 December 1991 | 0.25 | 0.255 | +2 | | | 1//1 | 0.50 | 0.500 | 0 | | | | 1.00 | 0.991 | -1 | | 13 February 1992 | 14 February 1992 | 0.25 | 0.246 | -2 | | 13 February 1992 | 1110014419 1992 | 0.50 | 0.489 | -2 | | | | 1.00 | 0.990 | -1 | | | 3 March 1992 ^c | 0.25 | 0.244 | -2 | | | | 0.50 | 0.488 | -2 | | | | 1.00 | 0.977 | -2 | | 9 April 1992 | 10 April 1992 | 0.25 | 0.245 | -2 | | • | • | 0.50 | 0.484 | -3 | | | | 1.00 | 0.981 | -2 | | 4 June 1992 | 5 June 1992 | 0.25 | 0.246 | -2 | | | | 0.50 | 0.487 | -3 | | | | 1.00 | 0.970 | -3 | | 30 July 1992 | 31 July 1992 | 0.25 | 0.245 | -2 | | · | • | 0.50 | 0.492 | -2 | | | | 1.00 | 0.973 | -3 | | | 2 September 1992 ^c | 0.25 | 0.244 | -2 | | | | 0.50 | 0.501 | 0 | | | | 1.00 | 0.988 | -1 | | 24 September 1992 | 25 September 1992 | 0.25 | 0.253 | +1 | | - | - | 0.50 | 0.495 | -1 | | | | 1.00 | 0.999 | 0 | | 19 November 1992 | 20-24 November 1992 | 0.25 | 0.247 | -1 | | | | 0.50 | 0.496 | -1 | | | | 1.00 | 0.987 | -1 | | 14 January 1993 | 15 January 1993 | 0.25 | 0.250 | 0 | | • | - | 0.50 | 0.487 | -3 | | | | 1.00 | 0.972 | -3 | | | 8 February 1993 ^c | 0.25 | 0.245 | -2 | | | • | 0.50 | 0.476 | -5 | | | | 1.00 | 0.961 | -4 | TABLE K3 Results of Analyses of Dose Formulations Administered to F344/N Rats, Wistar Rats, and Mice in the 2-Year Drinking Water Studies of Pyridine Pyridine, NTP TR 470 K-15 | Date Prepared | Date Analyzed | Target
Concentration
(mg/mL) | Determined
Concentration
(mg/mL) | Difference
from Target
(%) | |-----------------------|--------------------------------|------------------------------------|--|----------------------------------| | Male Mice (continued) |) | | | | | 11 March 1993 | 12 March 1993 | 0.25
0.50
1.00 | 0.252
0.497
0.981 | +1
-1
-2 | | Female Mice | | | | | | 21 March 1991 | 22 March 1991 | 0.125
0.250
0.500 | 0.124
0.248
0.504 | -1
-1
+1 | | | 12 April 1991 ^c | 0.125
0.250
0.500 | 0.126
0.244
0.495 | +1
-2
-1 | | 9 May 1991 | 10 May 1991 | 0.125
0.250
0.500 | 0.122
0.246
0.490 | -2
-2
-2 | | 1 July 1991 | 1 July 1991 | 0.125
0.250
0.500 | 0.124
0.251
0.494 | -1
0
-1 | | 29 August 1991 | 30 August 1991 | 0.125
0.250
0.500 | 0.118
0.234
0.473 | -6
-6
-5 | | | 20 September 1991 ^c | 0.125
0.250
0.500 | 0.125
0.245
0.499 | 0
-2
0 | | 24 October 1991 | 25 October 1991 | 0.125
0.250
0.500 | 0.126
0.260
0.517 | +1
+4
+3 | | 19 December 1991 | 20 December 1991 | 0.125
0.250
0.500 | 0.127
0.248
0.495 | +2
-1
-1 | | 13 February 1992 | 14 February 1992 | 0.125
0.250
0.500 | 0.125
0.247
0.491 | 0
-1
-2 | | | 3 March 1992 ^c | 0.125
0.250
0.500 | 0.124
0.248
0.490 | -1
-1
-2 | | 9 April 1992 | 10 April 1992 | 0.125
0.250
0.500 | 0.123
0.245
0.491 | -2
-2
-2 | | 4 June 1992 | 5 June 1992 | 0.125
0.250
0.500 | 0.120
0.243
0.488 | -4
-3
-2 | K-16 Pyridine, NTP TR 470 TABLE K3 Results of Analyses of Dose Formulations Administered to F344/N Rats, Wistar Rats, and Mice in the 2-Year Drinking Water Studies of Pyridine | Date Prepared | Date Analyzed | Target
Concentration
(mg/mL) | Determined
Concentration
(mg/mL) | Difference
from Target
(%) | |-----------------------|-------------------------------|------------------------------------|--|----------------------------------| | Female Mice (continue | ed) | | | | | 30 July 1992 | 31 July 1992 | 0.125
0.250
0.500 | 0.127
0.244
0.491 | +2
-2
-2 | | | 2 September 1992 ^c | 0.125
0.250
0.500 | 0.126
0.249
0.502 | +1
0
0 | | 24 September 1992 | 25 September 1992 | 0.125
0.250
0.500 | 0.127
0.253
0.494 | +2
+1
-1 | | 19 November 1992 | 20-24 November 1992 | 0.125
0.250
0.500 | 0.125
0.249
0.482 | 0
0
-4 | | 14 January 1993 | 15 January 1993 | 0.125
0.250
0.500 | 0.122
0.245
0.483 | -2
-2
-3 | | | 8 February 1993 ^c | 0.125
0.250
0.500 | 0.118
0.245
0.483 | -6
-2
-3 | | 11 March 1993 | 12 March 1993 | 0.125
0.250
0.500 | 0.127
0.247
0.498 | +2
-1
0 | ^{0.1} mg/mL=100 ppm; 0.125 mg/mL=125 ppm; 0.2 mg/mL=200 ppm; 0.25 mg/mL=250 ppm; 0.4 mg/mL=400 ppm; 0.50 mg/mL=500 ppm; 1.00 mg/mL=1,000 ppm Results of duplicate analyses Animal room samples Results of remix Pyridine, NTP TR 470 K-17 TABLE K4 Results of Referee Analyses of Dose Formulations Administered to F344/N Rats, Wistar Rats, and Mice in the 13-Week Drinking Water Studies of Pyridine | | | Determined Conc | entration (mg/mL) | |--------------------------------|------------------------------|-------------------------------|---------------------------------| | Date Prepared | Target Concentration (mg/mL) | Study Laboratory ^a | Referee Laboratory ^b | | F344/N Rats
11 January 1990 | 0.50 | 0.492 | 0.512 ± 0.005 | | Wistar Rats 15 February 1990 | 1.00 | 1.005 | 0.994 ± 0.002 | | Mice
7 December 1989 | 0.10 | 0.097 | 0.106 ± 0.000 | $[\]begin{array}{ll} a & Results \ of \ duplicate \ analyses \\ b & Results \ of \ triplicate \ analyses \ (mean \ \pm \ standard \ error) \end{array}$ K-18 Pyridine, NTP TR 470 # APPENDIX L WATER AND COMPOUND CONSUMPTION IN THE 2-YEAR DRINKING WATER STUDIES OF PYRIDINE | TABLE L1 | Water and Compound Consumption by Male F344/N Rats | | |----------|--|-----| | | in the 2-Year Drinking Water Study of Pyridine | L-2 | | TABLE L2 | Water and Compound Consumption by Female F344/N Rats | | | | in the 2-Year Drinking Water Study of Pyridine | L-3 | | TABLE L3 | Water and Compound Consumption by Male Wistar Rats | | | | in the 2-Year Drinking Water Study of Pyridine | L-4 | | TABLE L4 | Water and Compound Consumption by Male Mice | | | | in the 2-Year Drinking Water Study of Pyridine | L-5 | | TABLE L5 | Water and Compound Consumption by Female Mice | | | | in the 2-Year Drinking Water Study of Pyridine | L-6 | L-2 Pyridine, NTP TR 470 TABLE L1 Water and Compound Consumption by Male F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 p | pm | | 100 ppm | | | 200 ppm | | | 400 ppm | | |--------|----------------------------|-----------------------|---------------|-----------------------|--------------------------------------|------------------|-----------------------|-------------------------|---------------|-----------------------|-------------------------| | Week | Water (g/day) ^a | Body
Weight
(g) | Water (g/day) | Body
Weight
(g) | Dose/
Day ^b
(mg/kg) | Water
(g/day) | Body
Weight
(g) | Dose/
Day
(mg/kg) | Water (g/day) | Body
Weight
(g) | Dose/
Day
(mg/kg) | | 1 | 20.4 | 136 | 19.5 | 135 | 14 | 18.6 | 135 | 28 | 18.5 | 136 | 55 | | 2 | 21.4 | 173 | 20.7 | 172 | 12 | 20.9 | 169 | 25 | 21.5 | 167 | 51 | | 3 | 22.6 | 207 | 22.1 | 208 | 11 | 21.8 | 206 | 21 | 24.3 | 201 | 48 | | 4 | 20.5 | 236 | 21.2 | 234 | 9 | 19.9 | 232 | 17 | 24.1 | 227 | 43 | | 5 | 22.1 | 255 | 21.6 | 253 | 9 | 23.0 | 250 | 18 | 23.4 | 245 | 38 | | 6 | 20.6 | 275 | 21.1 | 267 | 8 | 21.7 | 272 | 16 | 22.6 | 258 | 35 | | 7 | 20.4 | 293 | 20.7 | 286 | 7 | 21.5 | 289 | 15 | 22.8 | 272 | 34 | | 8 | 22.4 | 302 | 22.8 | 295 | 8 | 22.6 | 295 | 15 | 24.9 | 282 | 35 | | 9 | 22.4 | 314 | 22.4 | 309 | 7 | 22.5 | 306 | 15 | 24.7 | 291 | 34 | | 10 | 23.3 | 331 | 22.9 | 326 | 7 | 21.8 | 323 | 14 | 25.8 | 309 | 33 | | 11 | 22.3 | 333 | 21.4 | 329 | 7 | 22.0 | 328 | 13 | 26.9 | 311 | 35 | | 12 | 24.9 | 342 | 23.6 | 339 | 7 | 22.7 | 340 | 13 | 26.9 | 323 | 33 | | 13 | 21.5 | 351 | 20.6 | 349 | 6 | 21.6 | 348 | 12 | 24.6 | 328 | 30 | | 17 | 21.8 | 384 | 21.4 | 382 | 6 | 20.3 | 378 | 11 | 23.8 | 355 | 27 | | 21 | 22.5 | 409 | 21.3 | 405 | 5 | 22.1 | 404 | 11 | 23.6 | 376 | 25 | | 25 | 22.4 | 426 | 22.2 | 420 | 5 | 22.7 | 420 | 11 | 25.7 | 392 | 26 | | 29 | 22.7 | 437 | 23.0 | 431 | 5 | 22.7 | 433 | 11 | 25.7 | 403 | 26 | | 33 | 22.9 | 453 | 23.3 | 448 | 5 | 23.5 | 448 | 11 | 24.8 | 421 | 24 | | 37 | 24.5 | 465 | 21.8 | 461 | 5 | 22.3 | 460 | 10 | 25.0 | 434 | 23 | | 41 | 25.3 | 478 | 22.8 | 468 | 5 | 25.0 | 469 | 11 | 25.7 | 443 | 23 | | 45 | 21.6 | 483 | 20.8 | 480 | 4 | 20.8 | 480 | 9 | 23.1 | 452 | 20 | | 49 | 22.4 | 489 | 20.9 | 479 | 4 | 22.3 | 480 | 9 | 24.1 | 453 | 21 | | 53 | 21.7 | 487 | 21.6 | 482 | 5 | 22.3 | 482 | 9 | 25.8
 453 | 23 | | 57 | 23.8 | 502 | 23.0 | 489 | 5 | 26.1 | 484 | 11 | 29.3 | 462 | 25 | | 61 | 24.1 | 503 | 22.7 | 491 | 5 | 25.4 | 487 | 10 | 28.7 | 459 | 25 | | 65 | 26.0 | 508 | 25.4 | 492 | 5 | 28.8 | 484 | 12 | 32.3 | 455 | 28 | | 69 | 25.0 | 511 | 24.3 | 500 | 5 | 29.0 | 485 | 12 | 35.2 | 457 | 31 | | 73 | 25.6 | 511 | 25.7 | 500 | 5 | 30.0 | 480 | 13 | 37.4 | 446 | 34 | | 77 | 24.5 | 510 | 24.1 | 497 | 5 | 27.9 | 475 | 12 | 35.8 | 446 | 32 | | 81 | 26.1 | 494 | 26.5 | 497 | 5 | 30.1 | 467 | 13 | 40.3 | 441 | 37 | | 85 | 27.7 | 501 | 28.3 | 486 | 6 | 35.5 | 462 | 15 | 45.1 | 428 | 42 | | 89 | 29.3 | 499 | 29.8 | 484 | 6 | 34.7 | 440 | 16 | 43.7 | 414 | 42 | | 93 | 32.5 | 501 | 31.7 | 478 | 7 | 38.0 | 428 | 18 | 46.7 | 406 | 46 | | 97 | 30.6 | 491 | 29.2 | 464 | 6 | 35.0 | 414 | 17 | 40.3 | 391 | 41 | | 101 | 36.3 | 468 | 36.6 | 458 | 8 | 37.0 | 397 | 19 | 49.0 | 388 | 51 | | | or weeks | | | | | | | | | | | | 1-13 | 21.9 | 273 | 21.6 | 270 | 9 | 21.6 | 269 | 17 | 23.9 | 258 | 39 | | 14-52 | 22.9 | 447 | 21.9 | 441 | 5 | 22.4 | 441 | 10 | 24.6 | 414 | 24 | | 53-101 | 27.2 | 499 | 26.8 | 486 | 6 | 30.8 | 460 | 14 | 37.6 | 434 | 35 | a Grams of water consumed per animal per day b Milligrams of pyridine consumed per kilogram body weight per day Pyridine, NTP TR 470 L-3 TABLE L2 Water and Compound Consumption by Female F344/N Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | | | 100 ppm | | | 200 ppm | | | 400 ppm | | |--------|-------------------------------|-----------------------|------------------|-----------------------|--------------------------------------|------------------|-----------------------|-------------------------|------------------|-----------------------|-------------------------| | Week | Water
(g/day) ^a | Body
Weight
(g) | Water
(g/day) | Body
Weight
(g) | Dose/
Day ^b
(mg/kg) | Water
(g/day) | Body
Weight
(g) | Dose/
Day
(mg/kg) | Water
(g/day) | Body
Weight
(g) | Dose/
Day
(mg/kg) | | 1 | 16.2 | 110 | 16.9 | 110 | 15 | 16.7 | 110 | 30 | 17.4 | 111 | 63 | | 2 | 16.4 | 129 | 16.7 | 128 | 13 | 17.1 | 127 | 27 | 18.7 | 124 | 60 | | 3 | 16.4 | 144 | 16.9 | 145 | 12 | 18.0 | 143 | 25 | 17.7 | 139 | 51 | | 4 | 15.2 | 152 | 16.1 | 152 | 11 | 16.8 | 151 | 17 | 16.9 | 148 | 46 | | 5 | 17.2 | 160 | 15.2 | 160 | 10 | 15.1 | 159 | 17 | 17.1 | 155 | 44 | | 6 | 16.7 | 167 | 14.5 | 167 | 9 | 14.5 | 164 | 18 | 16.5 | 160 | 41 | | 7 | 15.3 | 173 | 15.5 | 173 | 9 | 15.3 | 171 | 18 | 16.6 | 167 | 40 | | 8 | 16.2 | 180 | 16.7 | 179 | 9 | 16.0 | 176 | 18 | 17.2 | 170 | 41 | | 9 | 16.3 | 183 | 17.5 | 183 | 10 | 17.0 | 178 | 19 | 18.8 | 173 | 43 | | 10 | 16.2 | 186 | 16.9 | 185 | 9 | 17.0 | 181 | 19 | 18.5 | 175 | 42 | | 11 | 16.0 | 192 | 16.5 | 190 | 9 | 17.6 | 185 | 19 | 17.1 | 178 | 38 | | 12 | 15.3 | 196 | 15.9 | 194 | 8 | 16.1 | 187 | 17 | 16.2 | 182 | 36 | | 13 | 14.3 | 198 | 14.7 | 197 | 8 | 15.0 | 191 | 16 | 15.7 | 185 | 34 | | 17 | 14.3 | 213 | 16.1 | 210 | 8 | 17.0 | 204 | 17 | 17.3 | 196 | 35 | | 21 | 14.8 | 223 | 15.4 | 220 | 7 | 16.6 | 212 | 16 | 17.4 | 205 | 34 | | 25 | 15.9 | 228 | 16.1 | 225 | 7 | 16.3 | 218 | 15 | 18.2 | 208 | 35 | | 29 | 15.1 | 234 | 16.3 | 233 | 7 | 17.3 | 224 | 15 | 18.7 | 214 | 35 | | 33 | 17.0 | 242 | 17.2 | 238 | 7 | 17.7 | 228 | 16 | 19.3 | 220 | 35 | | 37 | 14.9 | 251 | 15.6 | 247 | 6 | 16.4 | 239 | 14 | 16.8 | 225 | 30 | | 41 | 16.9 | 261 | 17.2 | 257 | 7 | 17.7 | 247 | 14 | 20.0 | 234 | 34 | | 45 | 14.6 | 270 | 15.6 | 269 | 6 | 16.7 | 257 | 13 | 17.6 | 240 | 29 | | 49 | 15.5 | 279 | 16.2 | 280 | 6 | 15.3 | 266 | 12 | 17.9 | 247 | 29 | | 53 | 15.8 | 285 | 16.4 | 287 | 6 | 17.3 | 273 | 13 | 18.6 | 252 | 30 | | 57 | 17.2 | 288 | 18.1 | 290 | 6 | 17.7 | 273 | 13 | 21.0 | 255 | 33 | | 61 | 16.5 | 299 | 17.1 | 297 | 6 | 18.7 | 280 | 13 | 20.7 | 258 | 32 | | 65 | 18.7 | 301 | 19.1 | 302 | 6 | 18.8 | 284 | 13 | 22.6 | 259 | 35 | | 69 | 18.7 | 310 | 18.7 | 308 | 6 | 20.4 | 289 | 14 | 23.1 | 269 | 34 | | 73 | 19.0 | 314 | 18.8 | 313 | 6 | 20.9 | 292 | 14 | 24.2 | 275 | 35 | | 77 | 19.3 | 322 | 19.7 | 313 | 6 | 19.6 | 299 | 13 | 23.3 | 282 | 33 | | 81 | 19.5 | 326 | 21.3 | 323 | 7 | 21.6 | 299 | 15 | 23.6 | 283 | 33 | | 85 | 21.0 | 330 | 23.0 | 327 | 7 | 24.0 | 306 | 16 | 26.5 | 281 | 38 | | 89 | 18.0 | 331 | 20.0 | 328 | 6 | 19.9 | 306 | 13 | 22.5 | 286 | 32 | | 93 | 21.2 | 338 | 24.6 | 332 | 7 | 24.3 | 307 | 16 | 27.7 | 286 | 39 | | 95 | 19.5 | 334 | 20.8 | 335 | 6 | 21.4 | 305 | 14 | 23.9 | 281 | 34 | | 97 | 20.3 | 344 | 21.9 | 332 | 7 | 24.0 | 306 | 16 | 23.9 | 286 | 34 | | 99 | 19.6 | 340 | 20.7 | 333 | 6 | 21.5 | 301 | 14 | 21.2 | 286 | 30 | | 101 | 18.9 | 337 | 21.6 | 333 | 7 | 24.0 | 298 | 16 | 23.3 | 284 | 33 | | 104 | 20.6 | 342 | 21.2 | 327 | 7 | 24.4 | 303 | 16 | 26.2 | 289 | 36 | | | or weeks | | | | | | | | | | | | 1-13 | 16.0 | 167 | 16.2 | 166 | 10 | 16.3 | 163 | 21 | 17.3 | 159 | 45 | | 14-52 | 15.4 | 245 | 16.2 | 242 | 7 | 16.8 | 233 | 15 | 18.1 | 221 | 33 | | 53-104 | 19.0 | 321 | 20.2 | 318 | 6 | 21.2 | 295 | 14 | 23.3 | 276 | 34 | a Grams of water consumed per animal per day b Milligrams of pyridine consumed per kilogram body weight per day L-4 Pyridine, NTP TR 470 TABLE L3 Water and Compound Consumption by Male Wistar Rats in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | | | 100 ppm | | | 200 ppm | | | 400 ppm | | | |---------|-------------------------------|-----------------------|------------------|-----------------------|--------------------------------------|------------------|-----------------------|-------------------------|------------------|-----------------------|-------------------------|--| | Week | Water
(g/day) ^a | Body
Weight
(g) | Water
(g/day) | Body
Weight
(g) | Dose/
Day ^b
(mg/kg) | Water
(g/day) | Body
Weight
(g) | Dose/
Day
(mg/kg) | Water
(g/day) | Body
Weight
(g) | Dose/
Day
(mg/kg) | | | 1 | 37.6 | 201 | 37.5 | 198 | 19 | 39.3 | 199 | 40 | 35.9 | 198 | 72 | | | 2 | 40.9 | 255 | 38.9 | 250 | 16 | 39.8 | 246 | 32 | 37.9 | 240 | 63 | | | 3 | 38.9 | 294 | 40.2 | 289 | 14 | 41.3 | 285 | 29 | 41.9 | 280 | 60 | | | 4 | 42.1 | 327 | 42.1 | 326 | 13 | 43.9 | 321 | 27 | 42.7 | 312 | 55 | | | 5 | 46.3 | 357 | 48.6 | 359 | 14 | 48.5 | 347 | 28 | 45.7 | 345 | 53 | | | 6 | 39.4 | 382 | 39.3 | 380 | 10 | 39.9 | 372 | 21 | 38.9 | 358 | 43 | | | 7 | 40.8 | 413 | 44.3 | 411 | 11 | 44.4 | 402 | 22 | 46.0 | 388 | 47 | | | 8 | 47.4 | 426 | 43.5 | 428 | 10 | 47.1 | 412 | 23 | 45.6 | 400 | 46 | | | 9 | 53.3 | 448 | 49.2 | 446 | 11 | 49.5 | 435 | 23 | 48.7 | 419 | 47 | | | 10 | 42.7 | 464 | 41.4 | 463 | 9 | 43.3 | 452 | 19 | 43.2 | 431 | 40 | | | 11 | 50.3 | 479 | 46.3 | 478 | 10 | 47.0 | 463 | 20 | 47.0 | 443 | 42 | | | 12 | 48.2 | 494 | 47.3 | 492 | 10 | 47.3 | 479 | 20 | 43.9 | 457 | 38 | | | 13 | 46.8 | 506 | 46.7 | 503 | 9 | 46.6 | 490 | 19 | 46.3 | 466 | 40 | | | 17 | 44.0 | 546 | 42.3 | 542 | 8 | 41.9 | 527 | 16 | 41.0 | 502 | 33 | | | 21 | 46.5 | 569 | 42.8 | 575 | 7 | 41.5 | 562 | 15 | 44.8 | 528 | 34 | | | 25 | 41.9 | 599 | 39.4 | 602 | 7 | 41.0 | 583 | 14 | 42.9 | 552 | 31 | | | 29 | 40.4 | 627 | 36.7 | 630 | 6 | 40.0 | 612 | 13 | 41.6 | 576 | 29 | | | 33 | 43.6 | 658 | 42.8 | 657 | 7 | 39.9 | 638 | 13 | 44.2 | 599 | 30 | | | 37 | 46.8 | 672 | 46.6 | 673 | 7 | 48.1 | 651 | 15 | 48.6 | 610 | 32 | | | 41 | 38.4 | 691 | 38.8 | 686 | 6 | 39.2 | 664 | 12 | 40.3 | 627 | 26 | | | 45 | 43.5 | 715 | 42.9 | 711 | 6 | 43.0 | 684 | 13 | 44.0 | 642 | 27 | | | 49 | 40.5 | 736 | 40.5 | 719 | 6 | 41.9 | 695 | 12 | 44.5 | 654 | 27 | | | 53 | 50.9 | 755 | 48.3 | 735 | 7 | 52.6 | 705 | 15 | 53.5 | 662 | 32 | | | 57 | 45.4 | 774 | 47.3 | 748 | 6 | 48.8 | 714 | 14 | 50.7 | 668 | 30 | | | 61 | 54.7 | 789 | 53.9 | 753 | 7 | 59.4 | 718 | 17 | 57.4 | 669 | 34 | | | 65 | 49.8 | 795 | 52.5 | 757 | 7 | 55.6 | 720 | 15 | 55.7 | 661 | 34 | | | 69 | 54.3 | 800 | 55.5 | 739 | 8 | 56.7 | 699 | 16 | 58.2 | 658 | 35 | | | 73 | 54.6 | 803 | 60.1 | 736 | 8 | 59.8 | 706 | 17 | 62.6 | 657 | 38 | | | 77 | 56.3 | 797 | 60.5 | 725 | 8 | 63.2 | 717 | 18 | 63.7 | 644 | 40 | | | 81 | 58.1 | 799 | 66.8 | 698 | 10 | 64.3 | 698 | 18 | 62.2 | 624 | 40 | | | 85 | 60.1 | 782 | 65.1 | 707 | 9 | 64.4 | 699 | 18 | 57.4 | 630 | 36 | | | 89 | 60.5 | 775 | 68.4 | 692 | 10 | 67.0 | 676 | 20 | 64.6 | 614 | 42 | | | 93 | 69.3 | 779 | 69.2 | 678 | 10 | 67.7 | 657 | 21 | 57.7 | 612 | 38 | | | 97 | 66.1 | 757 | 71.2 | 675 | 11 | 61.2 | 618 | 20 | 55.7 | 590 | 38 | | | 101 | 59.6 | 725 | 59.0 | 675 | 9 | 54.5 | 578 | 19 | 57.5 | 604 | 38 | | | Mean fo | or weeks | | | | | | | | | | | | | 1-13 | 44.2 | 388 | 43.5 | 386 | 12 | 44.5 | 377 | 25 | 43.4 | 364 | 50 | | | 14-52 | 42.8 | 646 | 41.4 | 644 | 6 | 41.8 | 624 | 14 | 43.5 | 588 | 30 | | | 53-101 | 56.9 | 779 | 59.8 | 717 | 8 | 59.6 | 685 | 17 | 58.2 | 638 | 37 | | Grams of water consumed per animal per day Milligrams of pyridine consumed per kilogram body weight per day Pyridine, NTP TR 470 L-5 TABLE L4 Water and Compound Consumption by Male Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | | | 250 ppm | | | 500 ppm | | 1,000 ppm | | | | |--------|-------------------------------|-----------------------|------------------|-----------------------|--------------------------------------|------------------|-----------------------|-------------------------|------------------|-----------------------|-------------------------|--| | Week | Water
(g/day) ^a | Body
Weight
(g) | Water
(g/day) | Body
Weight
(g) | Dose/
Day ^b
(mg/kg) | Water
(g/day) | Body
Weight
(g) | Dose/
Day
(mg/kg) | Water
(g/day) | Body
Weight
(g) | Dose/
Day
(mg/kg) | | | 1 | 6.5 | 26.1 | 6.8 | 25.9 | 66 | 5.7 | 25.8 | 109 | 5.6 | 25.8 | 218 | | | 2 | 5.7 | 27.6 | 5.6 | 27.4 | 51 | 5.2 | 27.3 | 95 | 4.5 | 26.6 | 171 | | | 3 | 5.6 | 29.2 | 5.3 | 28.7 | 46 | 5.2 | 29.0 | 90 | 4.3 | 28.4 | 150 | | | 4 | 5.7 | 30.9 | 5.3 | 30.5 | 44 | 5.0 | 30.7 | 82 | 4.3 | 30.1 | 142 | | | 5 | 5.6 | 32.8 | 5.3 | 32.3
| 41 | 5.5 | 32.2 | 85 | 4.9 | 30.6 | 160 | | | 6 | 5.3 | 33.9 | 5.0 | 34.2 | 36 | 4.6 | 33.5 | 69 | 3.9 | 32.0 | 123 | | | 7 | 5.5 | 35.4 | 5.0 | 35.4 | 35 | 4.9 | 35.3 | 69 | 3.8 | 33.9 | 112 | | | 8 | 5.0 | 37.6 | 4.9 | 37.1 | 33 | 4.6 | 36.7 | 63 | 3.9 | 35.6 | 110 | | | 9 | 5.4 | 38.7 | 5.2 | 37.9 | 34 | 5.0 | 37.7 | 66 | 4.3 | 36.5 | 119 | | | 10 | 5.4 | 39.6 | 5.7 | 40.1 | 36 | 5.2 | 39.8 | 65 | 4.4 | 37.7 | 117 | | | 11 | 5.7 | 40.6 | 6.4 | 41.0 | 39 | 5.3 | 41.0 | 64 | 4.5 | 38.8 | 117 | | | 12 | 5.5 | 41.8 | 5.8 | 42.3 | 34 | 5.0 | 41.7 | 60 | 5.0 | 39.8 | 126 | | | 13 | 5.5 | 42.4 | 5.9 | 42.9 | 34 | 5.6 | 42.7 | 66 | 5.2 | 40.6 | 129 | | | 17 | 5.2 | 47.0 | 5.3 | 46.2 | 28 | 5.2 | 45.9 | 57 | 4.3 | 43.5 | 99 | | | 21 | 6.9 | 48.1 | 6.5 | 48.3 | 34 | 5.8 | 47.4 | 61 | 4.1 | 45.2 | 90 | | | 25 | 5.3 | 50.0 | 5.4 | 49.6 | 27 | 5.1 | 49.9 | 51 | 4.7 | 47.5 | 98 | | | 29 | 7.0 | 49.6 | 6.6 | 50.8 | 32 | 7.1 | 51.3 | 69 | 5.6 | 48.5 | 116 | | | 33 | 5.2 | 51.6 | 5.1 | 51.7 | 25 | 4.9 | 51.1 | 48 | 4.5 | 50.0 | 91 | | | 37 | 5.4 | 53.2 | 5.2 | 52.9 | 24 | 4.7 | 53.0 | 45 | 4.3 | 51.8 | 84 | | | 41 | 6.8 | 54.5 | 6.9 | 53.8 | 32 | 6.4 | 53.7 | 60 | 6.6 | 52.5 | 126 | | | 45 | 5.8 | 54.1 | 6.4 | 53.9 | 30 | 6.0 | 54.4 | 55 | 5.0 | 52.7 | 95 | | | 49 | 6.6 | 55.3 | 6.0 | 54.6 | 28 | 7.2 | 55.4 | 65 | 4.9 | 53.4 | 92 | | | 53 | 6.1 | 55.4 | 5.8 | 55.6 | 26 | 5.7 | 56.2 | 51 | | | | | | 57 | 6.5 | 55.2 | 6.6 | 55.4 | 30 | 6.3 | 56.0 | 56 | 5.7 | 54.0 | 106 | | | 61 | 5.9 | 55.2 | 6.0 | 56.1 | 27 | 5.7 | 56.4 | 51 | 4.7 | 54.2 | 88 | | | 65 | 5.6 | 54.4 | 6.0 | 56.3 | 27 | 5.6 | 56.1 | 50 | 4.3 | 54.1 | 80 | | | 69 | 5.8 | 55.1 | 6.8 | 56.5 | 30 | 6.7 | 55.5 | 61 | 5.2 | 54.4 | 96 | | | 73 | 5.8 | 54.4 | 6.5 | 56.6 | 29 | 6.6 | 53.9 | 61 | 4.7 | 54.1 | 87 | | | 77 | 5.8 | 52.8 | 7.2 | 55.1 | 32 | 7.0 | 52.2 | 67 | 5.2 | 52.4 | 99 | | | 81 | 5.8 | 51.4 | 7.7 | 53.7 | 36 | 7.4 | 50.2 | 74 | 5.1 | 49.2 | 105 | | | 85 | 6.0 | 49.2 | 7.4 | 51.5 | 36 | 7.2 | 47.8 | 75 | 5.2 | 47.3 | 109 | | | 89 | 5.5 | 46.6 | 8.4 | 49.7 | 42 | 7.0 | 45.8 | 76 | 5.4 | 45.6 | 119 | | | 93 | 5.4 | 45.5 | 8.2 | 46.4 | 44 | 7.3 | 44.7 | 81 | 5.4 | 43.7 | 122 | | | 97 | 6.6 | 43.8 | 8.0 | 43.6 | 46 | 7.7 | 42.9 | 89 | 6.0 | 41.8 | 144 | | | 99 | 6.2 | 44.5 | 8.4 | 43.5 | 48 | 7.7 | 42.7 | 91 | 6.0 | 41.2 | 146 | | | 101 | 6.3 | 44.2 | 7.7 | 41.9 | 46 | 8.0 | 41.6 | 96 | 6.1 | 40.6 | 150 | | | | or weeks | | | | | | | | | | | | | 1-13 | 5.6 | 35.1 | 5.6 | 35.1 | 41 | 5.1 | 34.9 | 75 | 4.5 | 33.6 | 138 | | | 14-52 | 6.0 | 51.5 | 5.9 | 51.3 | 29 | 5.8 | 51.3 | 57 | 4.9 | 49.5 | 99 | | | 53-101 | 6.0 | 50.6 | 7.2 | 51.6 | 36 | 6.9 | 50.1 | 70 | 5.3 | 48.7 | 112 | | a Grams of water consumed per animal per day b Milligrams of pyridine consumed per kilogram body weight per day L-6 Pyridine, NTP TR 470 TABLE L5 Water and Compound Consumption by Female Mice in the 2-Year Drinking Water Study of Pyridine | | 0 ppm | | | 125 ppm | | | 250 ppm | | | 500 ppm | | |---------|-------------------------------|-----------------------|------------------|-----------------------|--------------------------------------|------------------|-----------------------|-------------------------|------------------|-----------------------|-------------------------| | Week | Water
(g/day) ^a | Body
Weight
(g) | Water
(g/day) | Body
Weight
(g) | Dose/
Day ^b
(mg/kg) | Water
(g/day) | Body
Weight
(g) | Dose/
Day
(mg/kg) | Water
(g/day) | Body
Weight
(g) | Dose/
Day
(mg/kg) | | 1 | 7.3 | 20.8 | 7.5 | 20.7 | 45 | 6.8 | 20.6 | 82 | 6.3 | 20.5 | 154 | | 2 | 6.9 | 21.8 | 6.6 | 21.4 | 39 | 6.6 | 21.6 | 76 | 5.7 | 21.5 | 132 | | 3 | 7.5 | 23.2 | 7.1 | 22.8 | 39 | 7.4 | 22.8 | 81 | 6.5 | 22.6 | 144 | | 4 | 6.5 | 24.1 | 6.8 | 24.0 | 35 | 6.4 | 23.9 | 67 | 5.6 | 23.7 | 118 | | 5 | 7.7 | 25.5 | 7.0 | 25.3 | 34 | 6.9 | 25.5 | 68 | 5.4 | 25.6 | 106 | | 6 | 6.1 | 26.7 | 5.8 | 26.5 | 28 | 6.3 | 26.3 | 59 | 4.9 | 26.9 | 90 | | 7 | 5.8 | 28.2 | 5.8 | 28.4 | 25 | 6.1 | 28.8 | 53 | 5.1 | 28.5 | 89 | | 8 | 6.0 | 29.6 | 5.4 | 29.9 | 23 | 5.6 | 29.8 | 47 | 5.0 | 30.0 | 84 | | 9 | 5.9 | 31.1 | 5.7 | 30.1 | 24 | 5.7 | 30.8 | 46 | 5.2 | 30.4 | 85 | | 10 | 5.5 | 31.7 | 6.3 | 32.0 | 24 | 6.4 | 32.7 | 49 | 5.7 | 32.9 | 86 | | 11 | 6.7 | 33.3 | 6.3 | 33.2 | 24 | 6.2 | 33.7 | 46 | 5.7 | 33.7 | 85 | | 12 | 7.1 | 34.1 | 6.4 | 34.2 | 23 | 6.0 | 35.2 | 43 | 5.4 | 35.1 | 76 | | 13 | 6.1 | 35.8 | 5.7 | 35.5 | 20 | 5.4 | 36.5 | 37 | 5.4 | 36.3 | 74 | | 17 | 5.0 | 40.2 | 4.8 | 39.4 | 15 | 5.1 | 40.5 | 31 | 5.1 | 40.4 | 64 | | 21 | 11.5 | 41.1 | 6.8 | 40.0 | 21 | 6.9 | 41.6 | 41 | 8.6 | 41.4 | 104 | | 25 | 4.5 | 45.9 | 4.6 | 44.2 | 13 | 4.4 | 45.8 | 24 | 4.3 | 45.1 | 48 | | 29 | 5.3 | 45.7 | 5.0 | 44.9 | 14 | 4.4 | 47.2 | 23 | 5.5 | 46.5 | 60 | | 33 | 4.9 | 49.1 | 4.6 | 47.7 | 12 | 4.4 | 49.5 | 22 | 4.3 | 48.7 | 44 | | 37 | 4.4 | 51.0 | 4.4 | 49.4 | 11 | 4.4 | 51.0 | 22 | 4.2 | 50.1 | 42 | | 41 | 5.9 | 53.1 | 6.3 | 51.1 | 15 | 5.8 | 53.2 | 27 | 6.2 | 52.0 | 60 | | 45 | 5.8 | 54.0 | 5.7 | 52.5 | 14 | 5.6 | 54.1 | 26 | 6.1 | 52.2 | 58 | | 49 | 5.5 | 56.2 | 5.4 | 54.5 | 12 | 6.3 | 55.6 | 28 | 6.3 | 54.4 | 58 | | 53 | 5.2 | 56.9 | 5.0 | 55.6 | 11 | 5.2 | 57.1 | 23 | 5.8 | 55.5 | 52 | | 57 | 5.4 | 58.2 | 5.1 | 56.4 | 11 | 5.6 | 58.0 | 24 | 5.2 | 56.8 | 46 | | 61 | 4.8 | 59.5 | 4.8 | 57.9 | 10 | 4.8 | 59.3 | 20 | 4.9 | 58.1 | 42 | | 65 | 4.6 | 59.9 | 5.0 | 58.5 | 11 | 4.6 | 61.0 | 19 | 5.0 | 58.6 | 42 | | 69 | 5.1 | 61.6 | 6.0 | 59.3 | 13 | 5.7 | 62.1 | 23 | 6.1 | 58.2 | 53 | | 73 | 4.9 | 62.8 | 5.4 | 60.2 | 11 | 5.1 | 62.2 | 20 | 6.4 | 58.0 | 55 | | 77 | 5.0 | 63.3 | 5.4 | 61.0 | 11 | 6.2 | 61.9 | 25 | 7.8 | 55.4 | 71 | | 81 | 4.6 | 62.2 | 4.9 | 60.3 | 10 | 5.8 | 60.4 | 24 | 7.3 | 51.6 | 70 | | 85 | 4.9 | 61.1 | 5.4 | 58.6 | 11 | 7.7 | 58.8 | 33 | 8.6 | 48.7 | 89 | | 89 | 2.6 | 60.0 | 2.7 | 58.0 | 6 | 3.4 | 54.4 | 16 | 3.2 | 45.8 | 35 | | 93 | 5.8 | 57.4 | 7.1 | 56.3 | 16 | 9.7 | 50.9 | 47 | 8.5 | 43.7 | 97 | | 97 | 6.0 | 55.7 | 7.8 | 52.7 | 18 | 10.4 | 47.1 | 55 | 8.6 | 40.2 | 106 | | 99 | 6.0 | 56.1 | 8.4 | 53.3 | 20 | 10.1 | 46.1 | 55 | 8.0 | 40.1 | 100 | | 101 | 5.4 | 55.5 | 9.2 | 52.5 | 22 | 10.7 | 42.8 | 62 | 8.0 | 39.9 | 100 | | 104 | 5.9 | 55.3 | 8.7 | 49.0 | 22 | 10.7 | 41.5 | 64 | 8.0 | 38.0 | 106 | | Mean fo | or weeks | | | | | | | | | | | | 1-13 | 6.5 | 28.1 | 6.3 | 28.0 | 30 | 6.3 | 28.3 | 58 | 5.5 | 28.3 | 102 | | 14-52 | 5.8 | 48.5 | 5.3 | 47.1 | 14 | 5.3 | 48.7 | 27 | 5.6 | 47.9 | 60 | | 53-104 | 5.1 | 59.0 | 6.1 | 56.6 | 14 | 7.0 | 54.9 | 34 | 6.8 | 49.9 | 71 | Grams of water consumed per animal per day Milligrams of pyridine consumed per kilogram body weight per day # APPENDIX M INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH-07 RAT AND MOUSE RATION | TABLE M1 | Ingredients of NIH-07 Rat and Mouse Ration | M-2 | |----------|--|-------------| | TABLE M2 | Vitamins and Minerals in NIH-07 Rat and Mouse Ration | M -2 | | TABLE M3 | Nutrient Composition of NIH-07 Rat and Mouse Ration | M | | TABLE M4 | Contaminant Levels in NIH-07 Rat and Mouse Ration | M-4 | M-2 Pyridine, NTP TR 470 TABLE M1 Ingredients of NIH-07 Rat and Mouse Ration^a | Ingredients ^b | Percent by Weight | | |--|-------------------|--| | Ground #2 yellow shelled corn | 24.50 | | | Ground hard winter wheat | 23.00 | | | Soybean meal (49% protein) | 12.00 | | | Fish meal (60% protein) | 10.00 | | | Wheat middlings | 10.00 | | | Dried skim milk | 5.00 | | | Alfalfa meal (dehydrated, 17% protein) | 4.00 | | | Corn gluten meal (60% protein) | 3.00 | | | Soy oil | 2.50 | | | Dried brewer s yeast | 2.00 | | | Dry molasses | 1.50 | | | Dicalcium phosphate | 1.25 | | | Ground limestone | 0.50 | | | Salt | 0.50 | | | Premixes (vitamin and mineral) | 0.25 | | | | | | TABLE M2 Vitamins and Minerals in NIH-07 Rat and Mouse Ration^a | | Amount | Source | |------------------------------------|---------------|---| | Vitamins | | | | A | 5,500,000 IU | Stabilized vitamin A palmitate or acetate | | D_3 | 4,600,000 IU | D-activated animal sterol | | K ₃ | 2.8 g | Menadione | | d - α -Tocopheryl acetate | 20,000 IU | | | Choline | 560.0 g | Choline chloride | | Folic acid | 2.2 g | | | Niacin | 30.0 g | | | d-Pantothenic acid | 18.0 g | d-Calcium pantothenate | | Riboflavin | 3.4 g | • | | Thiamine | 10.0 g | Thiamine mononitrate | | B ₁₂ | $4,000 \mu g$ | | | Pyridoxine | 1.7 g | Pyridoxine hydrochloride | | Biotin | 140.0 mg | d-Biotin | | Minerals | | | | Iron | 120.0 g | Iron sulfate | | Manganese | 60.0 g | Manganous oxide | | Zinc | 16.0 g | Zinc oxide | | Copper | 4.0 g | Copper sulfate | | Iodine | 1.4 g | Calcium iodate | | Cobalt | 0.4 g | Cobalt carbonate | | | | | ^a Per ton (2,000 lb) of finished product a NCI, 1976; NIH, 1978 b Ingredients were ground to pass through a U.S. Standard Screen No. 16 before being mixed. Pyridine, NTP TR 470 M-3 TABLE M3 Nutrient Composition of NIH-07 Rat and Mouse Ration | | Deviation | Ra | nge | Number of Samples | |---|-------------------|-------|--------|-------------------| | | | | | | | Protein (% by weight) | 23.45 ± 0.49 | 22.3 | 24.3 | 26 | | Crude fat (% by weight) | 5.34 ± 0.18 | 5.00 | 5.90 | 26 | | Crude fiber (% by weight) | 3.32 ± 0.32 | 2.60 | 4.30 | 26 | | Ash (% by weight) | 6.42 ± 0.21 | 5.94 | 6.81 | 26 | | Amino Acids (% of total diet) | | | | | | Arginine | 1.273 ± 0.083 | 1.100 | 1.390 | 12 | | Cystine | 0.307 ± 0.068 | 0.181 | 0.400 | 12 | | Glycine | 1.152 ± 0.051 | 1.060 | 1.220 | 12 | | Histidine | 0.581 ± 0.029 | 0.531 | 0.630 | 12 | | Isoleucine | 0.913 ± 0.034 | 0.867 | 0.965 | 12 | | Leucine | 1.969 ± 0.053 | 1.850 | 2.040 | 12 | | Lysine | 1.269 ± 0.050 | 1.200 | 1.370 | 12 | | Methionine | 0.436 ± 0.104 | 0.306 | 0.699 | 12 | | Phenylalanine | 0.999 ± 0.114 | 0.665 | 1.110
 12 | | Threonine | 0.899 ± 0.059 | 0.824 | 0.985 | 12 | | Tryptophan | 0.216 ± 0.146 | 0.107 | 0.671 | 12 | | Tyrosine | 0.690 ± 0.091 | 0.564 | 0.794 | 12 | | Valine | 1.079 ± 0.057 | 0.962 | 1.170 | 12 | | Essential Fatty Acids (% of total diet) | | | | | | Linoleic | 2.389 ± 0.223 | 1.830 | 2.570 | 11 | | Linolenic | 0.273 ± 0.034 | 0.210 | 0.320 | 11 | | Vitamins | | | | | | Vitamin A (IU/kg) | $6,681 \pm 1,265$ | 5,280 | 11,450 | 26 | | Vitamin D (IU/kg) | $4,450 \pm 1,382$ | 3,000 | 6,300 | 4 | | α-Tocopherol (ppm) | 35.24 ± 8.58 | 22.5 | 48.9 | 12 | | Thiamine (ppm) | 17.27 ± 2.14 | 13.0 | 22.0 | 26 | | Riboflavin (ppm) | 7.78 ± 0.899 | 6.10 | 9.00 | 12 | | Niacin (ppm) | 98.73 ± 23.21 | 65.0 | 150.0 | 12 | | Pantothenic acid (ppm) | 32.94 ± 8.92 | 23.0 | 59.2 | 12 | | Pyridoxine (ppm) | 9.28 ± 2.49 | 5.60 | 14.0 | 12 | | Folic acid (ppm) | 2.56 ± 0.70 | 1.80 | 3.70 | 12 | | Biotin (ppm) | 0.265 ± 0.046 | 0.190 | 0.354 | 12 | | Vitamin B ₁₂ (ppb) | 41.6 ± 18.6 | 10.6 | 65.0 | 12 | | Choline (ppm) | $2,955 \pm 382$ | 2,300 | 3,430 | 11 | | Minerals | | | | | | Calcium (%) | 1.16 ± 0.05 | 1.09 | 1.28 | 26 | | Phosphorus (%) | 0.92 ± 0.05 | 0.760 | 1.00 | 26 | | Potassium (%) | 0.886 ± 0.059 | 0.772 | 0.971 | 10 | | Chloride (%) | 0.531 ± 0.082 | 0.380 | 0.635 | 10 | | Sodium (%) | 0.316 ± 0.031 | 0.258 | 0.370 | 12 | | Magnesium (%) | 0.165 ± 0.010 | 0.148 | 0.180 | 12 | | Sulfur (%) | 0.266 ± 0.060 | 0.208 | 0.420 | 11 | | Iron (ppm) | 348.0 ± 83.7 | 255.0 | 523.0 | 12 | | Manganese (ppm) | 93.27 ± 5.62 | 81.7 | 102.0 | 12 | | Zinc (ppm) | 59.42 ± 9.73 | 46.1 | 81.6 | 12 | | Copper (ppm) | 11.63 ± 2.46 | 8.09 | 15.4 | 12 | | Iodine (ppm) | 3.49 ± 1.14 | 1.52 | 5.83 | 11 | | Chromium (ppm) | 1.57 ± 0.53 | 0.60 | 2.09 | 12 | | Cobalt (ppm) | 0.81 ± 0.27 | 0.49 | 1.23 | 8 | M-4 Pyridine, NTP TR 470 TABLE M4 Contaminant Levels in NIH-07 Rat and Mouse Ration^a | | Mean ± Standard
Deviation ^b | Ra | nge | Number of Samples | |---|---|-------|---------|-------------------| | Contaminants | | | | | | Arsenic (ppm) | 0.49 ± 0.16 | 0.10 | 0.70 | 26 | | Cadmium (ppm) | 0.13 ± 0.07 | 0.04 | 0.20 | 26 | | Lead (ppm) | 0.36 ± 0.24 | 0.10 | 1.00 | 26 | | Mercury (ppm) ^c | < 0.02 | 0.02 | 0.03 | 26 | | Selenium (ppm) | 0.32 ± 0.10 | 0.05 | 0.40 | 26 | | Aflatoxins (ppb) | < 5.0 | | | 26 | | Nitrate nitrogen (ppm) | 7.78 ± 3.83 | 2.90 | 17.0 | 26 | | Nitrite nitrogen (ppm) ^d | 0.18 ± 0.12 | 0.10 | 0.50 | 26 | | BHA (ppm) | 2.46 ± 4.04 | 1.0 | 20.0 | 26 | | BHT (ppm) ^e | 1.35 ± 0.84 | 1.0 | 5.0 | 26 | | Aerobic plate count (CFU/g) | $95,542 \pm 158,814$ | 6,500 | 710,000 | 26 | | Coliform (MPN/g) | 3.1 ± 0.3 | 3 | 4 | 26 | | Escherichia coli (MPN/g) | <3 | | | 26 | | Salmonella (MPN/g) | Negative | | | 26 | | Total nitrosoamines (ppb) ^f | 7.87 ± 1.92 | 4.7 | 11.4 | 26 | | <i>N</i> -Nitrosodimethylamine (ppb) ^f | 5.73 ± 1.31 | 2.9 | 8.2 | 26 | | <i>N</i> -Nitrosopyrrolidine (ppb) | 2.14 ± 1.26 | | 6.0 | 26 | | Pesticides (ppm) | | | | | | α-ВНС | < 0.01 | | | 26 | | β-ВНС | < 0.02 | | | 26 | | ү-ВНС | < 0.01 | | | 26 | | δ-BHC | < 0.01 | | | 26 | | Heptachlor | < 0.01 | | | 26 | | Aldrin | < 0.01 | | | 26 | | Heptachlor epoxide | < 0.01 | | | 26 | | DDE | < 0.01 | | | 26 | | DDD | < 0.01 | | | 26 | | DDT | < 0.01 | | | 26 | | HCB | < 0.01 | | | 26 | | Mirex | < 0.01 | | | 26 | | Methoxychlor | < 0.05 | | | 26 | | Dieldrin | < 0.01 | | | 26 | | Endrin | < 0.01 | | | 26 | | Telodrin | < 0.01 | | | 26 | | Chlordane | < 0.05 | | | 26 | | Toxaphene | < 0.10 | | | 26 | | Estimated PCBs | < 0.20 | | | 26 | | Ronnel | < 0.20 | | | 26 | | Ethion | < 0.02 | | | 26 | | Trithion | < 0.02 | | | 26 | | Diazinon | < 0.10 | | | 26 | | Methyl parathion | < 0.02 | | | 26 | | Ethyl parathion | < 0.02 | | | 26 | | Malathion | | 0.05 | 0.97 | 26 | | | 0.24 ± 0.23 | 0.03 | 0.97 | 26
26 | | Endosulfan I | < 0.01 | | | | | Endosulfan II
Endosulfan sulfate | <0.01
<0.03 | | | 26
26 | $^{{\}stackrel{a}{\cdot}} \quad CFU = colony\text{-forming units; MPN} = most \ probable \ number; \ BHC = hexachlorocyclohexane \ or \ benzene \ hexachloride$ For values less than the limit of detection, the detection limit is given as the mean. All values except for the lots milled November and December 1991 were less than the detection limit. The detection limit is given as the mean. d Sources of contamination: alfalfa, grains, and fish meal e Sources of contamination: soy oil and fish meal f All values were corrected for percent recovery. # APPENDIX N SENTINEL ANIMAL PROGRAM | METHODS | | N-2 | |----------|--|-----| | TABLE N1 | Murine Virus Antibody Determinations for Rats and Mice | | | | in the 13-Week and 2-Year Studies of Pyridine | N-5 | N-2 Pyridine, NTP TR 470 ## SENTINEL ANIMAL PROGRAM ### **METHODS** Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via serology on sera from extra (sentinel) animals in the study rooms. These animals and the study animals are subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds. Serum samples were collected from randomly selected rats and mice during the 13-week and 2-year studies. Blood from each animal was collected and allowed to clot, and the serum was separated. The samples were processed appropriately and sent to Microbiological Associates, Inc. (Bethesda, MD), for determination of antibody titers. The laboratory serology methods and viral agents for which testing was performed are tabulated below; the times at which blood was collected during the studies are also listed. Method and Test Time of Analysis ### F344/N RATS 13-Week Study **ELISA** PVM (pneumonia virus of mice) Study termination RCV/SDA (rat coronavirus/ sialodacryoadenitits) Study termination Sendai Study termination Hemagglutination Inhibition H-1 (Toolan s H-1 virus) Study termination KRV (Kilham rat virus) Study termination 2-Year Study **ELISA** Mycoplasma arthritidisStudy terminationMycoplasma pulmonisStudy termination PVM 6, 12, 16, 18, and 19 months, study termination RCV/SDA 6, 12, 16, 18, and 19 months, study termination Sendai 6, 12, 16, 18, and 19 months, study termination Immunofluorescence Assay Parvovirus 6 months RCV/SDA Study termination Sendai 12 months Hemagglutination Inhibition H-1 6, 12, 16, 18, and 19 months, study termination KRV 6, 12, 16, 18, and 19 months, study termination Pyridine, NTP TR 470 N-3 ### WISTAR RATS ### 13-Week Study **ELISA** PVM Study termination RCV/SDA Study termination Sendai Study termination Hemagglutination Inhibition H-1 Study termination KRV Study termination ### 2-Year Study **ELISA** M. arthritidisM. pulmonis6 months, study termination6 months, study termination PVM 1 week, 3, 5, 6, 12, 14, and 18 months, study termination RCV/SDA 1 week, 3, 5, 6, 12, 14, and 18 months, study termination Sendai 1 week, 3, 5, 6, 12, 14, and 18 months, study termination Immunofluorescence Assay Parvovirus 3 months, study termination RCV/SDA Study termination Hemagglutination Inhibition H-1 1 week, 3, 5, 6, 12, 14, and 18 months, study termination KRV 1 week, 3, 5, 6, 12, 14, and 18 months, study termination ### **MICE** ### 13-Week Study **ELISA** Ectromelia virus GDVII (mouse encephalomyelitis virus) LCM (lymphocytic choriomeninigitis virus) MHV (mouse hepatitis virus) PVM Study termination Immunofluorescence Assay EDIM (epizootic diarrhea of infant mice) Mouse adenoma virus MVM (minute virus of mice) Study termination Study termination Study termination Hemagglutination Inhibition K (papovavirus) Study termination Polyoma virus Study termination N-4 Pyridine, NTP TR 470 ## MICE (continued) ### 2-Year Study **ELISA** Ectromelia virus 6, 12, and 18 months, study termination **EDIM** 6, 12, and 18 months, study termination 6, 12, and 18 months, study termination **GDVII** LCM 6, 12, and 18 months, study termination 6, 12, and 18 months, study termination Mouse adenoma virus-FL MHV 6, 12, and 18 months, study termination M. arthritidis Study termination Study termination M. pulmonis **PVM** PVM 6, 12, and 18 months, study termination Reovirus 3 6, 12, and 18 months, study termination Sendai 6, 12, and 18 months, study termination Immunofluorescence Assay GDVII 12 months MHV 12 months, study termination Hemagglutination Inhibition K 6, 12, and 18 months, study termination MVM 6, 12, and 18 months, study termination Polyoma virus 6, 12, and 18 months, study termination Results of serology tests are presented in Table N1. Pyridine, NTP TR 470 N-5 TABLE N1 Murine Virus Antibody Determinations for Rats and Mice in the 13-Week and 2-Year Studies of Pyridine | Interval | Incidence of Antibody in Sentinel Animals | Positive Serologic
Reaction for | |------------------------|---|------------------------------------| | 13-Week Studies | | | | F344/N Rats | | | | Study termination | 0/10 | None positive | | Wistar Rats | | | | Study termination | 0/5 | None positive | | Mice | | | | Study termination | 0/10 | None positive | | 2-Year Studies | | | | F344/N Rats | | | | 6 Months | 1/10
1/10 | Parvovirus
H-1 | | 12 Months | 0/10
0/1 | None positive | | 16 Months
18 Months | 0/1 0/8 | None positive None positive | | 19 Months | 0/3 | None positive | | Study termination | 6/16 ^a | M.
arthritidis | | Wistar Rats | | | | 1 Week | 0/8 | None positive | | 3 Months | 1/2 | Parvovirus | | | 1/2 | H-1 | | 5 Months | 0/1 | None positive | | 6 Months
12 Months | 0/6
0/5 | None positive | | 12 Months | 0/3 | None positive None positive | | 18 Months | 0/1 | None positive | | Study termination | 0/10 | None positive | | Mice | | | | 6 Months | 0/10 | None positive | | 12 Months | 0/8 | None positive | | 18 Months | 0/8 | None positive | | Study termination | 0/10 | None positive | Further evaluation of samples positive for *M. arthritidis* by immunoblot and Western blot procedures indicated that the positive titers may have been due to cross reaction with antibodies of nonpathogenic *Mycoplasma* or other agents. Only sporadic samples were positive and there were no clinical findings or histopathologic changes of *M. arthritidis* infection in animals with positive titers. Accordingly, *M. arthritidis*-positive titers were considered false positives. N-6 Pyridine, NTP TR 470